Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 294(45): 16855-16864, 2019 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-31575658

RESUMO

To modulate responses to developmental or environmental cues, plants use Gretchen Hagen 3 (GH3) acyl acid amido synthetases to conjugate an amino acid to a plant hormone, a reaction that regulates free hormone concentration and downstream responses. The model plant Arabidopsis thaliana has 19 GH3 proteins, of which 8 have confirmed biochemical functions. One Brassicaceae-specific clade of GH3 proteins was predicted to use benzoate as a substrate and includes AtGH3.7 and AtGH3.12/PBS3. Previously identified as a 4-hydroxybenzoic acid-glutamate synthetase, AtGH3.12/PBS3 influences pathogen defense responses through salicylic acid. Recent work has shown that AtGH3.12/PBS3 uses isochorismate as a substrate, forming an isochorismate-glutamate conjugate that converts into salicylic acid. Here, we show that AtGH3.7 and AtGH3.12/PBS3 can also conjugate chorismate to cysteine and glutamate, which act as precursors to aromatic amino acids and salicylic acid, respectively. The X-ray crystal structure of AtGH3.12/PBS3 in complex with AMP and chorismate at 1.94 Å resolution, along with site-directed mutagenesis, revealed how the active site potentially accommodates this substrate. Examination of Arabidopsis knockout lines indicated that the gh3.7 mutants do not alter growth and showed no increased susceptibility to the pathogen Pseudomonas syringae, unlike gh3.12 mutants, which were more susceptible than WT plants, as was the gh3.7/gh3.12 double mutant. The findings of our study suggest that GH3 proteins can use metabolic precursors of aromatic amino acids as substrates.


Assuntos
Aminoácidos Aromáticos/metabolismo , Brassicaceae/enzimologia , Ácido Corísmico/metabolismo , Ligases/metabolismo , Ácido Salicílico/metabolismo , Arabidopsis/enzimologia , Domínio Catalítico , Cinética , Ligases/química , Ligases/genética , Modelos Moleculares , Mutação , Especificidade da Espécie , Especificidade por Substrato
2.
J Biol Chem ; 289(41): 28619-28, 2014 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-25160622

RESUMO

Chorismate mutase converts chorismate into prephenate for aromatic amino acid biosynthesis. To understand the molecular basis of allosteric regulation in the plant chorismate mutases, we analyzed the three Arabidopsis thaliana chorismate mutase isoforms (AtCM1-3) and determined the x-ray crystal structures of AtCM1 in complex with phenylalanine and tyrosine. Functional analyses show a wider range of effector control in the Arabidopsis chorismate mutases than previously reported. AtCM1 is activated by tryptophan with phenylalanine and tyrosine acting as negative effectors; however, tryptophan, cysteine, and histidine activate AtCM3. AtCM2 is a nonallosteric form. The crystal structure of AtCM1 in complex with tyrosine and phenylalanine identifies differences in the effector sites of the allosterically regulated yeast enzyme and the other two Arabidopsis isoforms. Site-directed mutagenesis of residues in the effector site reveals key features leading to differential effector regulation in these enzymes. In AtCM1, mutations of Gly-213 abolish allosteric regulation, as observed in AtCM2. A second effector site position, Gly-149 in AtCM1 and Asp-132 in AtCM3, controls amino acid effector specificity in AtCM1 and AtCM3. Comparisons of chorismate mutases from multiple plants suggest that subtle differences in the effector site are conserved in different lineages and may lead to specialized regulation of this branch point enzyme.


Assuntos
Proteínas de Arabidopsis/química , Arabidopsis/química , Corismato Mutase/química , Fenilalanina/química , Triptofano/química , Tirosina/química , Regulação Alostérica , Sequência de Aminoácidos , Arabidopsis/enzimologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Corismato Mutase/genética , Corismato Mutase/metabolismo , Ácido Corísmico/química , Ácido Corísmico/metabolismo , Cristalografia por Raios X , Ativação Enzimática , Escherichia coli/genética , Escherichia coli/metabolismo , Evolução Molecular , Expressão Gênica , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Cinética , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Fenilalanina/metabolismo , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos , Especificidade por Substrato , Triptofano/metabolismo , Tirosina/metabolismo
3.
J Biol Chem ; 289(15): 10919-10929, 2014 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-24584934

RESUMO

Enzymes of the sulfur assimilation pathway are potential targets for improving nutrient content and environmental stress responses in plants. The committed step in this pathway is catalyzed by ATP sulfurylase, which synthesizes adenosine 5'-phosphosulfate (APS) from sulfate and ATP. To better understand the molecular basis of this energetically unfavorable reaction, the x-ray crystal structure of ATP sulfurylase isoform 1 from soybean (Glycine max ATP sulfurylase) in complex with APS was determined. This structure revealed several highly conserved substrate-binding motifs in the active site and a distinct dimerization interface compared with other ATP sulfurylases but was similar to mammalian 3'-phosphoadenosine 5'-phosphosulfate synthetase. Steady-state kinetic analysis of 20 G. max ATP sulfurylase point mutants suggests a reaction mechanism in which nucleophilic attack by sulfate on the α-phosphate of ATP involves transition state stabilization by Arg-248, Asn-249, His-255, and Arg-349. The structure and kinetic analysis suggest that ATP sulfurylase overcomes the energetic barrier of APS synthesis by distorting nucleotide structure and identifies critical residues for catalysis. Mutations that alter sulfate assimilation in Arabidopsis were mapped to the structure, which provides a molecular basis for understanding their effects on the sulfur assimilation pathway.


Assuntos
Adenosina Fosfossulfato/química , Glycine max/enzimologia , Sulfato Adenililtransferase/química , Enxofre/química , Trifosfato de Adenosina/química , Sequência de Aminoácidos , Arabidopsis/metabolismo , Catálise , Domínio Catalítico , Cristalografia por Raios X , Haplótipos , Ligação de Hidrogênio , Cinética , Simulação de Acoplamento Molecular , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Mutação , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos , Especificidade por Substrato
4.
Acta Crystallogr D Biol Crystallogr ; 69(Pt 10): 2072-80, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24100325

RESUMO

The combination of protein crystallography and small-angle X-ray scattering (SAXS) provides a powerful method to investigate changes in protein conformation. These complementary structural techniques were used to probe the solution structure of the apo and the ligand-bound forms of the Arabidopsis thaliana acyl acid-amido synthetase GH3.12. This enzyme is part of the extensive GH3 family and plays a critical role in the regulation of plant hormones through the formation of amino-acid-conjugated hormone products via an ATP-dependent reaction mechanism. The enzyme adopts two distinct C-terminal domain orientations with `open' and `closed' active sites. Previous studies suggested that ATP only binds in the open orientation. Here, the X-ray crystal structure of GH3.12 is presented in the closed conformation in complex with the nonhydrolysable ATP analogue AMPCPP and the substrate salicylate. Using on-line HPLC purification combined with SAXS measurements, the most likely apo and ATP-bound protein conformations in solution were determined. These studies demonstrate that the C-terminal domain is flexible in the apo form and favours the closed conformation upon ATP binding. In addition, these data illustrate the efficacy of on-line HPLC purification integrated into the SAXS sample-handling environment to reliably monitor small changes in protein conformation through the collection of aggregate-free and highly redundant data.


Assuntos
Proteínas de Arabidopsis/química , Arabidopsis/enzimologia , Trifosfato de Adenosina/análogos & derivados , Trifosfato de Adenosina/química , Cromatografia Líquida de Alta Pressão , Cristalografia por Raios X , Hidrólise , Conformação Proteica , Ácido Salicílico/química , Espalhamento a Baixo Ângulo , Especificidade por Substrato
5.
Biosci Rep ; 33(4)2013 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-23789618

RESUMO

In plants, sulfur must be obtained from the environment and assimilated into usable forms for metabolism. ATP sulfurylase catalyses the thermodynamically unfavourable formation of a mixed phosphosulfate anhydride in APS (adenosine 5'-phosphosulfate) from ATP and sulfate as the first committed step of sulfur assimilation in plants. In contrast to the multi-functional, allosterically regulated ATP sulfurylases from bacteria, fungi and mammals, the plant enzyme functions as a mono-functional, non-allosteric homodimer. Owing to these differences, here we examine the kinetic mechanism of soybean ATP sulfurylase [GmATPS1 (Glycine max (soybean) ATP sulfurylase isoform 1)]. For the forward reaction (APS synthesis), initial velocity methods indicate a single-displacement mechanism. Dead-end inhibition studies with chlorate showed competitive inhibition versus sulfate and non-competitive inhibition versus APS. Initial velocity studies of the reverse reaction (ATP synthesis) demonstrate a sequential mechanism with global fitting analysis suggesting an ordered binding of substrates. ITC (isothermal titration calorimetry) showed tight binding of APS to GmATPS1. In contrast, binding of PPi (pyrophosphate) to GmATPS1 was not detected, although titration of the E•APS complex with PPi in the absence of magnesium displayed ternary complex formation. These results suggest a kinetic mechanism in which ATP and APS are the first substrates bound in the forward and reverse reactions, respectively.


Assuntos
Glycine max/enzimologia , Proteínas de Plantas/química , Sulfato Adenililtransferase/química , Adenosina Fosfossulfato/química , Trifosfato de Adenosina/química , Biocatálise , Cloratos/química , Cinética , Proteínas de Plantas/antagonistas & inibidores , Sulfato Adenililtransferase/antagonistas & inibidores , Sulfatos/química
6.
J Biol Chem ; 288(9): 6107-15, 2013 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-23322773

RESUMO

Adenosine 5'-phosphosulfate kinase (APSK) catalyzes the phosphorylation of adenosine 5'-phosphosulfate (APS) to 3'-phosphoadenosine-5'-phosphosulfate (PAPS). Crystallographic studies of APSK from Arabidopsis thaliana revealed the presence of a regulatory intersubunit disulfide bond (Cys(86)-Cys(119)). The reduced enzyme displayed improved catalytic efficiency and decreased effectiveness of substrate inhibition by APS compared with the oxidized form. Here we examine the effect of disulfide formation and the role of the N-terminal domain on nucleotide binding using isothermal titration calorimetry (ITC) and steady-state kinetics. Formation of the disulfide bond in A. thaliana APSK (AtAPSK) inverts the binding affinities at the ATP/ADP and APS/PAPS sites from those observed in the reduced enzyme, consistent with initial binding of APS as inhibitory, and suggests a role for the N-terminal domain in guiding nucleotide binding order. To test this, an N-terminal truncation variant (AtAPSKΔ96) was generated. The resulting protein was completely insensitive to substrate inhibition by APS. ITC analysis of AtAPSKΔ96 showed decreased affinity for APS binding, although the N-terminal domain does not directly interact with this ligand. Moreover, AtAPSKΔ96 displayed reduced affinity for ADP, which corresponds to a loss of substrate inhibition by formation of an E·ADP·APS dead end complex. Examination of the AtAPSK crystal structure suggested Arg(93) as important for positioning of the N-terminal domain. ITC and kinetic analysis of the R93A mutant also showed a complete loss of substrate inhibition and altered nucleotide binding affinities, which mimics the effect of the N-terminal deletion. These results show how thiol-linked changes in AtAPSK alter the energetics of binding equilibria to control its activity.


Assuntos
Arabidopsis/enzimologia , Fosfotransferases (Aceptor do Grupo Álcool)/química , Difosfato de Adenosina/química , Difosfato de Adenosina/genética , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/química , Trifosfato de Adenosina/genética , Trifosfato de Adenosina/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis , Catálise , Cinética , Oxirredução , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Compostos de Sulfidrila/química , Compostos de Sulfidrila/metabolismo
7.
J Biol Chem ; 285(39): 29780-6, 2010 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-20639576

RESUMO

The GH3 family of acyl-acid-amido synthetases catalyze the ATP-dependent formation of amino acid conjugates to modulate levels of active plant hormones, including auxins and jasmonates. Initial biochemical studies of various GH3s show that these enzymes group into three families based on sequence relationships and acyl-acid substrate preference (I, jasmonate-conjugating; II, auxin- and salicylic acid-conjugating; III, benzoate-conjugating); however, little is known about the kinetic and chemical mechanisms of these enzymes. Here we use GH3-8 from Oryza sativa (rice; OsGH3-8), which functions as an indole-acetic acid (IAA)-amido synthetase, for detailed mechanistic studies. Steady-state kinetic analysis shows that the OsGH3-8 requires either Mg(2+) or Mn(2+) for maximal activity and is specific for aspartate but accepts asparagine as a substrate with a 45-fold decrease in catalytic efficiency and accepts other auxin analogs, including phenyl-acetic acid, indole butyric acid, and naphthalene-acetic acid, as acyl-acid substrates with 1.4-9-fold reductions in k(cat)/K(m) relative to IAA. Initial velocity and product inhibition studies indicate that the enzyme uses a Bi Uni Uni Bi Ping Pong reaction sequence. In the first half-reaction, ATP binds first followed by IAA. Next, formation of an adenylated IAA intermediate results in release of pyrophosphate. The second half-reaction begins with binding of aspartate, which reacts with the adenylated intermediate to release IAA-Asp and AMP. Formation of a catalytically competent adenylated-IAA reaction intermediate was confirmed by mass spectrometry. These mechanistic studies provide insight on the reaction catalyzed by the GH3 family of enzymes to modulate plant hormone action.


Assuntos
Ácidos Indolacéticos/química , Ligases/química , Oryza/enzimologia , Proteínas de Plantas/química , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Asparagina/química , Asparagina/metabolismo , Catálise , Ácidos Indolacéticos/metabolismo , Indóis/química , Indóis/metabolismo , Cinética , Ligases/metabolismo , Magnésio/química , Magnésio/metabolismo , Manganês/química , Manganês/metabolismo , Fenilacetatos/química , Fenilacetatos/metabolismo , Proteínas de Plantas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA