RESUMO
The pathophysiology of sepsis may involve the activation of the NOD-type receptor containing the pyrin-3 domain (NLPR-3), mitochondrial and oxidative damages. One of the primary essential oxidation products is 8-oxoguanine (8-oxoG), and its accumulation in mitochondrial DNA (mtDNA) induces cell dysfunction and death, leading to the hypothesis that mtDNA integrity is crucial for maintaining neuronal function during sepsis. In sepsis, the modulation of NLRP-3 activation is critical, and mefenamic acid (MFA) is a potent drug that can reduce inflammasome activity, attenuating the acute cerebral inflammatory process. Thus, this study aimed to evaluate the administration of MFA and its implications for the reduction of inflammatory parameters and mitochondrial damage in animals submitted to polymicrobial sepsis. To test our hypothesis, adult male Wistar rats were submitted to the cecal ligation and perforation (CLP) model for sepsis induction and after receiving an injection of MFA (doses of 10, 30, and 50 mg/kg) or sterile saline (1 mL/kg). At 24 h after sepsis induction, the frontal cortex and hippocampus were dissected to analyze the levels of TNF-α, IL-1ß, and IL-18; oxidative damage (thiobarbituric acid reactive substances (TBARS), carbonyl, and DCF-DA (oxidative parameters); protein expression (mitochondrial transcription factor A (TFAM), NLRP-3, 8-oxoG; Bax, Bcl-2 and (ionized calcium-binding adaptor molecule 1 (IBA-1)); and the activity of mitochondrial respiratory chain complexes. It was observed that the septic group in both structures studied showed an increase in proinflammatory cytokines mediated by increased activity in NLRP-3, with more significant oxidative damage and higher production of reactive oxygen species (ROS) by mitochondria. Damage to mtDNA it was also observed with an increase in 8-oxoG levels and lower levels of TFAM and NGF-1. In addition, this group had an increase in pro-apoptotic proteins and IBA-1 positive cells. However, MFA at doses of 30 and 50 mg/kg decreased inflammasome activity, reduced levels of cytokines and oxidative damage, increased bioenergetic efficacy and reduced production of ROS and 8-oxoG, and increased levels of TFAM, NGF-1, Bcl-2, reducing microglial activation. As a result, it is suggested that MFA induces protection in the central nervous system early after the onset of sepsis.
Assuntos
Ácido Mefenâmico , Sepse , Animais , Ratos , Masculino , Espécies Reativas de Oxigênio/metabolismo , Ácido Mefenâmico/metabolismo , Ácido Mefenâmico/farmacologia , Ratos Wistar , Inflamassomos/metabolismo , Fator de Crescimento Neural/metabolismo , Mitocôndrias , Sepse/complicações , Sepse/tratamento farmacológico , DNA Mitocondrial , Citocinas/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismoRESUMO
Maple Syrup Urine Disease (MSUD) is an inborn error of the metabolism caused by defects in the branched a-ketoacid dehydrogenase complex (BCKDC), leading to the accumulation of branched chain amino acids (BCAAs) (leucine, isoleucine and valine). Patients with MSUD present a series of neurological dysfunction. Recent studies have been associated the brain damage in the MSUD with inflammation and immune system activation. MSUD patients die within a few months of life due to recurrent metabolic crises and neurologic deterioration, often precipitated by infection or other stresses. In this regard, our previous results showed that the inflammatory process, induced by lipopolysaccharide (LPS), associated with high levels of BCAAs causes blood-brain barrier (BBB) breakdown due to hyperactivation of MMPs. Thus, we hypothesize that the synergistic action between high concentrations of BCAAs (H-BCAAs) and LPS on BBB permeability and hyperactivation of MMPs could be through an increase in the production of cytokines and RAGE protein levels. We observed that high levels of BCAA in infant rats are related to increased brain inflammation induced by LPS administration. In addition, BCAA exposure led to an increase on brain RAGE expression of young rats. The brain inflammation was characterized by enhanced levels of interleukin 1 ß (IL-1ß), interleukin 6 (IL-6), tumor necrosis factor-α (TNF-α) and Interferon- γ (IFN-γ), and decreased content of interleukin-10 (IL-10). Therefore, MSUD is associated with a more intense neuroinflammation induced by LPS infection.