Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Toxicol Appl Pharmacol ; 486: 116919, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38580201

RESUMO

BACKGROUND: Idiopathic intracranial hypertension (IIH) is a disease characterized by elevated intracranial pressure (ICP) and is a disease of young females. The first line pharmacological treatments include acetazolamide and topiramate and given the nature of IIH patients and the dosing regimen of these drugs, their effect on the endocrine system is important to evaluate. We aimed to assess the effects of acetazolamide and topiramate on steroid profiles in relevant endocrine tissues. METHODS: Female Sprague Dawley rats received chronic clinically equivalent doses of acetazolamide or topiramate by oral gavage and were sacrificed in estrus. Tissue specific steroid profiles of lateral ventricle CP, 4th ventricle CP, CSF, serum, uterine horn and fundus, ovaries, adrenal glands and pituitary glands were assessed by quantitative targeted LC-MS/MS. We determined luteinizing hormone (LH) and follicle stimulating hormones (FSH) levels in paired serum by ELISA. RESULTS: Topiramate increased the concentration of estradiol and decreased the concentration of DHEA in lateral choroid plexus. Moreover, it decreased the concentration of androstenediol in the pituitary gland. Topiramate increased serum LH. Acetazolamide decreased progesterone levels in serum and uterine fundus and increased corticosteroid levels in the adrenal glands. CONCLUSION: These results demonstrate that both acetazolamide and topiramate have endocrine disrupting effects in rats. Topiramate primarily targeted the choroid plexus and the pituitary gland while acetazolamide had broader systemic effects. Furthermore, topiramate predominantly targeted sex hormones, whereas acetazolamide widely affected all classes of hormones. A similar effect in humans has not yet been documented but these concerning findings warrants further investigations.


Assuntos
Acetazolamida , Disruptores Endócrinos , Estro , Ratos Sprague-Dawley , Topiramato , Animais , Feminino , Topiramato/farmacologia , Acetazolamida/farmacologia , Acetazolamida/toxicidade , Disruptores Endócrinos/toxicidade , Ratos , Estro/efeitos dos fármacos , Hormônio Luteinizante/sangue , Frutose/toxicidade , Frutose/análogos & derivados , Hipófise/efeitos dos fármacos , Hipófise/metabolismo , Progesterona/sangue , Hormônio Foliculoestimulante/sangue , Hormônios Esteroides Gonadais/sangue , Estradiol/sangue , Ovário/efeitos dos fármacos , Ovário/metabolismo
2.
Headache ; 63(9): 1220-1231, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37796087

RESUMO

OBJECTIVE: Caffeine, a non-selective adenosine receptor (AR) antagonist, is the most consumed psychostimulant in the world. Caffeine has been suggested to regulate cerebrospinal fluid secretion and is known both to alleviate and to trigger headache; however, its effect on the regulation of intracranial pressure (ICP) is not known. Therefore, we aimed to investigate the effects of caffeine on ICP and nociceptive responses. METHODS: Female Sprague-Dawley rats were implanted with a novel telemetric device for continuous ICP recordings, which allowed for continuous recordings in freely moving rats. A single dose of caffeine (30 or 120 mg/kg intraperitoneally) was given. In a second group (non-implanted), the acute effects of 30 mg/kg caffeine on periorbital threshold using Von Frey testing and spontaneous behavior were utilized using an automated behavioral registration platform (Laboratory, Animal, Behavior, Observation, Registration and Analysis System) in a randomized cross-over study. Quantitative polymerase chain reaction and immunofluorescence were used to localize ARs in the choroid plexus. RESULTS: A single dose of 30 mg/kg caffeine lowered the ICP by 35% at 165 min after administration (saline: 0.16 ± 0.9 vs caffeine: -1.18 ± 0.9 ΔmmHg, p = 0.0098) and lasted up to 12 h. Administration of 120 mg/kg caffeine showed a faster onset of decrease in ICP within 15 min by 50% (p = 0.0018) and lasted up to 12 h. The periorbital pain thresholds were higher after 1 h (saline: 224.6 ± 15.1 vs caffeine: 289.5 ± 8.7 g, p = 0.005) and lasted up to 5 h. Caffeine-treated rats had increased locomotor activity, speed, and changed grooming behavior. Expression of AR1 was found in the choroid plexus. CONCLUSIONS: This study demonstrates that caffeine has a lowering effect on ICP as an acute treatment. Interestingly, caffeine acutely caused an increased response in cephalic thresholds supporting hypoalgesic effects. Future studies investigating the beneficial effects of caffeine for elevated ICP are warranted.


Assuntos
Cafeína , Estimulantes do Sistema Nervoso Central , Animais , Feminino , Ratos , Cafeína/farmacologia , Estimulantes do Sistema Nervoso Central/farmacologia , Pressão Intracraniana/fisiologia , Percepção da Dor , Ratos Sprague-Dawley
3.
J Headache Pain ; 22(1): 123, 2021 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-34629054

RESUMO

BACKGROUND: Obesity confers adverse effects to every system in the body including the central nervous system. Obesity is associated with both migraine and idiopathic intracranial hypertension (IIH). The mechanisms underlying the association between obesity and these headache diseases remain unclear. METHODS: We conducted a narrative review of the evidence in both humans and rodents, for the putative mechanisms underlying the link between obesity, migraine and IIH. RESULTS: Truncal adiposity, a key feature of obesity, is associated with increased migraine morbidity and disability through increased headache severity, frequency and more severe cutaneous allodynia. Obesity may also increase intracranial pressure and could contribute to headache morbidity in migraine and be causative in IIH headache. Weight loss can improve both migraine and IIH headache. Preclinical research highlights that obesity increases the sensitivity of the trigeminovascular system to noxious stimuli including inflammatory stimuli, but the underlying molecular mechanisms remain unelucidated. CONCLUSIONS: This review highlights that at the epidemiological and clinical level, obesity increases morbidity in migraine and IIH headache, where weight loss can improve headache morbidity. However, further research is required to understand the molecular underpinnings of obesity related headache in order to generate novel treatments.


Assuntos
Transtornos de Enxaqueca , Pseudotumor Cerebral , Cefaleia , Humanos , Pressão Intracraniana , Transtornos de Enxaqueca/complicações , Transtornos de Enxaqueca/epidemiologia , Obesidade/complicações , Obesidade/epidemiologia , Pseudotumor Cerebral/complicações , Pseudotumor Cerebral/epidemiologia
4.
Fluids Barriers CNS ; 17(1): 39, 2020 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-32517699

RESUMO

BACKGROUND: Elevated intracranial pressure (ICP) is observed in association with a range of brain disorders. There is limited insight into the regulatory mechanisms of ICP under physiological conditions, and consequently also under pathological conditions. Thereby, to understand the mechanisms underlying ICP dynamics, precise, valid and long-term ICP recordings are of importance in the preclinical setting. Herein, we used a novel telemetric system for ICP recordings which allowed for long-term recordings in freely-moving rats. The aim was to investigate ICP dynamics under different physiological states and investigate how factors such as surgery/recovery, body position, light-dark, co-housing, weight and anesthesia may influence ICP and its waveforms. METHODS: A telemetric device was implanted epidurally in rats and signals were recorded continuously for up to 50 days (n = 14). Recording was divided into three experimental periods: a surgical recovery period (RP), a physiological period (PP) and an experimental period (EP). Histology was performed to study the morphology of implanted rats and non-implanted rats (n = 17). RESULTS: For the first time, we can demonstrate continuous ICP recordings in freely-moving and co-housed rats for up to 50 days with a high degree of stability. The mean ICP in the recording periods were; RP: 3.2 ± 0.6 mmHg, PP: 5.0 ± 0.6 mmHg and EP: 4.7 ± 0.6 mmHg. In the RP, the ICP was significantly lower compared to the PP (P = 0.0034). Significant light-dark difference in ICP with 21% increase in respiratory slow-wave amplitude was observed in the co-housed animals but not in single-housed animals. The ICP signal was raised during the dark period relative to the light (Δ0.3 ± 0.07 mmHg, P = 0.0043). Administration of anesthesia gave a short-term increase in ICP followed by a significant decrease in ICP. No signs of tissue damage or inflammation were found in the implanted brains. CONCLUSIONS: ICP dynamics were influenced by several factors such as, use of anesthesia, light-dark difference and housing conditions. Our study demonstrates the importance of performing ICP physiological measurements in freely-moving animals. This has significant implications for moving the preclinical research field forward in order to properly study ICP physiology during disease development and to explore drug targets for alleviating increased ICP.


Assuntos
Pressão Intracraniana/fisiologia , Monitorização Neurofisiológica , Telemetria , Anestesia , Animais , Modelos Animais de Doenças , Feminino , Abrigo para Animais , Monitorização Neurofisiológica/instrumentação , Fotoperíodo , Ratos , Ratos Sprague-Dawley , Telemetria/instrumentação
5.
Fluids Barriers CNS ; 16(1): 35, 2019 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-31767019

RESUMO

BACKGROUND: Elevated intracranial pressure (ICP) is observed in association with a range of brain disorders. One of these challenging disorders is idiopathic intracranial hypertension (IIH), characterized by raised ICP of unknown cause with significant morbidity and limited therapeutic options. In this review, special focus is put on the preclinical research performed in order to understand the pathophysiology behind ICP regulation and IIH. This includes cerebrospinal fluid dynamics, molecular mechanisms underlying disturbances in brain fluids leading to elevated ICP, role of obesity in IIH, development of an IIH model and ICP measurements in rodents. The review also discusses existing and new drug targets for IIH that have been evaluated in vivo. CONCLUSIONS: ICP monitoring in rodents is challenging and different methods have been applied. Some of these methods are invasive, depend on use of anesthesia and only allow short-term monitoring. Long-term ICP recordings are needed to study IIH but existing methods are hampered by several limitations. As obesity is one of the most common risk factors for IIH, a rodent obese model has been developed that mimics some key aspects of IIH. The most commonly used drugs for IIH have been evaluated in vivo for their efficacy at lowering ICP in the existing animal models. These studies suggest these drugs, including acetazolamide, might have limited or no reducing effect on ICP. Two drug targets that can impact ICP in healthy rodents are topiramate and a glucagon-like peptide-1 receptor (GLP-1R) agonist. However, it remains to evaluate their effect in an IIH model with more precise and valid ICP monitoring system. Therefore, continued evaluation in the preclinical research with refined tools is of great importance to further understand the pathophysiology behind disorders with raised ICP and to explore new drug targets.


Assuntos
Pressão Intracraniana/fisiologia , Pseudotumor Cerebral/fisiopatologia , Animais , Líquido Cefalorraquidiano/fisiologia , Modelos Animais de Doenças , Humanos , Obesidade/complicações , Obesidade/fisiopatologia , Pseudotumor Cerebral/complicações , Pseudotumor Cerebral/tratamento farmacológico , Pesquisa Translacional Biomédica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA