Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Data ; 8(1): 70, 2021 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-33637768

RESUMO

SARS-CoV-2 is a novel coronavirus responsible for the COVID-19 pandemic, in which acute respiratory infections are associated with high socio-economic burden. We applied high-content screening to a well-defined collection of 5632 compounds including 3488 that have undergone previous clinical investigations across 600 indications. The compounds were screened by microscopy for their ability to inhibit SARS-CoV-2 cytopathicity in the human epithelial colorectal adenocarcinoma cell line, Caco-2. The primary screen identified 258 hits that inhibited cytopathicity by more than 75%, most of which were not previously known to be active against SARS-CoV-2 in vitro. These compounds were tested in an eight-point dose response screen using the same image-based cytopathicity readout. For the 67 most active molecules, cytotoxicity data were generated to confirm activity against SARS-CoV-2. We verified the ability of known inhibitors camostat, nafamostat, lopinavir, mefloquine, papaverine and cetylpyridinium to reduce the cytopathic effects of SARS-CoV-2, providing confidence in the validity of the assay. The high-content screening data are suitable for reanalysis across numerous drug classes and indications and may yield additional insights into SARS-CoV-2 mechanisms and potential therapeutic strategies.


Assuntos
Antivirais/farmacologia , Reposicionamento de Medicamentos , SARS-CoV-2/efeitos dos fármacos , Benzamidinas , COVID-19 , Células CACO-2 , Cetilpiridínio , Avaliação Pré-Clínica de Medicamentos , Ésteres , Guanidinas , Humanos , Lopinavir , Mefloquina , Papaverina
2.
Cells ; 9(4)2020 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-32316635

RESUMO

Direct acting antivirals (DAAs) revolutionized the therapy of chronic hepatitis C infection. However, unexpected high recurrence rates of hepatocellular carcinoma (HCC) after DAA treatment became an issue in patients with advanced cirrhosis and fibrosis. In this study, we aimed to investigate an impact of DAA treatment on the molecular changes related to HCC development and progression in hepatoma cell lines and primary human hepatocytes. We found that treatment with sofosbuvir (SOF), a backbone of DAA therapy, caused an increase in EGFR expression and phosphorylation. As a result, enhanced translocation of EGFR into the nucleus and transactivation of factors associated with cell cycle progression, B-MYB and Cyclin D1, was detected. Serine/threonine kinase profiling identified additional pathways, especially the MAPK pathway, also activated during SOF treatment. Importantly, the blocking of EGFR kinase activity by erlotinib during SOF treatment prevented all downstream events. Altogether, our findings suggest that SOF may have an impact on pathological processes in the liver via the induction of EGFR signaling. Notably, zidovudine, another nucleoside analogue, exerted a similar cell phenotype, suggesting that the observed effects may be induced by additional members of this drug class.


Assuntos
Antivirais/uso terapêutico , Hepatite C Crônica/tratamento farmacológico , Fígado/efeitos dos fármacos , Sofosbuvir/uso terapêutico , Antivirais/farmacologia , Humanos , Fígado/patologia , Fatores de Risco , Sofosbuvir/farmacologia
3.
J Med Microbiol ; 67(10): 1496-1508, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30136921

RESUMO

PURPOSE: Renal impairment is a common complication after liver transplantation (LT). While BK polyomavirus (BKV) has been linked to renal failure in kidney transplant recipients, Torque teno virus (TTV) is a surrogate marker for immunosuppression that does not have a clear association with any human disease. The impact of BKV and TTV on renal impairment after LT is unknown. METHODOLOGY: In this retrospective study, urine and serum samples from 136 liver transplant recipients were screened for BKV and TTV by quantitative PCR. In addition, serum was screened for BKV-specific antibodies and the VP1 typing region was sequenced for BKV genotyping. All parameters were correlated with clinical data.Results/Key findings. BK viruria was detected up to 21 years after transplantation in 16.9 % of cases. BK viraemia was detected in 8.7 % of patients with BK viruria up to 4 years after LT. BKV-specific antibodies were detected in 93.6 % of all LT recipients and correlated with BKV viral load in urine. There was no correlation between renal impairment and the detection of BK DNA in urine (OR 0.983). TTV DNA was detected in 84.6 % of serum samples and in 66.6 % of urine samples. The TTV viral load in serum correlated with the BKV viral load but had no impact on renal impairment. CONCLUSION: Our data indicate that the detection of BKV and TTV is not a risk factor for renal impairment after LT. A correlation of TTV and BKV viral load seems to be an indicator for the immune status of the host.


Assuntos
Vírus BK/fisiologia , Infecções por Vírus de DNA/virologia , Hepatopatias/cirurgia , Transplante de Fígado/efeitos adversos , Infecções por Polyomavirus/virologia , Insuficiência Renal Crônica/virologia , Torque teno virus/fisiologia , Adulto , Idoso , Vírus BK/genética , Vírus BK/isolamento & purificação , Infecções por Vírus de DNA/etiologia , Infecções por Vírus de DNA/fisiopatologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Infecções por Polyomavirus/etiologia , Infecções por Polyomavirus/fisiopatologia , Insuficiência Renal Crônica/etiologia , Insuficiência Renal Crônica/fisiopatologia , Estudos Retrospectivos , Torque teno virus/genética , Torque teno virus/isolamento & purificação , Transplantados/estatística & dados numéricos , Carga Viral , Replicação Viral , Adulto Jovem
4.
J Hepatol ; 67(2): 237-245, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28363797

RESUMO

BACKGROUND & AIMS: There are numerous coding and non-coding variants in the SCARB1 gene that encodes scavenger receptor class B member 1 (SR-BI), a key receptor for both high density lipoproteins and hepatitis C virus (HCV). Many have been linked to clinical phenotypes, yet their impact on the HCV replication cycle is incompletely understood. The aim of this study was to analyze the impact of these variants on the molecular biology and clinical course of HCV. METHODS: We analyzed key coding non-synonymous as well as non-coding SCARB1 variants using virological in vitro and human genetics approaches. RESULTS: Non-synonymous variants: S112F and T175A have greatly reduced HCV receptor function. When present on the cell surface, these variants are impaired in their ability to interact with HCV E2. Non-coding variants: The G allele in rs3782287 is associated with decreased viral load. Haplotype analysis confirmed these findings and identified haplotype rs3782287 A/rs5888 C as a risk allele associated with increased viral load. We also detected a trend towards lower hepatic SR-BI expression in individuals with the rs3782287 GG genotype associated with low viral load suggesting a potential underlying mechanism. CONCLUSION: Coding and non-coding genetic SCARB1 variants modulate the HCV replication cycle and possibly clinical features of hepatitis C. These findings underscore the relevance of SR-BI as an HCV receptor and contribute to our understanding of inter-individual variation in HCV infection. LAY SUMMARY: The cell surface receptor SR-BI (scavenger receptor class B member 1), is essential for hepatitis C virus (HCV) entry into hepatocytes. Variations in the gene coding this receptor influence infectivity and viral load. We analyzed these variations to gain a better understanding of inter-individual differences over the course of HCV infection.


Assuntos
Hepacivirus/fisiologia , Hepatite C/genética , Hepatite C/virologia , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/fisiologia , Receptores Depuradores Classe B/genética , Receptores Depuradores Classe B/fisiologia , Linhagem Celular , Variação Genética , Humanos , Polimorfismo de Nucleotídeo Único , Proteínas do Envelope Viral/fisiologia , Carga Viral , Internalização do Vírus , Replicação Viral
5.
Antiviral Res ; 124: 122-31, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26542648

RESUMO

Amiodarone and other cationic amphiphilic drugs (CADs) inhibit cell entry by diverse human pathogenic viruses including Filoviruses, Dengue virus and Japanese encephalitis virus. They are thus considered potential broad spectrum antiviral agents. Here we report the unexpected finding that amiodarone and other CADs markedly enhance rabies virus (RABV) glycoprotein- (GP-) mediated cell entry of pseudotyped lentiviruses into non-neuronal cells but not in neuronal cells. Increased cell entry can also be elicited when CADs are added several hours after pseudoviral attachment. Perturbing endosomal processing with phosphoinosite-3-kinase inhibitors wortmannin and LY294002 mimics the effects of CADs on RABV GP-mediated cell entry. Thus, CADs may enhance RABV GP-mediated cell entry of pseudotyped lentiviruses by promoting a late step of the pseudoviral cell entry process, possibly release from an endosomal compartment into the cytosol. In contrast to the pseudotyped lentiviruses, infection by fully infectious RABV was not enhanced by CADs, indicating, that the observed stimulation of RABV GP mediated lentivirus entry also depended on the used lentivirus vector backbone. In conclusion, we show that while CADs inhibit cell entry of diverse viruses they can also have a paradoxical enhancing effect on the ability of a viral glycoprotein to mediate cell entry depending on the cellular and viral context. Although, we show CAD-mediated enhancement of entry only for pseudoviruses, but not fully infectious RABV, the potential to unexpectedly enhance viral entry should be taken into account when considering use of CADs as antiviral agents.


Assuntos
Antivirais/farmacologia , Glicoproteínas/metabolismo , Lentivirus/efeitos dos fármacos , Vírus da Raiva/fisiologia , Proteínas do Envelope Viral/metabolismo , Internalização do Vírus/efeitos dos fármacos , Células CACO-2 , Linhagem Celular , Endossomos/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana , Humanos , Raiva/tratamento farmacológico , Raiva/virologia , Vírus da Raiva/efeitos dos fármacos , Receptores Adrenérgicos/metabolismo , Visão Ocular
6.
Cell Mol Gastroenterol Hepatol ; 1(3): 285-294.e1, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-28210681

RESUMO

BACKGROUND & AIMS: Hepatitis C virus (HCV) cell entry is mediated by several cell surface receptors, including scavenger receptor class B type I (SR-BI). Oxidized low density lipoprotein (oxLDL) inhibits the interaction between HCV and SR-BI in a noncompetitive manner. We tested whether serum oxLDL levels correlate with sustained virologic response (SVR) rates after interferon-based treatment of chronic hepatitis C. METHODS: Baseline oxLDL was determined in 379 participants with chronic HCV genotype 1 infection from the INDIV-2 study using a commercial enzyme-linked immunosorbent assay. The mechanistic in vitro studies used full-length and subgenomic HCV genomes replicating in hepatoma cells. RESULTS: In the multivariate analysis, oxLDL was found to be an independent predictor of SVR. Oxidized LDL did not correlate with markers of inflammation (alanine transaminase, ferritin), nor was serum oxLDL affected by exogenous interferon administration. Also, oxLDL did not alter the sensitivity of HCV replication to interferon. However, oxLDL was found to be a potent inhibitor of cell-to-cell spread of HCV between adjacent cells in vitro. It could thus reduce the rate at which new cells are infected by HCV through either the cell-free or cell-to-cell route. Finally, serum oxLDL was significantly associated with the estimated infected cell loss rate under treatment. CONCLUSIONS: Oxidized LDL is a novel predictor of SVR after interferon-based therapy and may explain the previously observed association of LDL with SVR. Rather than being a marker of activated antiviral defenses it may improve chances of SVR by limiting spread of infection to naive cells through the cell-to-cell route.

7.
Hepatology ; 57(5): 1716-24, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23212706

RESUMO

UNLABELLED: Oxidized low-density lipoprotein (oxLDL) has been reported as an inhibitor of hepatitis C virus (HCV) cell entry, making it the only known component of human lipid metabolism with an antiviral effect on HCV. However, several questions remain open, including its effect on full-length cell-culture-grown HCV (HCVcc) of different genotypes or on other steps of the viral replication cycle, its mechanism of action, and whether endogenous oxLDL shares the anti-HCV properties of in vitro-generated oxLDL. We combined molecular virology tools with oxLDL serum measurements in different patient cohorts to address these questions. We found that oxLDL inhibits HCVcc at least as potently as HCV pseudoparticles. There was moderate variation between genotypes, with genotype 4 appearing the most oxLDL sensitive. Intracellular RNA replication and assembly and release of new particles were unaffected. HCV particles entering target cells lost oxLDL sensitivity with time kinetics parallel to anti-SR-BI (scavenger receptor class B type I), but significantly earlier than anti-CD81, suggesting that oxLDL acts by perturbing interaction between HCV and SR-BI. Finally, in chronically HCV-infected individuals, endogenous serum oxLDL levels did not correlate with viral load, but in HCV-negative sera, high endogenous oxLDL had a negative effect on HCV infectivity in vitro. CONCLUSION: oxLDL is a potent pangenotype HCV entry inhibitor that maintains its activity in the context of human serum and targets an early step of HCV entry.


Assuntos
Hepacivirus/genética , Hepacivirus/fisiologia , Hepatite C Crônica/sangue , Lipoproteínas LDL/farmacologia , Replicação Viral/efeitos dos fármacos , Antígenos CD36/fisiologia , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/virologia , Linhagem Celular Tumoral , Células Cultivadas , DNA Viral/genética , Genótipo , Hepacivirus/efeitos dos fármacos , Humanos , Técnicas In Vitro , Lipoproteínas LDL/sangue , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/virologia , Carga Viral , Vírion/fisiologia , Replicação Viral/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA