Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Am J Physiol Renal Physiol ; 314(2): F251-F259, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29046297

RESUMO

Gestational potassium retention, most of which occurs during late pregnancy, is essential for fetal development. The purpose of this study was to examine mechanisms underlying changes in potassium handling by the kidney and colon in pregnancy. We found that potassium intake and renal excretion increased in late pregnancy while fecal potassium excretion remained unchanged and that pregnant rats exhibited net potassium retention. By quantitative PCR we found markedly increased H+-K+-ATPase type 2 (HKA2) mRNA expression in the cortex and outer medullary of late pregnant vs. virgin. Renal outer medullary potassium channel (ROMK) mRNA was unchanged in the cortex, but apical ROMK abundance (by immunofluorescence) was decreased in pregnant vs. virgin in the distal convoluted tubule (DCT) and connecting tubule (CNT). Big potassium-α (BKα) channel-α protein abundance in intercalated cells in the cortex and outer medullary collecting ducts (by immunohistochemistry) fell in late pregnancy. In the distal colon we found increased HKA2 mRNA and protein abundance (Western blot) and decreased BKα protein with no observed changes in mRNA. Therefore, the potassium retention of pregnancy is likely to be due to increased collecting duct potassium reabsorption (via increased HKA2), decreased potassium secretion (via decreased ROMK and BK), as well as increased colonic reabsorption via HKA2.


Assuntos
Colo/metabolismo , ATPase Trocadora de Hidrogênio-Potássio/metabolismo , Túbulos Renais Coletores/metabolismo , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Potássio/metabolismo , Animais , Transporte Biológico , Feminino , Idade Gestacional , ATPase Trocadora de Hidrogênio-Potássio/genética , Reabsorção Intestinal , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/genética , Potássio/sangue , Potássio/urina , Canais de Potássio Corretores do Fluxo de Internalização/genética , Gravidez , Ratos Sprague-Dawley , Eliminação Renal , Reabsorção Renal
2.
Mol Pharm ; 10(11): 4074-81, 2013 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-24099279

RESUMO

GDC-0941 is an orally administered potent, selective pan-inhibitor of phosphatidylinositol 3-kinases (PI3Ks) with good preclinical antitumor activity in xenograft models and favorable pharmacokinetics and tolerability in phase 1 trials, and it is currently being investigated in phase II clinical trials as an anti-cancer agent. In vitro solubility and dissolution studies suggested that GDC-0941, a weak base, displays significant pH-dependent solubility. Moreover, preclinical studies conducted in famotidine-induced hypochlorhydric dog suggested that the pharmacokinetics of GDC-0941 may be sensitive to pharmacologically induced hypochlorhydria. To investigate the clinical significance of food and pH-dependent solubility on GDC-0941 pharmacokinetics a four-period, two-sequence, open-label, randomized, crossover study was conducted in healthy volunteers. During the fasting state, GDC-0941 was rapidly absorbed with a median Tmax of 2 h. The presence of a high-fat meal delayed the absorption of GDC-0941, with a median Tmax of 4 h and a modest increase in AUC relative to the fasted state, with an estimated geometric mean ratio (GMR, 90% CI) of fed/fasted of 1.28 (1.08, 1.51) for AUC0-∞ and 0.87 (0.70, 1.06) for Cmax. The effect of rabeprazole (model PPI) coadministration on the pharmacokinetics of GDC-0941 was evaluated in the fasted and fed state. When comparing the effect of rabeprazole + GDC-0941 (fasted) to baseline GDC-0941 absorption in a fasted state, GDC-0941 median Tmax was unchanged, however, both Cmax and AUC0-∞ decreased significantly after pretreatment with rabeprazole, with an estimated GMR (90% CI) of 0.31 (0.21, 0.46) and 0.46 (0.35, 0.61), respectively for both parameters. When rabeprazole was administered in the presence of the high-fat meal, the impact of food did not fully reverse the pH effect; the overall effect of rabeprazole on AUC0-∞ was somewhat attenuated by the high-fat meal (estimate GMR of 0.57, with 90% CI, 0.50, 0.65) but unchanged for the Cmax (estimate of 0.43, with 90% CI, 0.37, 0.50). The results of the current investigations emphasize the complex nature of physicochemical interactions and the importance of gastric acid for the dissolution and solubilization processes of GDC-0941. Given these findings, dosing of GDC-0941 in clinical trials was not constrained relative to fasted/fed states, but the concomitant use of ARAs was restricted. Mitigation strategies to limit the influence of pH on exposure of molecularly targeted agents such as GDC-0941 with pH-dependent solubility are discussed.


Assuntos
Antineoplásicos/farmacocinética , Indazóis/farmacocinética , Inibidores da Bomba de Prótons/efeitos adversos , Rabeprazol/efeitos adversos , Sulfonamidas/farmacocinética , Disponibilidade Biológica , Estudos Cross-Over , Interações Alimento-Droga , Voluntários Saudáveis , Concentração de Íons de Hidrogênio , Solubilidade
3.
Mol Pharm ; 10(11): 4055-62, 2013 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-24044612

RESUMO

Acid-reducing agents (ARAs) are the most commonly prescribed medications in North America and Western Europe. There are currently no data describing the prevalence of their use among cancer patients. However, this is a paramount question due to the potential for significant drug-drug interactions (DDIs) between ARAs, most commonly proton pump inhibitors (PPIs), and orally administered cancer therapeutics that display pH-dependent solubility, which may lead to decreased drug absorption and decreased therapeutic benefit. Of recently approved orally administered cancer therapeutics, >50% are characterized as having pH-dependent solubility, but there are currently no data describing the potential for this ARA-DDI liability among targeted agents currently in clinical development. The objectives of this study were to (1) determine the prevalence of ARA use among different cancer populations and (2) investigate the prevalence of orally administered cancer therapeutics currently in development that may be liable for an ARA-DDI. To address the question of ARA use among cancer patients, a retrospective cross-sectional analysis was performed using two large healthcare databases: Thomson Reuters MarketScan (N = 1,776,443) and the U.S. Department of Veterans Affairs (VA, N = 1,171,833). Among all cancer patients, the total prevalence proportion of ARA use (no. of cancer patients receiving an ARA/total no. of cancer patients) was 20% and 33% for the MarketScan and VA databases, respectively. PPIs were the most commonly prescribed agent, comprising 79% and 65% of all cancer patients receiving a prescription for an ARA (no. of cancer patients receiving a PPI /no. of cancer patients receiving an ARA) for the MarketScan and VA databases, respectively. To estimate the ARA-DDI liability of orally administered molecular targeted cancer therapeutics currently in development, two publicly available databases, (1) Kinase SARfari and (2) canSAR, were examined. For those orally administered clinical candidates that had available structures, the pKa's and corresponding relative solubilities were calculated for a normal fasting pH of 1.2 and an "ARA-hypochlorhydric" pH of 4. Taking calculated pKa's and relative solubilities into consideration, clinical candidates were classified based on their risk for an ARA-DDI. More than one-quarter (28%) of the molecules investigated are at high risk for an ARA-DDI, and of those high risk molecules, nearly three-quarters (73%) are being clinically evaluated for at least one of five cancer types with the highest prevalence of ARA use (gastrointestinal, pancreatic, lung, glioblastoma multiforme, gastrointestinal stromal tumor (GIST)). These data strongly suggest that with the clinical development of ARA-DDI-susceptible cancer therapeutics will come continued challenges for drug-development scientists, oncologists, and regulatory agencies in ensuring that patients achieve safe and efficacious exposures of their cancer therapeutics and thus optimal patient outcomes.


Assuntos
Interações Medicamentosas , Estudos Transversais , Bases de Dados Factuais , Feminino , Humanos , Masculino , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Inibidores da Bomba de Prótons/farmacocinética , Estudos Retrospectivos , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA