Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Heart Rhythm ; 20(8): 1158-1166, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37164047

RESUMO

BACKGROUND: Truncating variants in filamin C (FLNC) can cause arrhythmogenic cardiomyopathy (ACM) through haploinsufficiency. Noncanonical splice-altering variants may contribute to this phenotype. OBJECTIVE: The purpose of this study was to investigate the clinical and functional consequences of a recurrent FLNC intronic variant of uncertain significance (VUS), c.970-4A>G. METHODS: Clinical data in 9 variant heterozygotes from 4 kindreds were obtained from 5 tertiary health care centers. We used in silico predictors and functional studies with peripheral blood and patient-specific induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs). Isolated RNA was studied by reverse transcription polymerase chain reaction. iPSC-CMs were further characterized at baseline and after nonsense-mediated decay (NMD) inhibition, using quantitative polymerase chain reaction (qPCR), RNA-sequencing, and cellular electrophysiology. American College of Medical Genetics and Genomics (ACMG) criteria were used to adjudicate variant pathogenicity. RESULTS: Variant heterozygotes displayed a spectrum of disease phenotypes, spanning from mild ventricular dysfunction with palpitations to severe ventricular arrhythmias requiring device shocks or progressive cardiomyopathy requiring heart transplantation. Consistent with in silico predictors, the c.970-4A>G FLNC variant activated a cryptic splice acceptor site, introducing a 3-bp insertion containing a premature termination codon. NMD inhibition upregulated aberrantly spliced transcripts by qPCR and RNA-sequencing. Patch clamp studies revealed irregular spontaneous action potentials, increased action potential duration, and increased sodium late current in proband-derived iPSC-CMs. These findings fulfilled multiple ACMG criteria for pathogenicity. CONCLUSION: Clinical, in silico, and functional evidence support the prediction that the intronic c.970-4A>G VUS disrupts splicing and drives ACM, enabling reclassification from VUS to pathogenic.


Assuntos
Cardiomiopatias , Humanos , Cardiomiopatias/genética , Códon sem Sentido , Filaminas/genética , Mutação , Miócitos Cardíacos , RNA/genética
2.
Am J Hum Genet ; 109(10): 1923-1931, 2022 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-36067766

RESUMO

MTSS2, also known as MTSS1L, binds to plasma membranes and modulates their bending. MTSS2 is highly expressed in the central nervous system (CNS) and appears to be involved in activity-dependent synaptic plasticity. Variants in MTSS2 have not yet been associated with a human phenotype in OMIM. Here we report five individuals with the same heterozygous de novo variant in MTSS2 (GenBank: NM_138383.2: c.2011C>T [p.Arg671Trp]) identified by exome sequencing. The individuals present with global developmental delay, mild intellectual disability, ophthalmological anomalies, microcephaly or relative microcephaly, and shared mild facial dysmorphisms. Immunoblots of fibroblasts from two affected individuals revealed that the variant does not significantly alter MTSS2 levels. We modeled the variant in Drosophila and showed that the fly ortholog missing-in-metastasis (mim) was widely expressed in most neurons and a subset of glia of the CNS. Loss of mim led to a reduction in lifespan, impaired locomotor behavior, and reduced synaptic transmission in adult flies. Expression of the human MTSS2 reference cDNA rescued the mim loss-of-function (LoF) phenotypes, whereas the c.2011C>T variant had decreased rescue ability compared to the reference, suggesting it is a partial LoF allele. However, elevated expression of the variant, but not the reference MTSS2 cDNA, led to similar defects as observed by mim LoF, suggesting that the variant is toxic and may act as a dominant-negative allele when expressed in flies. In summary, our findings support that mim is important for appropriate neural function, and that the MTSS2 c.2011C>T variant causes a syndromic form of intellectual disability.


Assuntos
Deficiência Intelectual , Microcefalia , Malformações do Sistema Nervoso , Animais , DNA Complementar , Drosophila/genética , Humanos , Deficiência Intelectual/genética , Deficiência Intelectual/patologia , Proteínas de Membrana , Microcefalia/genética , Proteínas dos Microfilamentos , Mutação de Sentido Incorreto/genética , Malformações do Sistema Nervoso/genética , Fenótipo
3.
Hum Mutat ; 43(10): 1377-1395, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35730652

RESUMO

Mitogen-activated protein 3 kinase 7 (MAP3K7) encodes the ubiquitously expressed transforming growth factor ß-activated kinase 1, which plays a crucial role in many cellular processes. Mutationsin the MAP3K7 gene have been linked to two distinct disorders: frontometaphyseal dysplasia type 2 (FMD2) and cardiospondylocarpofacial syndrome (CSCF). The fact that different mutations can induce two distinct phenotypes suggests a phenotype/genotype correlation, but no side-by-side comparison has been done thus far to confirm this. Here, we significantly expand the cohort and the description of clinical phenotypes for patients with CSCF and FMD2 who carry mutations in MAP3K7. Our findings support that in contrast to FMD2-causing mutations, CSCF-causing mutations in MAP3K7 have a loss-of-function effect. Additionally, patients with pathogenic mutations in MAP3K7 are at risk for (severe) cardiac disease, have symptoms associated with connective tissue disease, and we show overlap in clinical phenotypes of CSCF with Noonan syndrome (NS). Together, we confirm a molecular fingerprint of FMD2- versus CSCF-causing MAP3K7 mutations and conclude that mutations in MAP3K7 should be considered in the differential diagnosis of patients with syndromic congenital cardiac defects and/or cardiomyopathy, syndromic connective tissue disorders, and in the differential diagnosis of NS.


Assuntos
Anormalidades Múltiplas , Síndrome de Noonan , Anormalidades Múltiplas/genética , Genótipo , Perda Auditiva Bilateral , Humanos , Insuficiência da Valva Mitral , Mutação , Síndrome de Noonan/genética , Osteosclerose , Fenótipo
4.
Hum Mutat ; 43(9): 1299-1313, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35607920

RESUMO

Alternative splicing (AS) is crucial for cell-type-specific gene transcription and plays a critical role in neuronal differentiation and synaptic plasticity. De novo frameshift variants in NOVA2, encoding a neuron-specific key splicing factor, have been recently associated with a new neurodevelopmental disorder (NDD) with hypotonia, neurological features, and brain abnormalities. We investigated eight unrelated individuals by exome sequencing (ES) and identified seven novel pathogenic NOVA2 variants, including two with a novel localization at the KH1 and KH3 domains. In addition to a severe NDD phenotype, novel clinical features included psychomotor regression, attention deficit-hyperactivity disorder (ADHD), dyspraxia, and urogenital and endocrinological manifestations. To test the effect of the variants on splicing regulation, we transfected HeLa cells with wildtype and mutant NOVA2 complementary DNA (cDNA). The novel variants NM_002516.4:c.754_756delCTGinsTT p.(Leu252Phefs*144) and c.1329dup p.(Lys444Glnfs*82) all negatively affected AS events. The distal p.(Lys444Glnfs*82) variant, causing a partial removal of the KH3 domain, had a milder functional effect leading to an intermediate phenotype. Our findings expand the molecular and phenotypic spectrum of NOVA2-related NDD, supporting the pathogenic role of AS disruption by truncating variants and suggesting that this is a heterogeneous condition with variable clinical course.


Assuntos
Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Processamento Alternativo , Células HeLa , Humanos , Deficiência Intelectual/genética , Deficiência Intelectual/patologia , Hipotonia Muscular/genética , Proteínas do Tecido Nervoso/genética , Antígeno Neuro-Oncológico Ventral , Transtornos do Neurodesenvolvimento/genética , Fenótipo , Proteínas de Ligação a RNA/genética
5.
Am J Med Genet A ; 185(12): 3814-3820, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34254723

RESUMO

Terminal osseous dysplasia with pigmentary defects (TODPD), also known as digitocutaneous dysplasia, is one of the X-linked filaminopathies caused by a variety of FLNA-variants. TODPD is characterized by skeletal defects, skin fibromata and dysmorphic facial features. So far, only a single recurrent variant (c.5217G>A;p.Val1724_Thr1739del) in FLNA has found to be responsible for TODPD. We identified a novel c.5217+5G>C variant in FLNA in a female proband with skeletal defects, skin fibromata, interstitial lung disease, epilepsy, and restrictive cardiomyopathy. This variant causes mis-splicing of exon 31 predicting the production of a FLNA-protein with an in-frame-deletion of 16 residues identical to the miss-splicing-effect of the recurrent TODPD c.5217G>A variant. This mis-spliced transcript was explicitly detected in heart tissue, but was absent from blood, skin, and lung. X-inactivation analyses showed extreme skewing with almost complete inactivation of the mutated allele (>90%) in these tissues, except for heart. The mother of the proband, who also has fibromata and skeletal abnormalities, is also carrier of the FLNA-variant and was diagnosed with noncompaction cardiomyopathy after cardiac screening. No other relevant variants in cardiomyopathy-related genes were found. Here we describe a novel variant in FLNA (c.5217+5G>C) as the second pathogenic variant responsible for TODPD. Cardiomyopathy has not been described as a phenotypic feature of TODPD before.


Assuntos
Cardiomiopatias/genética , Filaminas/genética , Dedos/anormalidades , Doenças Genéticas Ligadas ao Cromossomo X/genética , Predisposição Genética para Doença , Deformidades Congênitas dos Membros/genética , Osteocondrodisplasias/genética , Transtornos da Pigmentação/genética , Dedos do Pé/anormalidades , Cardiomiopatias/complicações , Cardiomiopatias/patologia , Pré-Escolar , Feminino , Dedos/patologia , Genes Ligados ao Cromossomo X/genética , Doenças Genéticas Ligadas ao Cromossomo X/complicações , Doenças Genéticas Ligadas ao Cromossomo X/patologia , Humanos , Lactente , Deformidades Congênitas dos Membros/complicações , Deformidades Congênitas dos Membros/patologia , Mutação/genética , Osteocondrodisplasias/complicações , Osteocondrodisplasias/patologia , Fenótipo , Transtornos da Pigmentação/complicações , Transtornos da Pigmentação/patologia , Deleção de Sequência/genética , Dedos do Pé/patologia , Inativação do Cromossomo X/genética
6.
Blood Adv ; 5(9): 2339-2349, 2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33938942

RESUMO

The BCL11A gene encodes a transcriptional repressor with essential functions in multiple tissues during human development. Haploinsufficiency for BCL11A causes Dias-Logan syndrome (OMIM 617101), an intellectual developmental disorder with hereditary persistence of fetal hemoglobin (HPFH). Due to the severe phenotype, disease-causing variants in BCL11A occur de novo. We describe a patient with a de novo heterozygous variant, c.1453G>T, in the BCL11A gene, resulting in truncation of the BCL11A-XL protein (p.Glu485X). The truncated protein lacks the 3 C-terminal DNA-binding zinc fingers and the nuclear localization signal, rendering it inactive. The patient displayed high fetal hemoglobin (HbF) levels (12.1-18.7% of total hemoglobin), in contrast to the parents who had HbF levels of 0.3%. We used cultures of patient-derived erythroid progenitors to determine changes in gene expression and chromatin accessibility. In addition, we investigated DNA methylation of the promoters of the γ-globin genes HBG1 and HBG2. HUDEP1 and HUDEP2 cells were used as models for fetal and adult human erythropoiesis, respectively. Similar to HUDEP1 cells, the patient's cells displayed Assay for Transposase-Accessible Chromatin (ATAC) peaks at the HBG1/2 promoters and significant expression of HBG1/2 genes. In contrast, HBG1/2 promoter methylation and genome-wide gene expression profiling were consistent with normal adult erythropoiesis. We conclude that HPFH is the major erythroid phenotype of constitutive BCL11A haploinsufficiency. Given the essential functions of BCL11A in other hematopoietic lineages and the neuronal system, erythroid-specific targeting of the BCL11A gene has been proposed for reactivation of γ-globin expression in ß-hemoglobinopathy patients. Our data strongly support this approach.


Assuntos
Haploinsuficiência , Proteínas Nucleares , Adulto , Proteínas de Transporte/genética , Humanos , Proteínas Nucleares/genética , Fenótipo , Proteínas Repressoras/genética
7.
Front Mol Neurosci ; 13: 12, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32116545

RESUMO

Multiple TREX mRNA export complex subunits (e.g., THOC1, THOC2, THOC5, THOC6, THOC7) have now been implicated in neurodevelopmental disorders (NDDs), neurodegeneration and cancer. We previously implicated missense and splicing-defective THOC2 variants in NDDs and a broad range of other clinical features. Here we report 10 individuals from nine families with rare missense THOC2 variants including the first case of a recurrent variant (p.Arg77Cys), and an additional individual with an intragenic THOC2 microdeletion (Del-Ex37-38). Ex vivo missense variant testing and patient-derived cell line data from current and published studies show 9 of the 14 missense THOC2 variants result in reduced protein stability. The splicing-defective and deletion variants result in a loss of small regions of the C-terminal THOC2 RNA binding domain (RBD). Interestingly, reduced stability of THOC2 variant proteins has a flow-on effect on the stability of the multi-protein TREX complex; specifically on the other NDD-associated THOC subunits. Our current, expanded cohort refines the core phenotype of THOC2 NDDs to language disorder and/or ID, with a variable severity, and disorders of growth. A subset of affected individuals' has severe-profound ID, persistent hypotonia and respiratory abnormalities. Further investigations to elucidate the pathophysiological basis for this severe phenotype are warranted.

8.
Am J Med Genet C Semin Med Genet ; 181(4): 611-626, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31730271

RESUMO

The nuclear factor one (NFI) site-specific DNA-binding proteins represent a family of transcription factors that are important for the development of multiple organ systems, including the brain. During brain development in mice, the expression patterns of Nfia, Nfib, and Nfix overlap, and knockout mice for each of these exhibit overlapping brain defects, including megalencephaly, dysgenesis of the corpus callosum, and enlarged ventricles, which implies a common but not redundant function in brain development. In line with these models, human phenotypes caused by haploinsufficiency of NFIA, NFIB, and NFIX display significant overlap, sharing neurodevelopmental deficits, macrocephaly, brain anomalies, and variable somatic overgrowth. Other anomalies may be present depending on the NFI gene involved. The possibility of variants in NFI genes should therefore be considered in individuals with intellectual disability and brain overgrowth, with individual NFI-related conditions being differentiated from one another by additional signs and symptoms. The exception is provided by specific NFIX variants that act in a dominant negative manner, as these cause a recognizable entity with more severe cognitive impairment and marked bone dysplasia, Marshall-Smith syndrome. NFIX duplications are associated with a phenotype opposite to that of haploinsufficiency, characterized by short stature, small head circumference, and delayed bone age. The spectrum of NFI-related disorders will likely be further expanded, as larger cohorts are assessed.


Assuntos
Crescimento/genética , Mutação , Fatores de Transcrição NFI/genética , Anormalidades Múltiplas/genética , Animais , Doenças do Desenvolvimento Ósseo/genética , Anormalidades Craniofaciais/genética , Duplicação Gênica , Transtornos do Crescimento/genética , Humanos , Camundongos , Displasia Septo-Óptica/genética , Síndrome
10.
Am J Hum Genet ; 102(6): 1115-1125, 2018 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-29805041

RESUMO

Spondylocarpotarsal synostosis syndrome (SCTS) is characterized by intervertebral fusions and fusion of the carpal and tarsal bones. Biallelic mutations in FLNB cause this condition in some families, whereas monoallelic variants in MYH3, encoding embryonic heavy chain myosin 3, have been implicated in dominantly inherited forms of the disorder. Here, five individuals without FLNB mutations from three families were hypothesized to be affected by recessive SCTS on account of sibling recurrence of the phenotype. Initial whole-exome sequencing (WES) showed that all five were heterozygous for one of two independent splice-site variants in MYH3. Despite evidence indicating that three of the five individuals shared two allelic haplotypes encompassing MYH3, no second variant could be located in the WES datasets. Subsequent genome sequencing of these three individuals demonstrated a variant altering a 5' UTR splice donor site (rs557849165 in MYH3) not represented by exome-capture platforms. When the cohort was expanded to 16 SCTS-affected individuals without FLNB mutations, nine had truncating mutations transmitted by unaffected parents, and six inherited the rs557849165 variant in trans, an observation at odds with the population allele frequency for this variant. The rs557849165 variant disrupts splicing in the 5' UTR but is still permissive of MYH3 translational initiation, albeit with reduced efficiency. Although some MYH3 variants cause dominant SCTS, these data indicate that others (notably truncating variants) do not, except in the context of compound heterozygosity for a second hypomorphic allele. These observations make genetic diagnosis challenging in the context of simplex presentations of the disorder.


Assuntos
Anormalidades Múltiplas/genética , Genes Recessivos , Vértebras Lombares/anormalidades , Doenças Musculoesqueléticas/genética , Mutação/genética , Cadeias Pesadas de Miosina/genética , Escoliose/congênito , Sinostose/genética , Vértebras Torácicas/anormalidades , Alelos , Mapeamento Cromossômico , Feminino , Filaminas/genética , Haplótipos/genética , Heterozigoto , Humanos , Masculino , Linhagem , Fenótipo , Splicing de RNA/genética , Escoliose/genética , Síndrome , Sequenciamento do Exoma
11.
Hum Mutat ; 39(5): 621-634, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29392890

RESUMO

The Loeys-Dietz syndrome (LDS) is a connective tissue disorder affecting the cardiovascular, skeletal, and ocular system. Most typically, LDS patients present with aortic aneurysms and arterial tortuosity, hypertelorism, and bifid/broad uvula or cleft palate. Initially, mutations in transforming growth factor-ß (TGF-ß) receptors (TGFBR1 and TGFBR2) were described to cause LDS, hereby leading to impaired TGF-ß signaling. More recently, TGF-ß ligands, TGFB2 and TGFB3, as well as intracellular downstream effectors of the TGF-ß pathway, SMAD2 and SMAD3, were shown to be involved in LDS. This emphasizes the role of disturbed TGF-ß signaling in LDS pathogenesis. Since most literature so far has focused on TGFBR1/2, we provide a comprehensive review on the known and some novel TGFB2/3 and SMAD2/3 mutations. For TGFB2 and SMAD3, the clinical manifestations, both of the patients previously described in the literature and our newly reported patients, are summarized in detail. This clearly indicates that LDS concerns a disorder with a broad phenotypical spectrum that is still emerging as more patients will be identified. All mutations described here are present in the corresponding Leiden Open Variant Database.


Assuntos
Estudos de Associação Genética , Síndrome de Loeys-Dietz/genética , Mutação/genética , Proteína Smad2/genética , Proteína Smad3/genética , Fator de Crescimento Transformador beta2/genética , Fator de Crescimento Transformador beta3/genética , Animais , Modelos Animais de Doenças , Humanos , Síndrome de Loeys-Dietz/diagnóstico , Camundongos , Transdução de Sinais/genética
12.
Nat Genet ; 47(6): 579-81, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25938945

RESUMO

Primary familial brain calcification (PFBC) is a neurological disease characterized by calcium phosphate deposits in the basal ganglia and other brain regions and has thus far been associated with SLC20A2, PDGFB or PDGFRB mutations. We identified in multiple families with PFBC mutations in XPR1, a gene encoding a retroviral receptor with phosphate export function. These mutations alter phosphate export, implicating XPR1 and phosphate homeostasis in PFBC.


Assuntos
Encefalopatias Metabólicas Congênitas/genética , Calcinose/genética , Receptores Acoplados a Proteínas G/genética , Receptores Virais/genética , Análise Mutacional de DNA , Feminino , Estudos de Associação Genética , Predisposição Genética para Doença , Células HEK293 , Humanos , Escore Lod , Masculino , Pessoa de Meia-Idade , Mutação de Sentido Incorreto , Doenças Neurodegenerativas/genética , Linhagem , Receptor do Retrovírus Politrópico e Xenotrópico
13.
Am J Med Genet A ; 161A(6): 1394-400, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23633388

RESUMO

Acrocallosal syndrome is characterized by postaxial polydactyly, macrocephaly, agenesis of the corpus callosum, and severe developmental delay. In a few patients with this disorder, a mutation in the KIF7 gene has been reported, which was associated with impaired GLI3 processing and dysregulaton of GLI3 transcription factors. A single patient with acrocallosal syndrome and a de novo p.Ala934Pro mutation in GLI3 has been reported, whereas diverse and numerous GLI3 mutations have also been described in syndromes with overlapping clinical manifestations, including Greig cephalopolysyndactyly syndrome, Pallister-Hall syndrome, trigonocephaly with craniosynostosis and polydactyly, oral-facial-digital syndrome, and non-syndromic polydactyly. Here, we describe a second patient with acrocallosal syndrome, who has a de novo, novel c.2786T>C mutation in GLI3, which predicts p.Leu929Pro. This mutation is in the same domain as the mutation in the previously reported patient. These data confirm that mutations in GLI3 are a cause of the acrocallosal phenotype.


Assuntos
Anormalidades Múltiplas/genética , Síndrome Acrocalosal/genética , Acrocefalossindactilia/genética , Craniossinostoses/genética , Fatores de Transcrição Kruppel-Like/genética , Proteínas do Tecido Nervoso/genética , Anormalidades Múltiplas/diagnóstico , Síndrome Acrocalosal/diagnóstico , Acrocefalossindactilia/diagnóstico , Substituição de Aminoácidos , Craniossinostoses/diagnóstico , Diagnóstico Diferencial , Feminino , Estudos de Associação Genética , Heterozigoto , Humanos , Lactente , Mutação de Sentido Incorreto , Fenótipo , Gravidez , Diagnóstico Pré-Natal , Proteína Gli3 com Dedos de Zinco
14.
Science ; 340(6131): 479-83, 2013 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-23519211

RESUMO

Glycosylated α-dystroglycan (α-DG) serves as cellular entry receptor for multiple pathogens, and defects in its glycosylation cause hereditary Walker-Warburg syndrome (WWS). At least eight proteins are critical to glycosylate α-DG, but many genes mutated in WWS remain unknown. To identify modifiers of α-DG, we performed a haploid screen for Lassa virus entry, a hemorrhagic fever virus causing thousands of deaths annually that hijacks glycosylated α-DG to enter cells. In complementary screens, we profiled cells for absence of α-DG carbohydrate chains or biochemically related glycans. This revealed virus host factors and a suite of glycosylation units, including all known Walker-Warburg genes and five additional factors critical for the modification of α-DG. Our findings accentuate the complexity of this posttranslational feature and point out genes defective in dystroglycanopathies.


Assuntos
Distroglicanas/metabolismo , Interações Hospedeiro-Patógeno/genética , Febre Lassa/genética , Vírus Lassa/fisiologia , Proteínas de Membrana/genética , Proteoma/metabolismo , Internalização do Vírus , Síndrome de Walker-Warburg/genética , Sequência de Aminoácidos , Linhagem Celular , Feminino , Glicosilação , Haploidia , Humanos , Lactente , Febre Lassa/virologia , Masculino , Dados de Sequência Molecular , Mutação , Linhagem , Pentosiltransferases
15.
Ann Thorac Surg ; 95(2): 563-9, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22939450

RESUMO

BACKGROUND: Aneurysms-osteoarthritis syndrome (AOS), caused by SMAD3 mutations, is a recently described autosomal dominant condition characterized by aneurysms throughout the arterial tree in combination with osteoarthritis. The objective of the present study was to evaluate progression rate of aortic dilation and surgical outcome in AOS patients. METHODS: All AOS patients are regularly monitored according to our clinical AOS protocol. Patients with at least two follow-up visits or who underwent aortic root surgery during follow-up were included in this cohort study. Clinical and surgical data were obtained from chart abstraction. RESULTS: We included 22 patients (aged 38 ± 15 years; 41% male) with the molecular diagnosis of AOS. Follow-up duration was 3.3 years (interquartile range, 1.6 to 5.1). In the 17 patients who were managed conservatively, aortic root diameter increased from 37.5 ± 5.1 mm at baseline to 40.3 ± 6.2 mm at follow-up (p = 0.008). Progression rate of aortic dilation was highest at the level of the sinus of Valsalva (2.5 ± 5.8 mm per year) and significantly correlated with the initial diameter (r = 0.603, p = 0.017). Ten patients successfully underwent valve-sparing aortic root replacement, 5 after previous watchful waiting. Mean preoperative aortic diameter was 46.6 ± 4.0 mm. The operations were not complicated by fragility of tissue. After a postoperative period of 2.8 years (interquartile range, 0.7 to 5.4), no mortality or reoperations had occurred, and all patients remained asymptomatic. CONCLUSIONS: Aneurysm growth in AOS patients can be fast and unpredictable, warranting extensive and frequent cardiovascular monitoring. Valve-sparing aortic root replacement is a safe and effective procedure for the management of aortic root aneurysms in AOS patients.


Assuntos
Aneurisma da Aorta Torácica/cirurgia , Osteoartrite , Adulto , Aneurisma/cirurgia , Progressão da Doença , Feminino , Humanos , Masculino , Síndrome , Fatores de Tempo
16.
Hum Mutat ; 32(2): E2018-25, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21280141

RESUMO

Kabuki Syndrome (KS) is a rare syndrome characterized by intellectual disability and multiple congenital abnormalities, in particular a distinct dysmorphic facial appearance. KS is caused by mutations in the MLL2 gene, encoding an H3K4 histone methyl transferase which acts as an epigenetic transcriptional activator during growth and development. Direct sequencing of all 54 exons of the MLL2 gene in 45 clinically well-defined KS patients identified 34 (75.6%) different mutations. One mutation has been described previously, all others are novel. Clinically, all KS patients were sporadic, and mutations were de novo for all 27 families for which both parents were available. We detected nonsense (n=11), frameshift (n=17), splice site (n=4) and missense (n=2) mutations, predicting a high frequency of absent or non-functional MLL2 protein. Interestingly, both missense mutations located in the C-terminal conserved functional domains of the protein. Phenotypically our study indicated a statistically significant difference in the presence of a distinct facial appearance (p=0.0143) and growth retardation (p=0.0040) when comparing KS patients with an MLL2 mutation compared to patients without a mutation. Our data double the number of MLL2 mutations in KS reported so far and widen the spectrum of MLL2 mutations and disease mechanisms in KS.


Assuntos
Proteínas de Ligação a DNA/genética , Mutação , Proteínas de Neoplasias/genética , Anormalidades Múltiplas/genética , Face/anormalidades , Feminino , Doenças Hematológicas/genética , Humanos , Masculino , Doenças Vestibulares/genética
17.
J Med Genet ; 47(5): 351-5, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20452998

RESUMO

BACKGROUND: The VACTERL association is a non-random association of congenital defects with an unknown aetiology in the majority of patients. METHODS: A male newborn is reported with features of the VACTERL association, including anal atresia, laryngeal and oesophageal atresia with tracheo-oesophageal fistula, dextroposition of the heart with persistent left superior vena cava, and unilateral multicystic kidney. As the clinical picture of this patient overlaps with that of X-linked heterotaxy caused by ZIC3 mutations, the ZIC3 coding region was sequenced. RESULTS: In a patient with the VACTERL association a 6-nucleotide insertion was found in the GCC repeat of the ZIC3 gene, which is predicted to expand the amino-terminal polyalanine repeat from 10 to 12 polyalanines. The polyalanine expansion is a novel ZIC3 mutation which was not found in 336 chromosomes from 192 ethnically matched controls. The mutation was also not present in the mother, suggesting it occurred de novo in the patient and is therefore a pathogenetic mutation. CONCLUSION: It is hypothesized that this novel and de novo polyalanine expansion in ZIC3 contributes to the VACTERL association in this patient. A newborn male is described with features of the VACTERL association, including anal atresia, laryngeal and oesophageal atresia with tracheo-oesophageal fistula, dextroposition of the heart with persistent left superior vena cava, and unilateral multicystic kidney. As the clinical picture of the VACTERL association overlaps with X-linked heterotaxy caused by ZIC3 mutations, the ZIC3 coding region was sequenced, and a 6-nucleotide insertion was found that is predicted to expand the amino-terminal polyalanine repeat from 10 to 12 polyalanines. This novel mutation was not present in the mother, nor in 336 chromosomes from 192 ethnically matched controls. It is hypothesised that this novel and de novo polyalanine expansion in the ZIC3 gene contributes to the VACTERL association in this patient.


Assuntos
Anormalidades Múltiplas/genética , Doenças Genéticas Ligadas ao Cromossomo X/genética , Proteínas de Homeodomínio/genética , Peptídeos/genética , Fatores de Transcrição/genética , Expansão das Repetições de Trinucleotídeos , Anus Imperfurado/genética , Feminino , Genes Ligados ao Cromossomo X , Cardiopatias Congênitas/genética , Humanos , Recém-Nascido , Masculino , Gravidez , Dedos de Zinco/genética
19.
BMC Med Genet ; 9: 10, 2008 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-18302728

RESUMO

BACKGROUND: Tuberous sclerosis complex (TSC) is an autosomal dominant disorder characterised by seizures, mental retardation and the development of hamartomas in a variety of organs and tissues. The disease is caused by mutations in either the TSC1 gene on chromosome 9q34, or the TSC2 gene on chromosome 16p13.3. The TSC1 and TSC2 gene products, TSC1 and TSC2, interact to form a protein complex that inhibits signal transduction to the downstream effectors of the mammalian target of rapamycin (mTOR). METHODS: We have used a combination of different assays to characterise the effects of a number of pathogenic TSC2 amino acid substitutions on TSC1-TSC2 complex formation and mTOR signalling. RESULTS: We used these assays to compare the effects of 9 different TSC2 variants (S132C, F143L, A196T, C244R, Y598H, I820del, T993M, L1511H and R1772C) identified in individuals with symptoms of TSC from 4 different families. In each case we were able to identify the pathogenic mutation. CONCLUSION: Functional characterisation of TSC2 variants can help identify pathogenic changes in individuals with TSC, and assist in the diagnosis and genetic counselling of the index cases and/or other family members.


Assuntos
Esclerose Tuberosa/genética , Proteínas Supressoras de Tumor/genética , Análise Mutacional de DNA , Feminino , Variação Genética , Humanos , Masculino , Linhagem , Proteína 1 do Complexo Esclerose Tuberosa , Proteína 2 do Complexo Esclerose Tuberosa
20.
Am J Med Genet A ; 122A(2): 148-54, 2003 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-12955767

RESUMO

Boomerang dysplasia, atelosteogenesis type 1 and Piepkorn dysplasia are bone dysplasias with an overlapping clinical spectrum characterized by deficient formation and ossification of specific elements of the skeleton. Typical symptoms include micromelia with diminished ossification, and a characteristic bowed and boomerang-like aspect of the long tubular bones. We report here a new case of boomerang dysplasia, which was detected prenatally in the 16th week of gestation by ultrasound.


Assuntos
Doenças do Desenvolvimento Ósseo/diagnóstico por imagem , Diagnóstico Pré-Natal , Doenças do Desenvolvimento Ósseo/patologia , Feminino , Morte Fetal , Genes Letais , Idade Gestacional , Humanos , Gravidez , Radiografia , Ultrassonografia Pré-Natal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA