Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Am J Physiol Lung Cell Mol Physiol ; 326(5): L539-L550, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38410870

RESUMO

Soldiers deployed to Iraq and Afghanistan have a higher prevalence of respiratory symptoms than nondeployed military personnel and some have been shown to have a constellation of findings on lung biopsy termed post-deployment respiratory syndrome (PDRS). Since many of the subjects in this cohort reported exposure to sulfur dioxide (SO2), we developed a model of repetitive exposure to SO2 in mice that phenocopies many aspects of PDRS, including adaptive immune activation, airway wall remodeling, and pulmonary vascular (PV) disease. Although abnormalities in small airways were not sufficient to alter lung mechanics, PV remodeling resulted in the development of pulmonary hypertension and reduced exercise tolerance in SO2-exposed mice. SO2 exposure led to increased formation of isolevuglandins (isoLGs) adducts and superoxide dismutase 2 (SOD2) acetylation in endothelial cells, which were attenuated by treatment with the isoLG scavenger 2-hydroxybenzylamine acetate (2-HOBA). In addition, 2-HOBA treatment or Siruin-3 overexpression in a transgenic mouse model prevented vascular remodeling following SO2 exposure. In summary, our results indicate that repetitive SO2 exposure recapitulates many aspects of PDRS and that oxidative stress appears to mediate PV remodeling in this model. Together, these findings provide new insights regarding the critical mechanisms underlying PDRS.NEW & NOTEWORTHY We developed a mice model of "post-deployment respiratory syndrome" (PDRS), a condition in Veterans with unexplained exertional dyspnea. Our model successfully recapitulates many of the pathological and physiological features of the syndrome, revealing involvement of the ROS-isoLGs-Sirt3-SOD2 pathway in pulmonary vasculature pathology. Our study provides additional knowledge about effects and long-term consequences of sulfur dioxide exposure on the respiratory system, serving as a valuable tool for future PDRS research.


Assuntos
Modelos Animais de Doenças , Dióxido de Enxofre , Animais , Camundongos , Camundongos Endogâmicos C57BL , Superóxido Dismutase/metabolismo , Superóxido Dismutase/genética , Pulmão/patologia , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Masculino , Hipertensão Pulmonar/patologia , Hipertensão Pulmonar/induzido quimicamente , Hipertensão Pulmonar/metabolismo , Camundongos Transgênicos , Remodelação Vascular/efeitos dos fármacos , Sirtuína 3/metabolismo , Sirtuína 3/genética , Células Endoteliais/patologia , Células Endoteliais/metabolismo , Células Endoteliais/efeitos dos fármacos
2.
bioRxiv ; 2023 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-37292948

RESUMO

Soldiers deployed to Iraq and Afghanistan have a higher prevalence of respiratory symptoms than non-deployed military personnel and some have been shown to have a constellation of findings on lung biopsy termed post-deployment respiratory syndrome (PDRS). Since many of the deployers in this cohort reported exposure to sulfur dioxide (SO 2 ), we developed a model of repetitive exposure to SO 2 in mice that phenocopies many aspects of PDRS, including adaptive immune activation, airway wall remodeling, and pulmonary vascular disease (PVD). Although abnormalities in small airways were not sufficient to alter lung mechanics, PVD was associated with the development of pulmonary hypertension and reduced exercise tolerance in SO 2 exposed mice. Further, we used pharmacologic and genetic approaches to demonstrate a critical role for oxidative stress and isolevuglandins in mediating PVD in this model. In summary, our results indicate that repetitive SO 2 exposure recapitulates many aspects of PDRS and that oxidative stress may mediate PVD in this model, which may be helpful for future mechanistic studies examining the relationship between inhaled irritants, PVD, and PDRS.

3.
Chem Res Toxicol ; 35(10): 1676-1689, 2022 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-35771680

RESUMO

Reversible oxidation of cysteine residues within proteins occurs naturally during normal cellular homeostasis and can increase during oxidative stress. Cysteine oxidation often leads to the formation of disulfide bonds, which can impact protein folding, stability, and function. Work in both prokaryotic and eukaryotic models over the past five decades has revealed several multiprotein systems that use thiol-dependent oxidoreductases to mediate disulfide bond reduction, formation, and/or rearrangement. Here, I provide an overview of how these systems operate to carry out disulfide exchange reactions in different cellular compartments, with a focus on their roles in maintaining redox homeostasis, transducing redox signals, and facilitating protein folding. Additionally, I review thiol-independent and thiol-dependent approaches for interrogating what proteins partner together in such disulfide-based redox relays. While the thiol-independent approaches rely either on predictive measures or standard procedures for monitoring protein-protein interactions, the thiol-dependent approaches include direct disulfide trapping methods as well as thiol-dependent chemical cross-linking. These strategies may prove useful in the systematic characterization of known and newly discovered disulfide relay mechanisms and redox switches involved in oxidant defense, protein folding, and cell signaling.


Assuntos
Cisteína , Dissulfetos , Cisteína/metabolismo , Dissulfetos/química , Oxidantes , Oxirredução , Oxirredutases/metabolismo , Proteínas/metabolismo , Compostos de Sulfidrila/química
4.
Am J Respir Crit Care Med ; 206(5): 596-607, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35728047

RESUMO

Rationale: Although persistent fibroblast activation is a hallmark of idiopathic pulmonary fibrosis (IPF), mechanisms regulating persistent fibroblast activation in the lungs have not been fully elucidated. Objectives: On the basis of our observation that lung fibroblasts express TBXA2R (thromboxane-prostanoid receptor) during fibrosis, we investigated the role of TBXA2R signaling in fibrotic remodeling. Methods: We identified TBXA2R expression in lungs of patients with IPF and mice and studied primary mouse and human lung fibroblasts to determine the impact of TBXA2R signaling on fibroblast activation. We used TBXA2R-deficient mice and small-molecule inhibitors to investigate TBXA2R signaling in preclinical lung fibrosis models. Measurements and Main Results: TBXA2R expression was upregulated in fibroblasts in the lungs of patients with IPF and in mouse lungs during experimental lung fibrosis. Genetic deletion of TBXA2R, but not inhibition of thromboxane synthase, protected mice from bleomycin-induced lung fibrosis, thereby suggesting that an alternative ligand activates profibrotic TBXA2R signaling. In contrast to thromboxane, F2-isoprostanes, which are nonenzymatic products of arachidonic acid induced by reactive oxygen species, were persistently elevated during fibrosis. F2-isoprostanes induced TBXA2R signaling in fibroblasts and mediated a myofibroblast activation profile due, at least in part, to potentiation of TGF-ß (transforming growth factor-ß) signaling. In vivo treatment with the TBXA2R antagonist ifetroban reduced profibrotic signaling in the lungs, protected mice from lung fibrosis in three preclinical models (bleomycin, Hermansky-Pudlak mice, and radiation-induced fibrosis), and markedly enhanced fibrotic resolution after bleomycin treatment. Conclusions: TBXA2R links oxidative stress to fibroblast activation during lung fibrosis. TBXA2R antagonists could have utility in treating pulmonary fibrosis.


Assuntos
Fibrose Pulmonar Idiopática , Receptores de Tromboxanos , Animais , Bleomicina/farmacologia , F2-Isoprostanos/metabolismo , Fibroblastos/metabolismo , Humanos , Fibrose Pulmonar Idiopática/genética , Pulmão/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Prostaglandinas/metabolismo , Receptores de Tromboxanos/metabolismo , Tromboxanos/metabolismo , Fator de Crescimento Transformador beta/metabolismo
5.
Free Radic Biol Med ; 178: 308-313, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34530076

RESUMO

Thioredoxins constitute a key class of oxidant defense enzymes that facilitate disulfide bond reduction in oxidized substrate proteins. While thioredoxin's WCGPCK active site motif is highly conserved in traditional model organisms, predicted thioredoxins from newly sequenced genomes show variability in this motif, making ascertaining which genes encode functional thioredoxins with robust activity a challenge. To address this problem, we generated a semi-saturation mutagenesis library of approximately 70 thioredoxin variants harboring mutations adjacent to their catalytic cysteines, making substitutions in the Saccharomyces cerevisiae thioredoxin Trx2. Using this library, we determined how such substitutions impact oxidant defense in yeast along with how they influence disulfide reduction and interaction with binding partners in vivo. The majority of thioredoxin variants screened rescued the slow growth phenotype that accompanies deletion of the yeast cytosolic thioredoxins; however, the ability of these mutant proteins to protect against H2O2-mediated toxicity, facilitate disulfide reduction, and interact with redox partners varied widely, depending on the site being mutated and the substitution made. We report that thioredoxin is less tolerant of substitutions at its conserved tryptophan and proline in the active site motif, while it is more amenable to substitutions at the conserved glycine and lysine. Our work highlights a noteworthy plasticity within the active site of this critical oxidant defense enzyme.


Assuntos
Peróxido de Hidrogênio , Saccharomyces cerevisiae , Cisteína/metabolismo , Oxirredução , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae , Tiorredoxinas/genética , Tiorredoxinas/metabolismo
6.
FASEB J ; 34(8): 10267-10285, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32533805

RESUMO

Adaptive angiogenesis is necessary for tissue repair, however, it may also be associated with the exacerbation of injury and development of chronic disease. In these studies, we demonstrate that lung mesenchymal vascular progenitor cells (MVPC) modulate adaptive angiogenesis via lineage trace, depletion of MVPC, and modulation of ß-catenin expression. Single cell sequencing confirmed MVPC as multipotential vascular progenitors, thus, genetic depletion resulted in alveolar simplification with reduced adaptive angiogenesis. Following vascular endothelial injury, Wnt activation in MVPC was sufficient to elicit an emphysema-like phenotype characterized by increased MLI, fibrosis, and MVPC driven adaptive angiogenesis. Lastly, activation of Wnt/ß-catenin signaling skewed the profile of human and murine MVPC toward an adaptive phenotype. These data suggest that lung MVPC drive angiogenesis in response to injury and regulate the microvascular niche as well as subsequent distal lung tissue architecture via Wnt signaling.


Assuntos
Remodelação das Vias Aéreas/fisiologia , Endotélio Vascular/metabolismo , Pulmão/metabolismo , Células-Tronco Mesenquimais/metabolismo , Neovascularização Patológica/metabolismo , Proteínas Wnt/metabolismo , Via de Sinalização Wnt/fisiologia , Adulto , Idoso , Animais , Linhagem Celular , Endotélio Vascular/patologia , Feminino , Humanos , Pulmão/patologia , Masculino , Células-Tronco Mesenquimais/patologia , Camundongos , Pessoa de Meia-Idade , Neovascularização Patológica/patologia , Enfisema Pulmonar/metabolismo , Enfisema Pulmonar/patologia , Lesões do Sistema Vascular/metabolismo , Lesões do Sistema Vascular/patologia , Adulto Jovem , beta Catenina/metabolismo
7.
Redox Biol ; 30: 101438, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32004955

RESUMO

The yeast peroxiredoxin Ahp1, like related anti-oxidant enzymes in other species, undergoes urmylation, a lysine-directed conjugation to ubiquitin-like modifier Urm1. Ahp1 assembles into a homodimer that detoxifies peroxides via forming intersubunit disulfides between peroxidatic and resolving cysteines that are subsequently reduced by the thioredoxin system. Although urmylation coincides with oxidative stress, it is unclear how this modification happens on a molecular level and whether it affects peroxiredoxin activity. Here, we report that thioredoxin mutants decrease Ahp1 urmylation in yeast and each subunit of the oxidized Ahp1 dimer is modified by Urm1 suggesting coupling of urmylation to dimerization. Consistently, Ahp1 mutants unable to form dimers, fail to be urmylated as do mutants that lack the peroxidatic cysteine. Moreover, Ahp1 urmylation involves at least two lysine residues close to the catalytic cysteines and can be prevented in yeast cells exposed to high organic peroxide concentrations. Our results elucidate redox requirements and molecular determinants critical for Ahp1 urmylation, thus providing insights into a potential link between oxidant defense and Urm1 utilization in cells.


Assuntos
Mutação , Peroxirredoxinas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Domínio Catalítico , Regulação Enzimológica da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Modelos Moleculares , Oxirredução , Peróxidos/metabolismo , Peroxirredoxinas/química , Peroxirredoxinas/genética , Conformação Proteica , Multimerização Proteica , Saccharomyces cerevisiae/genética
8.
Circ Res ; 123(12): e51-e64, 2018 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-30566041

RESUMO

RATIONALE: Pulmonary arterial hypertension is a deadly disease of the pulmonary vasculature for which no disease-modifying therapies exist. Small-vessel stiffening and remodeling are fundamental pathological features of pulmonary arterial hypertension that occur early and drive further endovascular cell dysfunction. Bone marrow (BM)-derived proangiogenic cells (PACs), a specialized heterogeneous subpopulation of myeloid lineage cells, are thought to play an important role in pathogenesis. OBJECTIVE: To determine whether BM-derived PACs directly contributed to experimental pulmonary hypertension (PH) by promoting small-vessel stiffening through 5-HT2B (serotonin 2B receptor)-mediated signaling. METHODS AND RESULTS: We performed BM transplants using transgenic donor animals expressing diphtheria toxin secondary to activation of an endothelial-specific tamoxifen-inducible Cre and induced experimental PH using hypoxia with SU5416 to enhance endovascular injury and ablated BM-derived PACs, after which we measured right ventricular systolic pressures in a closed-chest procedure. BM-derived PAC lineage tracing was accomplished by transplanting BM from transgenic donor animals with fluorescently labeled hematopoietic cells and treating mice with a 5-HT2B antagonist. BM-derived PAC ablation both prevented and reversed experimental PH with SU5416-enhanced endovascular injury, reducing the number of muscularized pulmonary arterioles and normalizing arteriole stiffness as measured by atomic force microscopy. Similarly, treatment with a pharmacological antagonist of 5-HT2B also prevented experimental PH, reducing the number and stiffness of muscularized pulmonary arterioles. PACs accelerated pulmonary microvascular endothelial cell injury response in vitro, and the presence of BM-derived PACs significantly correlated with stiffer pulmonary arterioles in pulmonary arterial hypertension patients and mice with experimental PH. RNA sequencing of BM-derived PACs showed that 5-HT2B antagonism significantly altered biologic pathways regulating cell proliferation, locomotion and migration, and cytokine production and response to cytokine stimulus. CONCLUSIONS: Together, our findings illustrate that BM-derived PACs directly contribute to experimental PH with SU5416-enhanced endovascular injury by mediating small-vessel stiffening and remodeling in a 5-HT2B signaling-dependent manner.


Assuntos
Hipertensão Pulmonar/patologia , Células Progenitoras Mieloides/metabolismo , Receptor 5-HT2B de Serotonina/metabolismo , Rigidez Vascular , Inibidores da Angiogênese/toxicidade , Animais , Arteríolas/patologia , Linhagem da Célula , Células Cultivadas , Hipertensão Pulmonar/sangue , Hipertensão Pulmonar/etiologia , Indóis/toxicidade , Pulmão/irrigação sanguínea , Camundongos , Camundongos Endogâmicos C57BL , Células Progenitoras Mieloides/citologia , Células Progenitoras Mieloides/transplante , Pirróis/toxicidade
9.
Antioxidants (Basel) ; 7(12)2018 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-30486489

RESUMO

Peroxiredoxins, a highly conserved family of thiol oxidoreductases, play a key role in oxidant detoxification by partnering with the thioredoxin system to protect against oxidative stress. In addition to their peroxidase activity, certain types of peroxiredoxins possess other biochemical activities, including assistance in preventing protein aggregation upon exposure to high levels of oxidants (molecular chaperone activity), and the transduction of redox signals to downstream proteins (redox switch activity). Mice lacking the peroxiredoxin Prdx1 exhibit an increased incidence of tumor formation, whereas baker's yeast (Saccharomyces cerevisiae) lacking the orthologous peroxiredoxin Tsa1 exhibit a mutator phenotype. Collectively, these findings suggest a potential link between peroxiredoxins, control of genomic stability, and cancer etiology. Here, we examine the potential mechanisms through which Tsa1 lowers mutation rates, taking into account its diverse biochemical roles in oxidant defense, protein homeostasis, and redox signaling as well as its interplay with thioredoxin and thioredoxin substrates, including ribonucleotide reductase. More work is needed to clarify the nuanced mechanism(s) through which this highly conserved peroxidase influences genome stability, and to determine if this mechanism is similar across a range of species.

10.
Int J Mol Sci ; 19(8)2018 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-30081463

RESUMO

Myeloid⁻derived suppressor cells (MDSCs) comprised a heterogeneous subset of bone marrow⁻derived myeloid cells, best studied in cancer research, that are increasingly implicated in the pathogenesis of pulmonary vascular remodeling and the development of pulmonary hypertension. Stem cell transplantation represents one extreme interventional strategy for ablating the myeloid compartment but poses a number of translational challenges. There remains an outstanding need for additional therapeutic targets to impact MDSC function, including the potential to alter interactions with innate and adaptive immune subsets, or alternatively, alter trafficking receptors, metabolic pathways, and transcription factor signaling with readily available and safe drugs. In this review, we summarize the current literature on the role of myeloid cells in the development of pulmonary hypertension, first in pulmonary circulation changes associated with myelodysplastic syndromes, and then by examining intrinsic myeloid cell changes that contribute to disease progression in pulmonary hypertension. We then outline several tractable targets and pathways relevant to pulmonary hypertension via MDSC regulation. Identifying these MDSC-regulated effectors is part of an ongoing effort to impact the field of pulmonary hypertension research through identification of myeloid compartment-specific therapeutic applications in the treatment of pulmonary vasculopathies.


Assuntos
Células Dendríticas/metabolismo , Hipertensão Pulmonar/metabolismo , Células Supressoras Mieloides/metabolismo , Animais , Humanos , Receptores de Interleucina-8B/metabolismo , Transdução de Sinais/fisiologia
11.
J Clin Invest ; 127(6): 2262-2276, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28463231

RESUMO

Pulmonary vascular disease is characterized by remodeling and loss of microvessels and is typically attributed to pathological responses in vascular endothelium or abnormal smooth muscle cell phenotypes. We have challenged this understanding by defining an adult pulmonary mesenchymal progenitor cell (MPC) that regulates both microvascular function and angiogenesis. The current understanding of adult MPCs and their roles in homeostasis versus disease has been limited by a lack of genetic markers with which to lineage label multipotent mesenchyme and trace the differentiation of these MPCs into vascular lineages. Here, we have shown that lineage-labeled lung MPCs expressing the ATP-binding cassette protein ABCG2 (ABCG2+) are pericyte progenitors that participate in microvascular homeostasis as well as adaptive angiogenesis. Activation of Wnt/ß-catenin signaling, either autonomously or downstream of decreased BMP receptor signaling, enhanced ABCG2+ MPC proliferation but suppressed MPC differentiation into a functional pericyte lineage. Thus, enhanced Wnt/ß-catenin signaling in ABCG2+ MPCs drives a phenotype of persistent microvascular dysfunction, abnormal angiogenesis, and subsequent exacerbation of bleomycin-induced fibrosis. ABCG2+ MPCs may, therefore, account in part for the aberrant microvessel function and remodeling that are associated with chronic lung diseases.


Assuntos
Células-Tronco Mesenquimais/fisiologia , Microvasos/fisiopatologia , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Receptores de Proteínas Morfogenéticas Ósseas Tipo II/metabolismo , Diferenciação Celular , Linhagem da Célula , Células Cultivadas , Humanos , Pulmão/irrigação sanguínea , Camundongos Transgênicos , Microvasos/patologia , Neovascularização Patológica/metabolismo , Pericitos/fisiologia , Estabilidade Proteica , Fibrose Pulmonar/metabolismo , Fibrose Pulmonar/patologia , Vasoconstrição , Via de Sinalização Wnt
12.
Free Radic Biol Med ; 101: 356-366, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27816612

RESUMO

A broad range of redox-regulated proteins undergo reversible disulfide bond formation on oxidation-prone cysteine residues. Heightened reactivity of the thiol groups in these cysteines also increases susceptibility to modification by organic electrophiles, a property that can be exploited in the study of redox networks. Here, we explored whether divinyl sulfone (DVSF), a thiol-reactive bifunctional electrophile, cross-links oxidant-sensitive proteins to their putative redox partners in cells. To test this idea, previously identified oxidant targets involved in oxidant defense (namely, peroxiredoxins, methionine sulfoxide reductases, sulfiredoxin, and glutathione peroxidases), metabolism, and proteostasis were monitored for cross-link formation following treatment of Saccharomyces cerevisiae with DVSF. Several proteins screened, including multiple oxidant defense proteins, underwent intermolecular and/or intramolecular cross-linking in response to DVSF. Specific redox-active cysteines within a subset of DVSF targets were found to influence cross-linking; in addition, DVSF-mediated cross-linking of its targets was impaired in cells first exposed to oxidants. Since cross-linking appeared to involve redox-active cysteines in these proteins, we examined whether potential redox partners became cross-linked to them upon DVSF treatment. Specifically, we found that several substrates of thioredoxins were cross-linked to the cytosolic thioredoxin Trx2 in cells treated with DVSF. However, other DVSF targets, like the peroxiredoxin Ahp1, principally formed intra-protein cross-links upon DVSF treatment. Moreover, additional protein targets, including several known to undergo S-glutathionylation, were conjugated via DVSF to glutathione. Our results indicate that DVSF is of potential use as a chemical tool for irreversibly trapping and discovering thiol-based redox partnerships within cells.


Assuntos
Reagentes de Ligações Cruzadas/química , Dissulfetos/química , Saccharomyces cerevisiae/química , Compostos de Sulfidrila/química , Sulfonas/química , Glutationa Peroxidase/química , Metionina Sulfóxido Redutases/química , Oxidantes/química , Oxidantes/farmacologia , Oxirredução , Estresse Oxidativo , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/química , Peroxirredoxinas/química , Saccharomyces cerevisiae/efeitos dos fármacos , Proteínas de Saccharomyces cerevisiae/química , Tiorredoxinas/química , terc-Butil Hidroperóxido/química , terc-Butil Hidroperóxido/farmacologia
13.
Pulm Circ ; 6(3): 285-94, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27683605

RESUMO

The proliferative endothelial and smooth muscle cell phenotype, inflammation, and pulmonary vascular remodeling are prominent features of pulmonary arterial hypertension (PAH). Mutations in bone morphogenetic protein type 2 receptor (BMPR2) have been identified as the most common genetic cause of PAH and females with BMPR2 mutations are 2.5 times as likely to develop heritable forms of PAH than males. Higher levels of estrogen have also been observed in males with PAH, implicating sex hormones in PAH pathogenesis. Recently, the estrogen metabolite 16α-OHE1 (hydroxyestrone) was implicated in the regulation of miR29, a microRNA involved in modulating energy metabolism. In females, decreased miR96 enhances serotonin's effect by upregulating the 5-hydroxytryptamine 1B (5HT1B) receptor. Because PAH is characterized as a quasi-malignant disease, likely due to BMPR2 loss of function, altered signaling pathways that sustain this cancer-like phenotype are being explored. Extracellular signal-regulated kinases 1 and 2 and p38 mitogen-activated protein kinases (MAPKs) play a critical role in proliferation and cell motility, and dysregulated MAPK signaling is observed in various experimental models of PAH. Wnt signaling pathways preserve pulmonary vascular homeostasis, and dysregulation of this pathway could contribute to limited vascular regeneration in response to injury. In this review, we take a closer look at sex, sex hormones, and the interplay between sex hormones and microRNA regulation. We also focus on MAPK and Wnt signaling pathways in the emergence of a proproliferative, antiapoptotic endothelial phenotype, which then orchestrates an angioproliferative process of vascular remodeling, with the hope of developing novel therapies that could reverse the phenotype.

14.
Aging (Albany NY) ; 8(8): 1759-80, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27514077

RESUMO

Isoketals (IsoKs) are highly reactive γ-ketoaldehyde products of lipid peroxidation that covalently adduct lysine side chains in proteins, impairing their function. Using C. elegans as a model organism, we sought to test the hypothesis that IsoKs contribute to molecular aging through adduction and inactivation of specific protein targets, and that this process can be abrogated using salicylamine (SA), a selective IsoK scavenger. Treatment with SA extends adult nematode longevity by nearly 56% and prevents multiple deleterious age-related biochemical and functional changes. Testing of a variety of molecular targets for SA's action revealed the sirtuin SIR-2.1 as the leading candidate. When SA was administered to a SIR-2.1 knockout strain, the effects on lifespan and healthspan extension were abolished. The SIR-2.1-dependent effects of SA were not mediated by large changes in gene expression programs or by significant changes in mitochondrial function. However, expression array analysis did show SA-dependent regulation of the transcription factor ets-7 and associated genes. In ets-7 knockout worms, SA's longevity effects were abolished, similar to sir-2.1 knockouts. However, SA dose-dependently increases ets-7 mRNA levels in non-functional SIR-2.1 mutant, suggesting that both are necessary for SA's complete lifespan and healthspan extension.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Peroxidação de Lipídeos/fisiologia , Longevidade/fisiologia , Proteínas Proto-Oncogênicas c-ets/metabolismo , Sirtuínas/metabolismo , Envelhecimento/fisiologia , Animais , Animais Geneticamente Modificados , Proteínas de Caenorhabditis elegans/genética , Proteínas Proto-Oncogênicas c-ets/genética , Sirtuínas/genética
15.
J Pediatr Endocrinol Metab ; 28(7-8): 797-804, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25719296

RESUMO

BACKGROUND: Debate exists regarding the optimal treatment strategy for paediatric Graves' disease with radioiodine (RAI), and surgery, usually reserved for failure of medical therapy. We present our own experience to introduce a review of the published literature focussing on the predictors of remission after antithyroid drug (ATD) therapy from diagnosis, and discuss whether RAI should be considered as a first-line therapy. METHOD: A retrospective analysis of all diagnosed cases of paediatric Graves' disease presenting to a large District General Hospital. RESULTS: Thirteen patients were diagnosed with Graves' disease between February 2004 and May 2013. The median age at diagnosis was 13.7 years (range 7.2-17.1 years) with a female:male ratio of 11:2. Some nine patients completed a 2-year course of carbimazole out of which 8 relapsed after a mean duration of 0.82 years (range 0.08-1.42 years); the ninth currently remains in remission. Of the eight patients who relapsed, three have undergone RAI treatment. Two patients failed to tolerate carbimazole treatment, one of whom received RAI treatment because surgery was contraindicated and one patient with severe autism proceeded to RAI treatment due to poor compliance and persistent hyperthyroidism. LITERATURE REVIEW: Prognostic factors at presentation predicting a low likelihood of remission following ATD treatment include younger age, non-Caucasian ethnicity, and severe clinical and/or biochemical markers of hyperthyroidism. Psycho-social factors including compliance also influence management decisions. CONCLUSION: In specifically selected patients presenting with paediatric Graves' disease, the benefits and risks of radioactive iodine as a potential first-line therapy should be communicated allowing families to make informed decisions.


Assuntos
Doença de Graves/radioterapia , Radioisótopos do Iodo/uso terapêutico , Adolescente , Antitireóideos/uso terapêutico , Carbimazol/uso terapêutico , Criança , Feminino , Seguimentos , Doença de Graves/tratamento farmacológico , Doença de Graves/patologia , Humanos , Masculino , Prognóstico , Estudos Retrospectivos
16.
Am J Physiol Cell Physiol ; 307(8): C684-98, 2014 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-25122876

RESUMO

Genesis of myofibroblasts is obligatory for the development of pathology in many adult lung diseases. Adult lung tissue contains a population of perivascular ABCG2(pos) mesenchymal stem cells (MSC) that are precursors of myofibroblasts and distinct from NG2 pericytes. We hypothesized that these MSC participate in deleterious remodeling associated with pulmonary fibrosis (PF) and associated hypertension (PH). To test this hypothesis, resident lung MSC were quantified in lung samples from control subjects and PF patients. ABCG2(pos) cell numbers were decreased in human PF and interstitial lung disease compared with control samples. Genetic labeling of lung MSC in mice enabled determination of terminal lineage and localization of ABCG2 cells following intratracheal administration of bleomycin to elicit fibrotic lung injury. Fourteen days following bleomycin injury enhanced green fluorescent protein (eGFP)-labeled lung MSC-derived cells were increased in number and localized to interstitial areas of fibrotic and microvessel remodeling. Finally, gene expression analysis was evaluated to define the response of MSC to bleomycin injury in vivo using ABCG2(pos) MSC isolated during the inflammatory phase postinjury and in vitro bleomycin or transforming growth factor-ß1 (TGF-ß1)-treated cells. MSC responded to bleomycin treatment in vivo with a profibrotic gene program that was not recapitulated in vitro with bleomycin treatment. However, TGF-ß1 treatment induced the appearance of a profibrotic myofibroblast phenotype in vitro. Additionally, when exposed to the profibrotic stimulus, TGF-ß1, ABCG2, and NG2 pericytes demonstrated distinct responses. Our data highlight ABCG2(pos) lung MSC as a novel cell population that contributes to detrimental myofibroblast-mediated remodeling during PF.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Células-Tronco Mesenquimais/fisiologia , Proteínas de Neoplasias/metabolismo , Pericitos/fisiologia , Fibrose Pulmonar/patologia , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Animais , Células Cultivadas , Humanos , Pulmão/irrigação sanguínea , Pulmão/patologia , Camundongos , Miofibroblastos/fisiologia , Fibrose Pulmonar/metabolismo , Fator de Crescimento Transformador beta1/fisiologia
17.
Chem Res Toxicol ; 26(11): 1720-9, 2013 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-24138115

RESUMO

Bifunctional electrophiles have been used in various chemopreventive, chemotherapeutic, and bioconjugate applications. Many of their effects in biological systems are traceable to their reactive properties, whereby they can modify nucleophilic sites in DNA, proteins, and other cellular molecules. Previously, we found that two different bifunctional electrophiles--diethyl acetylenedicarboxylate and divinyl sulfone--exhibited a strong enhancement of toxicity when compared with analogous monofunctional electrophiles in both human colorectal carcinoma cells and baker's yeast. Here, we have compared the toxicities for a broader panel of homobifunctional electrophiles bearing diverse electrophilic centers (e.g., isothiocyanate, isocyanate, epoxide, nitrogen mustard, and aldehyde groups) to their monofunctional analogues. Each bifunctional electrophile showed at least a 3-fold enhancement of toxicity over its monofunctional counterpart, although in most cases, the differences were even more pronounced. To explain their enhanced toxicity, we tested the ability of each bifunctional electrophile to cross-link recombinant yeast thioredoxin 2 (Trx2), a known intracellular target of electrophiles. The bifunctional electrophiles were capable of cross-linking Trx2 to itself in vitro and to other proteins in cells exposed to toxic concentrations. Moreover, most cross-linkers were preferentially reactive with thiols in these experiments. Collectively, our results indicate that thiol-reactive protein cross-linkers in general are much more potent cytotoxins than analogous monofunctional electrophiles, irrespective of the electrophilic group studied.


Assuntos
Reagentes de Ligações Cruzadas/química , Tiorredoxinas/química , Aldeídos/química , Aldeídos/toxicidade , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Reagentes de Ligações Cruzadas/toxicidade , Compostos de Epóxi/química , Compostos de Epóxi/toxicidade , Humanos , Isocianatos/química , Isocianatos/toxicidade , Mecloretamina/química , Mecloretamina/toxicidade , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/metabolismo , Tiorredoxinas/genética , Tiorredoxinas/metabolismo
18.
Am J Respir Cell Mol Biol ; 49(5): 778-87, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23742019

RESUMO

Pulmonary arterial hypertension (PAH) has been associated with a number of different but interrelated pathogenic mechanisms. Metabolic and oxidative stresses have been shown to play important pathogenic roles in a variety of model systems. However, many of these relationships remain at the level of association. We sought to establish a direct role for metabolic stress and oxidant injury in the pathogenesis of PAH. Mice that universally express a disease-causing mutation in bone morphogenic protein receptor 2 (Bmpr2) were exposed to room air or to brief daily hyperoxia (95% oxygen for 3 h) for 6 weeks, and were compared with wild-type animals undergoing identical exposures. In both murine tissues and cultured endothelial cells, the expression of mutant Bmpr2 was sufficient to cause oxidant injury that was particularly pronounced in mitochondrial membranes. With the enhancement of mitochondrial generation of reactive oxygen species by hyperoxia, oxidant injury was substantially enhanced in mitochondrial membranes, even in tissues distant from the lung. Hyperoxia, despite its vasodilatory actions in the pulmonary circulation, significantly worsened the PAH phenotype (elevated right ventricular systolic pressure, decreased cardiac output, and increased pulmonary vascular occlusion) in Bmpr2 mutant animals. These experiments demonstrate that oxidant injury and metabolic stress contribute directly to disease development, and provide further evidence for PAH as a systemic disease with life-limiting cardiopulmonary manifestations.


Assuntos
Receptores de Proteínas Morfogenéticas Ósseas Tipo II/metabolismo , Células Endoteliais/metabolismo , Hiperóxia/complicações , Hipertensão Pulmonar/etiologia , Lesão Pulmonar/etiologia , Pulmão/irrigação sanguínea , Mutação , Estresse Oxidativo , Estresse Fisiológico , Animais , Pressão Arterial , Receptores de Proteínas Morfogenéticas Ósseas Tipo II/genética , Débito Cardíaco , Linhagem Celular Tumoral , Modelos Animais de Doenças , Células Endoteliais/patologia , Hipertensão Pulmonar Primária Familiar , Humanos , Hiperóxia/genética , Hiperóxia/metabolismo , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar/patologia , Hipertensão Pulmonar/fisiopatologia , Lesão Pulmonar/genética , Lesão Pulmonar/metabolismo , Lesão Pulmonar/patologia , Lesão Pulmonar/fisiopatologia , Camundongos , Camundongos Transgênicos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Membranas Mitocondriais/metabolismo , Membranas Mitocondriais/patologia , Artéria Pulmonar/metabolismo , Artéria Pulmonar/fisiopatologia , Espécies Reativas de Oxigênio/metabolismo , Função Ventricular Direita , Pressão Ventricular
19.
Chem Res Toxicol ; 26(3): 490-7, 2013 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-23414292

RESUMO

Thioredoxin protects cells against oxidative damage by reducing disulfide bonds in improperly oxidized proteins. Previously, we found that the baker's yeast cytosolic thioredoxin Trx2 undergoes cross-linking to form several protein-protein complexes in cells treated with the bifunctional electrophile divinyl sulfone (DVSF). Here, we report that the peroxiredoxin Tsa1 and the thioredoxin reductase Trr1, both of which function in a redox relay network with thioredoxin, become cross-linked in complexes with Trx2 upon DVSF treatment. Treatment of yeast with other bifunctional electrophiles, including diethyl acetylenedicarboxylate (DAD), mechlorethamine (HN2), and 1,2,3,4-diepoxybutane (DEB), resulted in the formation of similar cross-linked complexes. Cross-linking of Trx2 and Tsa1 to other proteins by DVSF and DAD is dependent on modification of the active site Cys residues within these proteins. In addition, the human cytosolic thioredoxin, cytosolic thioredoxin reductase, and peroxiredoxin 2 form cross-linked complexes to other proteins in the presence of DVSF, although each protein shows different susceptibilities to modification by DAD, HN2, and DEB. Taken together, our results indicate that bifunctional electrophiles potentially disrupt redox homeostasis in yeast and human cells by forming cross-linked complexes between thioredoxins and their redox partners.


Assuntos
Reagentes de Ligações Cruzadas/metabolismo , Peroxidases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Sulfonas/metabolismo , Tiorredoxina Dissulfeto Redutase/metabolismo , Tiorredoxinas/metabolismo , Linhagem Celular Tumoral , Reagentes de Ligações Cruzadas/química , Humanos , Oxirredução , Peroxidases/química , Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/química , Sulfonas/química , Tiorredoxina Dissulfeto Redutase/química , Tiorredoxinas/química
20.
Mol Biol Cell ; 23(17): 3290-8, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22809627

RESUMO

The heat shock transcription factor HSF1 governs the response to heat shock, oxidative stresses, and xenobiotics through unknown mechanisms. We demonstrate that diverse thiol-reactive molecules potently activate budding yeast Hsf1. Hsf1 activation by thiol-reactive compounds is not consistent with the stresses of misfolding of cytoplasmic proteins or cytotoxicity. Instead, we demonstrate that the Hsp70 chaperone Ssa1, which represses Hsf1 in the absence of stress, is hypersensitive to modification by a thiol-reactive probe. Strikingly, mutation of two conserved cysteine residues to serine in Ssa1 rendered cells insensitive to Hsf1 activation and subsequently induced thermotolerance by thiol-reactive compounds, but not by heat shock. Conversely, substitution with the sulfinic acid mimic aspartic acid resulted in constitutive Hsf1 activation. Cysteine 303, located within the nucleotide-binding domain, was found to be modified in vivo by a model organic electrophile, demonstrating that Ssa1 is a direct target for thiol-reactive molecules through adduct formation. These findings demonstrate that Hsp70 is a proximal sensor for Hsf1-mediated cytoprotection and can discriminate between two distinct environmental stressors.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico/metabolismo , Resposta ao Choque Térmico , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Compostos de Sulfidrila/farmacologia , Fatores de Transcrição/metabolismo , Triterpenos/farmacologia , Ácido Aspártico , Sítios de Ligação , Diamida/farmacologia , Ditiotreitol/farmacologia , Peróxido de Hidrogênio/farmacologia , Maleatos/farmacologia , Estresse Oxidativo , Triterpenos Pentacíclicos , Resposta a Proteínas não Dobradas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA