Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
ACS ES T Eng ; 3(7): 989-1000, 2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37546364

RESUMO

Millions of households still rely on drinking water from private wells or municipal systems with arsenic levels approaching or exceeding regulatory limits. Arsenic is a potent carcinogen, and there is no safe level of it in drinking water. Point-of-use (POU) treatment systems are a promising option to mitigate arsenic exposure. However, the most commonly used POU technology, an activated carbon block filter, is ineffective at removing arsenic. Our study aimed to explore the potential of impregnating carbon blocks with amorphous titanium (hydr)oxide (THO) to improve arsenic removal without introducing titanium (Ti) into the treated water. Four synthesis methods achieved 8-16 wt.% Ti loading within the carbon block with 58-97% amorphous THO content. The THO-modified carbon block could adsorb both oxidation states of arsenic (arsenate and arsenite) in batch or column tests. Modified carbon block with higher Ti and amorphous content always led to better arsenate removal, achieving arsenic loadings up to 31 mg As/mg Ti after 70,000 bed volumes in continuous flow tests. Impregnating carbon block with amorphous THO consistently outperformed impregnation using crystalline TiO2. The best-performing system (TTIP-EtOH carbon block) was an amorphous THO derived using titanium isopropoxide, ethanol, and acetic acid via sol-gel technique, aged at 80° for 18 hours and dried overnight at 60°. Comparable pore size distribution and surface area of the impregnated carbon blocks suggested that chemical properties play a more crucial role than physical and textural properties in removing arsenate via amorphous Ti-impregnated carbon block. Freundlich isotherms indicated energetically favorable adsorption for amorphous chemically synthesized adsorbents. The mass transport coefficients for the amorphous TTIP-EtOH carbon block were fitted using a pore surface diffusion model, resulting in Dsurface = 3.1×10-12 cm2/s and Dpore = 3.2×10-6 cm2/s. Impregnating the carbon block with THO enabled effective arsenic removal from water without adversely affecting the pressure drop across the unit or the carbon block's ability to remove polar organic chemical pollutants efficiently.

2.
Chemosphere ; 338: 139582, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37478997

RESUMO

The efficiency of an electrochemical oxidation/reduction process strongly depends on the working electrode's surface area to volume ratio. By making electrodes flexible and employing different configurations such as roll-to-roll membrane, the surface area to volume ratio can be enhanced, therefore improving the overall efficiency of electrochemical processes. Conductive polymers emerge as a new framework to enable alternative electrochemical water treatment cell configurations. Self-standing polypyrrole flexible electrodes were synthesized by electropolymerization and evaluated on the treatment of an oxyanion pollutant: nitrite. Mechanical characterization through stress-strain curves and bending tests demonstrated high electrode resilience that sustained over 1000 bending cycles without impacting mechanical integrity or electrocatalytic responses. The electrocatalytic response towards nitrite reduction was assessed under linear scan voltammetry (LSV) and removal performance evaluated under potentiostatic conditions reaching 79% abatement of initial concentrations of nitrite of 15 mg/L [NO2--N]. Self-standing flexible electrodes appear as a novel framework to enable modular compact water treatment unit designs that maximize the electrode area/volume ratio and substitute expensive platinum group metal (PGMs) electrocatalysts.


Assuntos
Nitritos , Polímeros , Polímeros/química , Nitritos/química , Pirróis/química , Eletrodos
3.
Water Res ; 224: 119094, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36115159

RESUMO

Biofouling of membrane surfaces poses significant operational challenges and costs for desalination and wastewater reuse applications. Ultraviolet (UV) light can control biofilms while reducing chemical usage and disinfection by-products, but light deliveries to membrane surfaces in spiral wound geometries has been a daunting challenge. Thin and flexible nano-enabled side-emitting optical fibers (SEOFs) are novel light delivery devices that enable disinfection or photocatalytic oxidation by radiating UV light from light-emitting diodes (LEDs). We envision SEOFs as an active membrane spacer to mitigate biofilm formation on reverse osmosis (RO) membranes. A lab-scale RO membrane apparatus equipped with SEOFs allowed comparison of UV-A (photocatalysis-enabled) versus UV-C (direct photolysis disinfection). Compared against systems without any light exposure, systems with UV-C light formed thinner-but denser-biofilms, prevented permeate flux declines due to biofouling, and maintained the highest salt rejection. Results were corroborated by in-situ optical coherence tomography and ex-situ measurements of biofilm growth on the membranes. Transcriptomic analysis showed that UV-C SEOFs down-regulated quorum sensing and surface attachment genes. In contrast, UV-A SEOFs upregulated quorum sensing, surface attachment, and oxidative stress genes, resulting in higher extracellular polymeric substances (EPS) accumulation on membrane surfaces. Overall, SEOFs that deliver a low fluence of UV-C light onto membrane surfaces are a promising non-chemical approach for mitigating biofouling formation on RO membranes.


Assuntos
Incrustação Biológica , Purificação da Água , Biofilmes , Incrustação Biológica/prevenção & controle , Membranas Artificiais , Fibras Ópticas , Osmose , Raios Ultravioleta , Águas Residuárias , Purificação da Água/métodos
4.
Environ Sci Technol ; 56(19): 13719-13727, 2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-36137535

RESUMO

Carbon black (CB) is a nanomaterial with numerous industrial applications and high potential for integration into nano-enabled water treatment devices. However, few analytical techniques are capable of measuring CB in water at environmentally relevant concentrations. Therefore, we intended to establish a quantification method for CB with lower detection limits through utilization of trace metal impurities as analytical tracers. Various metal impurities were investigated in six commercial CB materials, and the Monarch 1000 CB was chosen as a model for further testing. The La impurity was chosen as a tracer for spICP-MS analysis based on measured concentration, low detection limits, and lack of polyatomic interferences. CB stability in water and adhesion to the spICP-MS introduction system presented a challenge that was mitigated by the addition of a nonionic surfactant to the matrix. Following optimization, the limit of detection (64 µg/L) and quantification (122 µg/L) for Monarch 1000 CB demonstrated the applicability of this approach to samples expected to contain trace amounts of CB. When compared against gravimetric analysis and UV-visible absorption spectroscopy, spICP-MS quantification exhibited similar sensitivity but with the ability to detect concentrations an order of magnitude lower. Method detection and sensitivity was unaffected when dissolved La was spiked into CB samples at environmentally relevant concentrations. Additionally, a more complex synthetic matrix representative of drinking water caused no appreciable impact to CB quantification. In comparison to existing quantification techniques, this method has achieved competitive sensitivity, a wide working range for quantification, and high selectivity for tracing possible release of CB materials with known metal contents.


Assuntos
Água Potável , Fuligem , Espectrometria de Massas/métodos , Metais , Tamanho da Partícula , Tensoativos
5.
Environ Sci Technol ; 56(8): 5189-5199, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35349263

RESUMO

Dissolved organic matter (DOM) is a major scavenger of bromine radicals (e.g., Br• and Br2•-) in sunlit surface waters and during oxidative processes used in water treatment. However, the literature lacks quantitative measurements of reaction rate constants between bromine radicals and DOM and lacks information on the extent to which these reactions form brominated organic byproducts. Based on transient kinetic analysis with different fractions and sources of DOM, we determined reaction rate constants for DOM with Br• ranging from <5.0 × 107 to (4.2 ± 1.3) × 108 MC-1 s-1, which are comparable with those of HO• but higher than those with Br2•- (k = (9.0 ± 2.0) × 104 to (12.4 ± 2.1) × 105 MC-1 s-1). Br• and Br2•- attack the aromatic and antioxidant moieties of DOM via the electron transfer mechanism, resulting in Br- release with minimal substitution of bromine into DOM. For example, the total organic bromine was less than 0.25 µM (as Br) at environmentally relevant bromine radicals' exposures of ∼10-9 M·s. The results give robust evidence that the scavenging of bromine radicals by DOM is a crucial step to prevent inorganic bromine radical chemistry from producing free bromine (HOBr/OBr-) and subsequent brominated byproducts.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Bromo , Matéria Orgânica Dissolvida , Cinética , Poluentes Químicos da Água/análise
6.
Environ Sci Technol ; 55(1): 689-699, 2021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-33346661

RESUMO

Chlorine radicals, including Cl• and Cl2•-, can be produced in sunlight waters (rivers, oceans, and lakes) or water treatment processes (e.g., electrochemical and advanced oxidation processes). Dissolved organic matter (DOM) is a major reactant with, or a scavenger of, Cl• and Cl2•- in water, but limited quantitative information exists regarding the influence of DOM structure on its reactivity with Cl• and Cl2•-. This study aimed at quantifying the reaction rates and the formation of chlorinated organic byproducts produced from Cl• and Cl2•- reactions with DOM. Laser flash photolysis experiments were conducted to quantify the second-order reaction rate constants of 19 DOM isolates with Cl• (kDOM-Cl•) and Cl2•- (kDOM-Cl2•-), and compare those with the hydroxyl radical rate constants (kDOM-•OH). The values for kDOM-Cl• ((3.71 ± 0.34) × 108 to (1.52 ± 1.56) × 109 MC-1 s-1) were orders of magnitude greater than the kDOM-Cl2•- values ((4.60 ± 0.90) × 106 to (3.57 ± 0.53) × 107 MC-1 s-1). kDOM-Cl• negatively correlated with the weight-averaged molecular weight (MW) due to the diffusion-controlled reactions. DOM with high aromaticity and total antioxidant capacity tended to react faster with Cl2•-. During the same experiments, we also monitored the formation of chlorinated byproducts through the evolution of total organic chlorine (TOCl) as a function of chlorine radical oxidant exposure (CT value). Maximum TOCl occurred at a CT of 4-8 × 10-12 M·s for Cl• and 1.1-2.2 × 10-10 M·s for Cl2•-. These results signify the importance of DOM in scavenging chlorine radicals and the potential risks of producing chlorinated byproducts of unknown toxicity.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Cloro , Radical Hidroxila , Rios , Poluentes Químicos da Água/análise
7.
Chemosphere ; 268: 129320, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33360942

RESUMO

Photoelectrocatalytic (PEC) water treatment is a promising technology for organic pollution abatement. Much of the prior research focused on material discovery and optimization. However, challenges exist in scaling-up PEC processes and are associated with designing reactors with effective light irradiation on electrode surfaces and, simultaneously, efficient electrode configurations. We design and demonstrate key reactor design principles, which influence reaction mechanisms, for a reactor using a TiO2 nanotube-coated disc flow reactor. Degradation of organochlorinated 2,4-dichlorophenol was studied as representative carcinogenic micropollutant. The synergistic photoelectrocatalytic process showed 5-fold faster degradation kinetics than solely electrocatalytic treatment or a greater than 2-fold enhancement over photocatalysis alone. Applicability of photoelectrocatalytic treatment was demonstrated over a wide range of micropollutant concentrations with almost complete abatement even at concentrations up to 25 mg L-1 of 2,4-dichlorophenol. Mechanistically, the increase in applied current density efficiency for degradation of 2,4-dichlorophenol was due to stabilization of charge carriers and higher oxidants production rates in the PEC system. Carboxylic acids were identified as the main by-products formed from cleavage of the phenolic ring moieties in 2,4-dichlorophenol. However, very importantly we achieved dehalogenation photoelectrocatalysis with evidence of chlorine heteroatoms released as innocuous chloride anions. Overall, this research demonstrates the importance of PEC reactor design and how properly orientated TiO2 nanotube-coated disc flow reactors leverage both novel material designs and reactor architectures to achieve pollutant degradation.


Assuntos
Nanotubos , Catálise , Clorofenóis , Eletrodos , Titânio
8.
Environ Sci Technol ; 54(12): 7706-7714, 2020 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-32436702

RESUMO

The fouling and cleaning behaviors of m-phenylenediamine (MPD), coumarin-3-carboxylic acid (CCA), and d-(+)-glucose (DG) on polyamide nanofiltration (NF) membrane surfaces were investigated with a focus on the two intrinsic equilibrium constants (pKa,intr.) of carboxylic and amine functional groups determined using potentiometric titration. The charged foulants (MPD and CCA) strongly influenced the pKa,intr. of the membrane surface after the fouling layer formed via electrostatic interactions (Virgin = 3.4 and 9.2; MPD-fouled = 4.1 and 8.1; CCA-fouled = 1.5 and 12.4). Moreover, the pKa,intr. of electrostatically fouled membranes substantially recovered when using cleaning agents that released electrostatic interactions (cleaned MPD-fouled = 3.5 and 9.0; cleaned CCA-fouled = 3.3 and 9.6). In contrast, the neutral foulant (DG) did not affect the pKa,intr. (DG-fouled = 3.5 and 9.2); however, the ζ-potential of DG-fouled membrane was closer to zero than the virgin membrane (Virgin = -28.1 mV and DG-fouled = -7.2 mV at pH 7). The pKa,intr. value accurately represented the electrostatic interactions between organic foulants and membrane surfaces. Potentiometric titration is a facile method of determining the pKa,intr. that gives an in-depth understanding of the electrostatic interactions at the membrane surface associated with the membrane fouling and cleaning mechanism.


Assuntos
Purificação da Água , Membranas Artificiais , Eletricidade Estática , Ultrafiltração
9.
Environ Sci Technol ; 53(7): 3429-3440, 2019 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-30888795

RESUMO

Reuse of municipal and industrial wastewater treatment plant (WWTP) effluent is used to augment freshwater supplies globally. The Shenandoah River Watershed (U.S.A.) was selected to conduct on-site exposure experiments to assess endocrine disrupting characteristics of different source waters. This investigation integrates WWTP wastewater reuse modeling, hydrological and chemical characterization, and in vivo endocrine disruption bioassessment to assess contaminant sources, exposure pathways, and biological effects. The percentage of accumulated WWTP effluent in each river reach (ACCWW%) was used to predict environmental concentrations for consumer product chemicals (boron), pharmaceutical compounds (carbamazepine), and steroidal estrogens (estrone, 17-ß-estradiol, estriol, and 17-α-ethinylestradiol). Fish endocrine disruption was evaluated using vitellogenin induction in adult male or larval fathead minnows. Water samples were analyzed for >500 inorganic and organic constituents to characterize the complex contaminant mixtures. Municipal ACCWW% at drinking water treatment plant surface water intakes ranged from <0.01 to 2.0% under mean-annual streamflow and up to 4.5% under mean-August streamflow. Measured and predicted environmental concentrations resulted in 17-ß-estradiol equivalency quotients ranging from 0.002 to 5.0 ng L-1 indicating low-to-moderate risk of fish endocrine disruption. Results from the fish exposure experiments showed low (0.5- to 3.2-fold) vitellogenin induction in adult males.


Assuntos
Disruptores Endócrinos , Poluentes Químicos da Água , Animais , Estrogênios , Masculino , Rios , Eliminação de Resíduos Líquidos , Águas Residuárias
10.
Water Res ; 139: 281-290, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29656193

RESUMO

Both nanoparticulate (nZnO and nTiO2) and organic chemical ultraviolet (UV) filters are active ingredients in sunscreen and protect against skin cancer, but limited research exists on the environmental effects of sunscreen release into aquatic systems. To examine the trade-offs of incorporating nanoparticles (NPs) into sunscreens over the past two decades, we targeted endpoints sensitive to the potential risks of different UV filters: solar reactive oxygen production in water and disruption of zebrafish embryo development. First, we developed methodology to extract nanoparticles from sunscreens with organic solvents. Zebrafish embryos exposed to parts-per-million NPs used in sunscreens displayed limited toxicological effects; nZnO particles appeared to be slightly more toxic than nTiO2 at the highest concentrations. In contrast, seven organic UV filters did not affect zebrafish embryogenesis at or near aqueous solubility. Second, to simulate potent photo-initiated reactions upon release into water, we examined methylene blue (MB) degradation under UV light. nTiO2 from sunscreen caused 10 times faster MB loss than nZnO and approached the photocatalytic degradation rate of a commercial nTiO2 photocatalysts (P25). Organic UV filters did not cause measurable MB degradation. Finally, we estimated that between 1 and 10 ppm of sunscreen NPs in surface waters could produce similar steady state hydroxyl radical concentrations as naturally occurring fluvic acids under sunlight irradiation. Incorporation of NPs into sunscreen may increase environmental concentrations of reactive oxygen, albeit to a limited extent, which can influence transformation of dissolved substances and potentially affect ecosystem processes.


Assuntos
Nanopartículas/toxicidade , Compostos Orgânicos/toxicidade , Protetores Solares/toxicidade , Titânio/toxicidade , Poluentes Químicos da Água/toxicidade , Óxido de Zinco/toxicidade , Animais , Ecossistema , Embrião não Mamífero/efeitos dos fármacos , Desenvolvimento Embrionário/efeitos dos fármacos , Nanopartículas/química , Nanopartículas/efeitos da radiação , Compostos Orgânicos/química , Compostos Orgânicos/efeitos da radiação , Espécies Reativas de Oxigênio/química , Protetores Solares/química , Protetores Solares/efeitos da radiação , Titânio/química , Titânio/efeitos da radiação , Raios Ultravioleta , Poluentes Químicos da Água/química , Poluentes Químicos da Água/efeitos da radiação , Peixe-Zebra , Óxido de Zinco/química , Óxido de Zinco/efeitos da radiação
11.
Water Res ; 128: 246-254, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29107909

RESUMO

Treatment of drinking water decreases human health risks by reducing pollutants, but the required materials, chemicals, and energy emit pollutants and increase health risks. We explored human carcinogenic and non-carcinogenic disease tradeoffs of water treatment by comparing pollutant dose-response curves against life cycle burden using USEtox methodology. An illustrative wellhead sorbent groundwater treatment system removing hexavalent chromium or pentavalent arsenic serving 3200 people was studied. Reducing pollutant concentrations in drinking water from 20 µg L-1 to 10 µg L-1 avoided 37 potential cancer cases and 64 potential non-cancer disease cases. Human carcinogenicity embedded in treatment was 0.2-5.3 cases, and non-carcinogenic toxicity was 0.2-14.3 cases, depending on technology and degree of treatment. Embedded toxicity impacts from treating Cr(VI) using strong-base anion exchange were <10% of those from using weak base anion exchange. Acidification and neutralization contributed >90% of the toxicity impacts for treatment options requiring pH control. In scenarios where benefits exceeded burdens, tradeoffs still existed. Benefits are experienced by a local population but burdens are born externally where the materials and energy are produced, thus exporting the health risks. Even when burdens clearly exceeded benefits, cost considerations may still drive selecting a detrimental treatment level or technology.


Assuntos
Arsênio/isolamento & purificação , Cromo/isolamento & purificação , Água Potável/efeitos adversos , Neoplasias/etiologia , Purificação da Água , Humanos , Modelos Teóricos , Risco , Medição de Risco , Poluentes Químicos da Água/isolamento & purificação
12.
J Environ Sci (China) ; 58: 302-310, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28774621

RESUMO

Disinfection to protect human health occurs at drinking water and wastewater facilities through application of non-selective oxidants including chlorine. Oxidants also transform organic material and form disinfection by-products (DBPs), many of which are halogenated and cyto- and genotoxic. Only a handful of assays have been used to compare DBP toxicity, and researchers are unsure which DBP(s) drive the increased cancer risk associated with drinking chlorinated water. The most extensive data set employs an in vitro model cell, Chinese hamster ovary cells. Traditionally, most DBP research focuses on the threat to human health, but the effects on aquatic species exposed to DBPs in wastewater effluents remain ill defined. We present the developmental toxicity for 15 DBPs and a chlorinated wastewater to a model aquatic vertebrate, zebrafish. Mono-halogenated DBPs followed the in vivo toxicity rank order: acetamides>acetic acids>acetonitriles~nitrosamines, which agrees well with previously published mammalian in vitro data. Di- and tri-halogenated acetonitriles were more toxic than their mono-halogenated analogues, and bromine- and iodine-substituted DBPs tended to be more toxic than chlorinated analogues. No zebrafish development effects were observed after exposure to undiluted or non-concentrated, chlorinated wastewater. We find zebrafish development to be a viable in vivo alternative or confirmatory assay to mammalian in vitro cell assays.


Assuntos
Desinfetantes/toxicidade , Embrião não Mamífero/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Animais , Células CHO , Cricetulus , Desinfecção/métodos , Água Potável , Nitrosaminas , Águas Residuárias , Purificação da Água/métodos , Peixe-Zebra
13.
Sci Total Environ ; 599-600: 1848-1855, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-28545211

RESUMO

This study demonstrated a new room-temperature method for synthesizing aluminum (hydr)oxide material inside the pores of strong-base ion-exchange resin to fabricate a novel class of hybrid media capable of simultaneously removing nitrate and fluoride as model groundwater contaminants. The aluminum (hydr)oxide hybrid media was fabricated by reducing aluminum ion precursors with borohydride within ion-exchange resin at room temperature, followed by exposure to environmental oxygen. The hybrid media was characterized, and its performance to simultaneously remove nitrate and fluoride was determined in simple and complex water matrices using short-bed column tests operated under conditions realistic for point-of-use systems. Results revealed that, although not optimized, aluminum (hydr)oxide hybrid media was able to simultaneously remove nitrate and fluoride, which was not possible with neither unmodified strong-base ion-exchange resin nor conventional granular activated alumina alone. Future modifications and optimizations of this relatively simple and inexpensive fabrication process have the potential to yield an entire class of hybrid media suitable for point-of-use/point-of-entry water treatment systems.

14.
J Hazard Mater ; 323(Pt A): 18-25, 2017 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-27229910

RESUMO

N-Nitrosodimethylamine (NDMA) is carcinogenic in rodents and occurs in chloraminated drinking water and wastewater effluents. NDMA forms via reactions between chloramines and mostly unidentified, N-containing organic matter. We developed a mass spectrometry technique to identify NDMA precursors by analyzing 25 model compounds with LC/QTOF-MS. We searched isolates of 11 drinking water sources and 1 wastewater using a custom MATLAB® program and extracted ion chromatograms for two fragmentation patterns that were specific to the model compounds. Once a diagnostic fragment was discovered, we conducted MS/MS during a subsequent injection to confirm the precursor ion. Using non-target searches and two diagnostic fragmentation patterns, we discovered 158 potential NDMA precursors. Of these, 16 were identified using accurate mass combined with fragment and retention time matches of analytical standards when available. Five of these sixteen NDMA precursors were previously unidentified in the literature, three of which were metabolites of pharmaceuticals. Except methadone, the newly identified precursors all had NDMA molar yields of less than 5%, indicating that NDMA formation could be additive from multiple compounds, each with low yield. We demonstrate that the method is applicable to other disinfection by-product precursors by predicting and verifying the fragmentation patterns for one nitrosodiethylamine precursor.


Assuntos
Fracionamento Químico/métodos , Dimetilnitrosamina/análise , Água Potável/análise , Poluentes Químicos da Água/análise , Abastecimento de Água/normas , Fracionamento Químico/instrumentação , Cromatografia Líquida , Espectrometria de Massas
15.
Environ Sci Technol ; 49(6): 3611-8, 2015 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-25635807

RESUMO

There is a need for new methodologies to quickly assess the presence and reactivity of nanoparticles (NPs) in commercial, environmental, and biological samples since current detection techniques require expensive and complex analytical instrumentation. Here, we investigate a simple and portable colorimetric detection assay that assesses the surface reactivity of NPs, which can be used to detect the presence of NPs, in complex matrices (e.g., environmental waters, serum, urine, and in dissolved organic matter) at as low as part per billion (ppb) or ng/mL concentration levels. Surface redox reactivity is a key emerging property related to potential toxicity of NPs with living cells, and is used in our assays as a key surrogate for the presence of NPs and a first tier analytical strategy toward assessing NP exposures. We detect a wide range of metal (e.g., Ag and Au) and oxide (e.g., CeO2, SiO2, VO2) NPs with a diameter range of 5 to 400 nm and multiple capping agents (tannic acid (TA), polyvinylpyrrolidone (PVP), branched polyethylenimine (BPEI), polyethylene glycol (PEG)). This method is sufficiently sensitive (ppb levels) to measure concentrations typically used in toxicological studies, and uses inexpensive, commercially available reagents.


Assuntos
Colorimetria/métodos , Nanopartículas Metálicas/química , Catálise , Corantes/química , Elétrons , Meio Ambiente , Ouro/química , Concentração de Íons de Hidrogênio , Limite de Detecção , Azul de Metileno/química , Tamanho da Partícula , Polietilenoglicóis/química , Povidona/química , Taninos/química , Água
16.
ACS Nano ; 8(9): 8911-31, 2014 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-25144856

RESUMO

Inhaled multiwalled carbon nanotubes (MWCNTs) may cause adverse pulmonary responses due to their nanoscale, fibrous morphology and/or biopersistance. This study tested multiple factors (dose, time, physicochemical characteristics, and administration method) shown to affect MWCNT toxicity with the hypothesis that these factors will influence significantly different responses upon MWCNT exposure. The study is unique in that (1) multiple administration methods were tested using particles from the same stock; (2) bulk MWCNT formulations had few differences (metal content, surface area/functionalization); and (3) MWCNT retention was quantified using a specialized approach for measuring unlabeled MWCNTs in rodent lungs. Male Sprague-Dawley rats were exposed to original (O), purified (P), and carboxylic acid functionalized (F) MWCNTs via intratracheal instillation and inhalation. Blood, bronchoalveolar lavage fluid (BALF), and lung tissues were collected at postexposure days 1 and 21 for quantifying biological responses and MWCNTs in lung tissues by programmed thermal analysis. At day 1, MWCNT instillation produced significant BALF neutrophilia and MWCNT-positive macrophages. Instilled O- and P-MWCNTs produced significant inflammation in lung tissues, which resolved by day 21 despite MWCNT retention. MWCNT inhalation produced no BALF neutrophilia and no significant histopathology past day 1. However, on days 1 and 21 postinhalation of nebulized MWCNTs, significantly increased numbers of MWCNT-positive macrophages were observed in BALF. Results suggest (1) MWCNTs produce transient inflammation if any despite persistence in the lungs; (2) instilled O-MWCNTs cause more inflammation than P- or F-MWCNTs; and (3) MWCNT suspension media produce strikingly different effects on physicochemical particle characteristics and pulmonary responses.


Assuntos
Saúde , Nanotubos de Carbono/toxicidade , Testes de Toxicidade , Administração por Inalação , Animais , Líquido da Lavagem Broncoalveolar , Ácidos Carboxílicos/química , Diferenciação Celular/efeitos dos fármacos , Fenômenos Químicos , Relação Dose-Resposta a Droga , Instilação de Medicamentos , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Masculino , Nanotubos de Carbono/química , Neutrófilos/citologia , Neutrófilos/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Água/química
17.
Cell Biol Toxicol ; 30(3): 169-88, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24817113

RESUMO

Bulk- and nano-scale titanium dioxide (TiO2) has found use in human food products for controlling color, texture, and moisture. Once ingested, and because of their small size, nano-scale TiO2 can interact with a number of epithelia that line the human gastrointestinal tract. One such epithelium responsible for nutrient absorption is the small intestine, whose constituent cells contain microvilli to increase the total surface area of the gut. Using a combination of scanning and transmission electron microscopy it was found that food grade TiO2 (E171 food additive coded) included ∼25% of the TiO2 as nanoparticles (NPs; <100 nm), and disrupted the normal organization of the microvilli as a consequence of TiO2 sedimentation. It was found that TiO2 isolated from the candy coating of chewing gum and a commercially available TiO2 food grade additive samples were of the anatase crystal structure. Exposure to food grade TiO2 additives, containing nanoparticles, at the lowest concentration tested within this experimental paradigm to date at 350 ng/mL (i.e., 100 ng/cm(2) cell surface area) resulted in disruption of the brush border. Through the use of two independent techniques to remove the effects of gravity, and subsequent TiO2 sedimentation, it was found that disruption of the microvilli was independent of sedimentation. These data indicate that food grade TiO2 exposure resulted in the loss of microvilli from the Caco-2BBe1 cell system due to a biological response, and not simply a physical artifact of in vitro exposure.


Assuntos
Aditivos Alimentares/efeitos adversos , Mucosa Intestinal/patologia , Microvilosidades/patologia , Titânio/efeitos adversos , Titânio/farmacologia , Células CACO-2 , Linhagem Celular Tumoral , Cristalografia por Raios X , Aditivos Alimentares/farmacologia , Corantes de Alimentos/efeitos adversos , Corantes de Alimentos/farmacologia , Humanos , Nanopartículas Metálicas/efeitos adversos , Microscopia Eletrônica de Transmissão , Tamanho da Partícula
18.
J Toxicol Environ Health A ; 76(16): 953-72, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24156719

RESUMO

Titanium dioxide (TiO2) is one of the most widely used nanomaterials, valued for its highly refractive, photocatalytic, and pigmenting properties. TiO2 is also classified by the International Agency for Research on Cancer (IARC) as a possible human carcinogen. The objectives of this study were to (1) establish a lowest-observed-effect level (LOEL) for nano-scale TiO2, (2) determine TiO2 uptake in the lungs, and (3) estimate toxicity based on physicochemical properties and retention in the lungs. In vivo lung toxicity of nano-scale TiO2 using varying forms of well-characterized, highly dispersed TiO2 was assessed. Anatase/rutile P25 spheres (TiO2-P25), pure anatase spheres (TiO2-A), and anatase nanobelts (TiO2-NB) were tested. To determine the effects of dose and particle characteristics, male Sprague-Dawley rats were administered TiO2 (0, 20, 70, or 200 µg) via intratracheal instillation. Bronchoalveolar lavage fluid (BALF) and lung tissue were obtained for analysis 1 and 7 d post exposure. Despite abundant TiO2 inclusions in all exposed animals, only TiO2-NB displayed any significant degree of inflammation seen in BALF at the 1-d time point. This inflammation resolved by 7 d, although TiO2 particles had not cleared from alveolar macrophages recovered from the lung. Histological examination showed TiO2-NB produced cellular changes at d 1 that were still evident at d 7. Data indicate TiO2-NB is the most inflammatory with a LOEL of 200 µg at 1 d post instillation.


Assuntos
Pneumopatias/induzido quimicamente , Nanopartículas Metálicas/toxicidade , Titânio/toxicidade , Animais , Líquido da Lavagem Broncoalveolar/citologia , Pneumopatias/patologia , Masculino , Nanopartículas Metálicas/administração & dosagem , Nanopartículas Metálicas/ultraestrutura , Tamanho da Partícula , Ratos , Ratos Sprague-Dawley , Titânio/administração & dosagem
19.
Water Res ; 47(4): 1596-603, 2013 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-23298638

RESUMO

Granular activated carbon (GAC) can remove trace organic pollutants and natural organic matter (NOM) from industrial and municipal waters. This paper evaluates an iron nanocatalyst approach, based on Fenton-like oxidation reactions, to regenerate spent GAC within a packed bed configuration after saturation by organic compounds. Specifically, we focus on regenerating GAC packed beds equilibrated with varying influent concentrations of phenol, a model organic compound. Iron nanocatalysts were synthesized using ferric chloride, a chemical already used as a coagulant at municipal WTPs, and reacted with hydrogen peroxide (H(2)O(2)) for the purpose of in-situ regeneration. Up to 95% of phenol adsorption capacity was regenerated for GAC equilibrated with 1000 mg/L of phenol. Using this technique, at least four adsorption-regeneration cycles can be performed sequentially for the same batch of GAC with fresh iron nanocatalysts while achieving a regeneration efficiency of 90 ± 5% between each loading. Moreover, the iron nanocatalyst can be recovered and reused multiple times. Lower initial adsorbate concentrations (10-500 mg/L) resulted in a slightly lower saturated adsorbent-phase concentration of phenol and lower regeneration efficiencies (72 ± 5%). Additionally, this catalytic in-situ regeneration was applied to GAC saturated by NOM. A slightly lower regeneration efficiency (60%) was observed for the Suwannee River NOM adsorption capacity of GAC. The next step is validation in a pilot-scale test that applies this regeneration technique to a GAC adsorber employed in NOM removal.


Assuntos
Carbono/química , Compostos Férricos/química , Poluentes Químicos da Água/química , Purificação da Água/métodos , Adsorção , Catálise , Peróxido de Hidrogênio/química , Nanoestruturas , Oxirredução , Fenóis/química , Reciclagem
20.
Environ Sci Technol ; 46(3): 1869-76, 2012 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-22242832

RESUMO

Lipid bilayers are biomembranes common to cellular life and constitute a continuous barrier between cells and their environment. Understanding the interaction of nanoparticles with lipid bilayers is an important step toward predicting subsequent biological effects. In this study, we assessed the affinity of functionalized gold nanoparticles (Au NPs) with sizes from 5 to 100 nm to lipid bilayers by determining the Au NP distribution between aqueous electrolytes and lipid bilayers. The Au NP distribution to lipid bilayers reached an apparent steady state in 24 h with smaller Au NPs distributing onto lipid bilayers more rapidly than larger ones. Au NPs distributed to lipid bilayers to a larger extent at lower pH. Tannic acid-functionalized Au NPs exhibited greater distribution to lipid bilayers than polyvinylpyrrolidone-functionalized Au NPs of the same size. Across the various Au NP sizes, we measure the lipid bilayer-water distribution coefficient (K(lipw) = C(lip)/C(w)) as 450 L/kg lipid, which is independent of dosimetric units. This work suggests that the nanoparticle-cell membrane interaction is dependent on solution chemistry and nanoparticle surface functionality. The K(lipw) value may be used to predict the affinity of spherical Au NPs across a certain size range toward lipid membranes.


Assuntos
Membrana Celular/química , Ouro/química , Bicamadas Lipídicas/química , Nanopartículas Metálicas/química , Adsorção , Concentração de Íons de Hidrogênio , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Tamanho da Partícula , Povidona , Análise Espectral , Taninos , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA