Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
1.
J Appl Clin Med Phys ; : e14375, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38712917

RESUMO

PURPOSE: Online adaptive radiotherapy relies on a high degree of automation to enable rapid planning procedures. The Varian Ethos intelligent optimization engine (IOE) was originally designed for conventional treatments so it is crucial to provide clear guidance for lung SAbR plans. This study investigates using the Ethos IOE together with adaptive-specific optimization tuning structures we designed and templated within Ethos to mitigate inter-planner variability in meeting RTOG metrics for both online-adaptive and offline SAbR plans. METHODS: We developed a planning strategy to automate the generation of tuning structures and optimization. This was validated by retrospective analysis of 35 lung SAbR cases (total 105 fractions) treated on Ethos. The effectiveness of our planning strategy was evaluated by comparing plan quality with-and-without auto-generated tuning structures. Internal target volume (ITV) contour was compared between that drawn from CT simulation and from cone-beam CT (CBCT) at time of treatment to verify CBCT image quality and treatment effectiveness. Planning strategy robustness for lung SAbR was quantified by frequency of plans meeting reference plan RTOG constraints. RESULTS: Our planning strategy creates a gradient within the ITV with maximum dose in the core and improves intermediate dose conformality on average by 2%. ITV size showed no significant difference between those contoured from CT simulation and first fraction, and also trended towards decreasing over course of treatment. Compared to non-adaptive plans, adaptive plans better meet reference plan goals (37% vs. 100% PTV coverage compliance, for scheduled and adapted plans) while improving plan quality (improved GI (gradient index) by 3.8%, CI (conformity index) by 1.7%). CONCLUSION: We developed a robust and readily shareable planning strategy for the treatment of adaptive lung SAbR on the Ethos system. We validated that automatic online plan re-optimization along with the formulated adaptive tuning structures can ensure consistent plan quality. With the proposed planning strategy, highly ablative treatments are feasible on Ethos.

2.
Pract Radiat Oncol ; 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38579986

RESUMO

PURPOSE: Real-time adaptation of thoracic radiation plans is compelling because offline adaptive experiences show that tumor volumes and lung anatomy can change during therapy. We present and analyze a novel adaptive-on-demand (AOD) workflow combining online adaptive radiation therapy (o-ART) on the ETHOS system with image guided radiation therapy delivery on a Halcyon unit for conventional fractionated radiation therapy of locally advanced lung cancer (LALC). METHODS AND MATERIALS: We analyzed 26 patients with LALC treated with the AOD workflow, adapting weekly. We timed segments of the workflow to evaluate efficiency in a real-world clinic. Target coverage and organ at risk (OAR) doses were compared between adaptive plans (ADP) and nonadaptive scheduled plans (SCH). Planning robustness was evaluated by the frequency of preplanning goals achieved in ADP plans, stratified by tumor volume change. RESULTS: The AOD workflow was achievable within 30 minutes for most radiation fractions. Over the course of therapy, we observed an average 26.6% ± 23.3% reduction in internal target volume (ITV). Despite these changes, with o-ART, ITV and planning target volume (PTV) coverage (V100%) was 99.2% and 93.9% for all members of the cohort, respectively. This represented a 2.9% and 6.8% improvement over nonadaptive plans (P < .05), respectively. For tumors that grew >10%, V100% was 93.1% for o-ART and 76.4% for nonadaptive plans, representing a median 17.2% improvement in the PTV coverage (P < .05). In these plans, critical OAR constraints were met 94.1% of the time, whereas in nonadaptive plans, this figure was 81.9%. This represented reductions of 1.32 Gy, 1.34 Gy, or 1.75 Gy in the heart, esophagus, and lung, respectively. The effect was larger when tumors had shrunk more than 10%. Regardless of tumor volume alterations, the PTV/ITV coverage was achieved for all adaptive plans. Exceptional cases, where dose constraints were not met, were due to large initial tumor volumes or tumor growth. CONCLUSIONS: The AOD workflow is efficient and robust in responding to anatomic changes in LALC patients, providing dosimetric advantages over standard therapy. Weekly adaptation was adequate to keep pace with changes. This approach is a feasible alternative to conventional offline replanning workflows for managing anatomy changes in LALC radiation therapy.

3.
Int J Radiat Oncol Biol Phys ; 118(3): 588-589, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38340766
4.
Cancer Med ; 12(19): 19904-19920, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37792675

RESUMO

BACKGROUND: Prolonged treatment of HER2+ breast cancer with lapatinib (LAP) causes cellular senescence and acquired drug resistance, which often associating with poor prognosis for patients. We aim to explore the correlation between cellular senescence and LAP resistance in HER2+ breast cancer, screen for molecular marker of reversible senescence, and construct targeted nanobubbles for ultrasound molecular imaging to dynamically evaluate LAP resistance. METHODS AND RESULTS: In this study, we established a new cellular model of reversible cellular senescence using LAP and HER2+ breast cancer cells and found that reversible senescence contributed to LAP resistance in HER2+ breast cancer. Then, we identified ecto-5'-nucleotidase (NT5E) as a marker of reversible senescence in HER2+ breast cancer. Based on this, we constructed NT5E-targeted nanobubbles (NT5E-FITC-NBs) as a new molecular imaging modality which could both target reversible senescent cells and be used for ultrasound imaging. NT5E-FITC-NBs showed excellent physical and imaging characteristics. As an ultrasound contrast agent, NT5E-FITC-NBs could accurately identify reversible senescent cells both in vitro and in vivo. CONCLUSIONS: Our data demonstrate that cellular senescence-based ultrasound-targeted imaging can identify reversible senescence and evaluate LAP resistance effectively in HER2+ breast cancer cells, which has the potential to improve cancer treatment outcomes by altering therapeutic strategies ahead of aggressive recurrences.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Lapatinib/farmacologia , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/tratamento farmacológico , Fluoresceína-5-Isotiocianato/uso terapêutico , Receptor ErbB-2 , Ultrassonografia , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos
5.
J Clin Invest ; 133(21)2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37721853

RESUMO

The facilitative GLUT1 and GLUT3 hexose transporters are expressed abundantly in macrophages, but whether they have distinct functions remains unclear. We confirmed that GLUT1 expression increased after M1 polarization stimuli and found that GLUT3 expression increased after M2 stimulation in macrophages. Conditional deletion of Glut3 (LysM-Cre Glut3fl/fl) impaired M2 polarization of bone marrow-derived macrophages. Alternatively activated macrophages from the skin of patients with atopic dermatitis showed increased GLUT3 expression, and a calcipotriol-induced model of atopic dermatitis was rescued in LysM-Cre Glut3fl/fl mice. M2-like macrophages expressed GLUT3 in human wound tissues as assessed by transcriptomics and costaining, and GLUT3 expression was significantly decreased in nonhealing, compared with healing, diabetic foot ulcers. In an excisional wound healing model, LysM-Cre Glut3fl/fl mice showed significantly impaired M2 macrophage polarization and delayed wound healing. GLUT3 promoted IL-4/STAT6 signaling, independently of its glucose transport activity. Unlike plasma membrane-localized GLUT1, GLUT3 was localized primarily to endosomes and was required for the efficient endocytosis of IL-4Rα subunits. GLUT3 interacted directly with GTP-bound RAS in vitro and in vivo through its intracytoplasmic loop domain, and this interaction was required for efficient STAT6 activation and M2 polarization. PAK activation and macropinocytosis were also impaired without GLUT3, suggesting broader roles for GLUT3 in the regulation of endocytosis. Thus, GLUT3 is required for efficient alternative macrophage polarization and function, through a glucose transport-independent, RAS-mediated role in the regulation of endocytosis and IL-4/STAT6 activation.


Assuntos
Dermatite Atópica , Animais , Humanos , Camundongos , Dermatite Atópica/genética , Endocitose , Glucose/metabolismo , Transportador de Glucose Tipo 1 , Transportador de Glucose Tipo 3/metabolismo , Interleucina-4/genética , Ativação de Macrófagos/genética , Macrófagos/metabolismo , Cicatrização/genética
6.
J Med Chem ; 66(5): 3356-3371, 2023 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-36826833

RESUMO

The c-Jun N-terminal kinases (JNKs) are members of the mitogen-activated protein kinase (MAPK) family, which includes JNK1-JNK3. Interestingly, JNK1 and JNK2 show opposing functions, with JNK2 activity favoring cell survival and JNK1 stimulating apoptosis. Isoform-selective small molecule inhibitors of JNK1 or JNK2 would be useful as pharmacological probes but have been difficult to develop due to the similarity of their ATP binding pockets. Here, we describe the discovery of a covalent inhibitor YL5084, the first such inhibitor that displays selectivity for JNK2 over JNK1. We demonstrated that YL5084 forms a covalent bond with Cys116 of JNK2, exhibits a 20-fold higher Kinact/KI compared to that of JNK1, and engages JNK2 in cells. However, YL5084 exhibited JNK2-independent antiproliferative effects in multiple myeloma cells, suggesting the existence of additional targets relevant in this context. Thus, although not fully optimized, YL5084 represents a useful chemical starting point for the future development of JNK2-selective chemical probes.


Assuntos
Proteínas Quinases JNK Ativadas por Mitógeno , Proteína Quinase 9 Ativada por Mitógeno , Proteína Quinase 8 Ativada por Mitógeno/metabolismo , Proteína Quinase 9 Ativada por Mitógeno/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fosforilação
7.
Adv Radiat Oncol ; 7(5): 100995, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36148376

RESUMO

Purpose: Five-fraction stereotactic ablative radiotherapy (SABR) regimens are frequently used to treat centrally located early-stage non-small cell lung cancer or disease in the proximity of the chest wall as a means of optimizing tumor control and reducing treatment toxicity. However, increasing these SABR regimens to 5 fractions may reduce tumor control outcomes. We sought to identify the clinical parameters predictive of treatment failures with these 5-fraction courses. Methods: Ninety patients with T1-2 non-small cell lung cancer were treated with 50 or 60 Gy in 5 fractions. Failure over time was modeled using cumulative incidences of local, regional, or distant failure, with death as a competing risk. Cox proportional hazards analysis for incidences of failure was performed to control for patient variables. Results: Of 90 patients, 24 of 53 patients with T1 tumors and 19 of 37 patients with T2 tumors received 50 Gy SABR, and the other 47 patients received 60 Gy. Two-year overall survival and progression-free survival for the whole cohort were 75.8% and 59.3%, respectively. Total SABR dose (50 vs 60 Gy) did not influence survival nor failure rates at 2 and 5 years. Within 2 years of treatment, 7.8% of all patients developed local failure. For all patient and tumor characteristics evaluated, only T stage and pretreatment positron emission tomography standardized uptake values served as predictors of local, regional, and distant failure at 2 and 5 years posttreatment on univariate and multivariable analysis. Conclusions: Five-fraction SABR provides excellent in-field control. T2 and high fluorodeoxyglucose uptake tumors have increased failure rates, suggesting the potential need for adjuvant therapies, which are being assessed in randomized phase 3 trials.

8.
Front Oncol ; 12: 948463, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36091134

RESUMO

Radiation pneumonitis (RP) occurs in some patients treated with thoracic radiation therapy. RP often self-resolves, but when severe it is most commonly treated with corticosteroids because of their anti-inflammatory properties. Androgens and human growth hormone (HGH) also have anti-inflammatory and healing properties in the lung, but have not been studied as a remedy for RP. Here we present a case of corticosteroid-refractory RP that resolved with androgen and HGH-based therapy. Case Presentation: A 62 year old male body builder with excellent performance status presented with locally advanced non-small cell lung cancer characterized by a 7 cm mass in the right lower lobe and associated right hilar and subcarinal lymph node involvement. He was treated with chemoradiation and an excellent tumor response was observed. However, 2 months post-treatment he developed severe shortness of breath and imaging was consistent with RP. His RP was refractory to prednisone and antibiotic therapy, despite various regimens over a 9 month period. The patient self-treated with an androgen and HGH-based regimen and the RP promptly resolved. Conclusion: The anti-inflammatory properties of androgens and HGH have prompted an exploration of their potential role in therapeutic strategies to treat pro-inflammatory conditions such as sepsis, infections and interstitial lung disease. This case study suggests a potential role for the use of androgens for the treatment of steroid-refractory RP after radiation therapy. However, the applicability of this strategy to general populations should be weighed carefully against secondary effects of these agents, especially in the setting of cancer survivorship.

10.
J Mol Biol ; 434(17): 167626, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-35595166

RESUMO

Allosteric mechanisms are pervasive in nature, but human-designed allosteric perturbagens are rare. The history of KRASG12C inhibitor development suggests that covalent chemistry may be a key to expanding the armamentarium of allosteric inhibitors. In that effort, irreversible targeting of a cysteine converted a non-deal allosteric binding pocket and low affinity ligands into a tractable drugging strategy. Here we examine the feasibility of expanding this approach to other allosteric pockets of RAS and kinase family members, given that both protein families are regulators of vital cellular processes that are often dysregulated in cancer and other human diseases. Moreover, these heavily studied families are the subject of numerous drug development campaigns that have resulted, sometimes serendipitously, in the discovery of allosteric inhibitors. We consequently conducted a comprehensive search for cysteines, a commonly targeted amino acid for covalent drugs, using AlphaFold-generated structures of those families. This new analysis presents potential opportunities for allosteric targeting of validated and understudied drug targets, with an emphasis on cancer therapy.


Assuntos
Antineoplásicos , Terapia de Alvo Molecular , Neoplasias , Inibidores de Proteínas Quinases , Proteínas Quinases , Proteínas ras , Antineoplásicos/química , Antineoplásicos/farmacologia , Cisteína/metabolismo , Humanos , Neoplasias/enzimologia , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Proteínas Quinases/química , Proteínas ras/antagonistas & inibidores , Proteínas ras/química
11.
Nat Commun ; 13(1): 1109, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35232997

RESUMO

Immune stimulation fuels cell signaling-transcriptional programs inducing biological responses to eliminate virus-infected cells. Yet, retroviruses that integrate into host cell chromatin, such as HIV-1, co-opt these programs to switch between latent and reactivated states; however, the regulatory mechanisms are still unfolding. Here, we implemented a functional screen leveraging HIV-1's dependence on CD4+ T cell signaling-transcriptional programs and discovered ADAP1 is an undescribed modulator of HIV-1 proviral fate. Specifically, we report ADAP1 (ArfGAP with dual PH domain-containing protein 1), a previously thought neuronal-restricted factor, is an amplifier of select T cell signaling programs. Using complementary biochemical and cellular assays, we demonstrate ADAP1 inducibly interacts with the immune signalosome to directly stimulate KRAS GTPase activity thereby augmenting T cell signaling through targeted activation of the ERK-AP-1 axis. Single cell transcriptomics analysis revealed loss of ADAP1 function blunts gene programs upon T cell stimulation consequently dampening latent HIV-1 reactivation. Our combined experimental approach defines ADAP1 as an unexpected tuner of T cell programs facilitating HIV-1 latency escape.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Infecções por HIV , HIV-1 , Sistema de Sinalização das MAP Quinases , Proteínas do Tecido Nervoso , Proteínas Proto-Oncogênicas p21(ras) , Linfócitos T , Fator de Transcrição AP-1 , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Linfócitos T CD4-Positivos , Infecções por HIV/metabolismo , Infecções por HIV/virologia , HIV-1/fisiologia , Humanos , Proteínas do Tecido Nervoso/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Transdução de Sinais , Linfócitos T/metabolismo , Fator de Transcrição AP-1/metabolismo , Ativação Viral , Latência Viral
12.
Mol Ther ; 30(2): 621-631, 2022 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-34547468

RESUMO

Cancer cells evade immune detection via programmed cell death 1/programmed cell death-ligand 1 (PD-1/PD-L1) interactions that inactivate T cells. PD-1/PD-L1 blockade has become an important therapy in the anti-cancer armamentarium. However, some patients do not benefit from PD-1/PD-L1 blockade despite expressing PD-L1. Here, we screened 101 gastric cancer (GC) patients at diagnosis and 141 healthy control subjects and reported one such subpopulation of GC patients with rs17718883 polymorphism in PD-L1, resulting in a nonsense P146R mutation. We detected rs17718883 in 44% of healthy control subjects, and rs17718883 was associated with a low susceptibility to GC and better prognosis in GC patients. Structural analysis suggests that the mutation weakens the PD-1:PD-L1 interaction. This was supported by co-culture experiments of T cells, with GC cells showing that the P146R substitution results in interferon (IFN)-γ secretion by T cells and enables T cells to suppress GC cell growth. Similar results with animal gastric tumor models were obtained in vivo. PD-1 monoclonal antibody treatment did not enhance the inhibitory effect of T cells on GC cells expressing PD-L1P146Rin vitro or in vivo. This study suggests that rs17718883 is common and may be used as a biomarker for exclusion from PD-1/PD-L1 blockade therapy.


Assuntos
Neoplasias Gástricas , Animais , Antígeno B7-H1/metabolismo , Humanos , Imunoterapia , Prognóstico , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/terapia , Linfócitos T/metabolismo
13.
Nat Struct Mol Biol ; 28(10): 847-857, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34625747

RESUMO

The protein K-Ras functions as a molecular switch in signaling pathways regulating cell growth. In the human mitogen-activated protein kinase (MAPK) pathway, which is implicated in many cancers, multiple K-Ras proteins are thought to assemble at the cell membrane with Ras effector proteins from the Raf family. Here we propose an atomistic structural model for such an assembly. Our starting point was an asymmetric guanosine triphosphate-mediated K-Ras dimer model, which we generated using unbiased molecular dynamics simulations and verified with mutagenesis experiments. Adding further K-Ras monomers in a head-to-tail fashion led to a compact helical assembly, a model we validated using electron microscopy and cell-based experiments. This assembly stabilizes K-Ras in its active state and presents composite interfaces to facilitate Raf binding. Guided by existing experimental data, we then positioned C-Raf, the downstream kinase MEK1 and accessory proteins (Galectin-3 and 14-3-3σ) on and around the helical assembly. The resulting Ras-Raf signalosome model offers an explanation for a large body of data on MAPK signaling.


Assuntos
Proteínas Proto-Oncogênicas c-raf/química , Proteínas Proto-Oncogênicas c-raf/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/química , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Proteínas Sanguíneas/química , Proteínas Sanguíneas/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Transferência Ressonante de Energia de Fluorescência , Proteínas Ativadoras de GTPase/química , Proteínas Ativadoras de GTPase/metabolismo , Galectinas/química , Galectinas/metabolismo , Guanosina Trifosfato/química , Guanosina Trifosfato/metabolismo , Células HEK293 , Humanos , MAP Quinase Quinase 1/metabolismo , Microscopia Eletrônica , Microscopia Eletrônica de Transmissão , Simulação de Dinâmica Molecular , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Mutagênese , Multimerização Proteica , Proteínas Proto-Oncogênicas c-raf/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Reprodutibilidade dos Testes , Transdução de Sinais , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo
14.
JAMA Oncol ; 7(10): 1497-1505, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34383006

RESUMO

IMPORTANCE: A significant subset of patients with stage II/III non-small cell lung cancer (NSCLC) cannot receive standard concurrent chemoradiotherapy owing to the risk of toxic effects outweighing potential benefits. Without concurrent chemotherapy, however, the efficacy of conventional radiotherapy is reduced. OBJECTIVE: To determine whether hypofractionated image-guided radiotherapy (IGRT) would improve overall survival in patients with stage II/III NSCLC who could not receive concurrent chemoradiotherapy and therefore were traditionally relegated to receiving only conventionally fractionated radiotherapy (CFRT). DESIGN, SETTING, AND PARTICIPANTS: This nonblinded, phase 3 randomized clinical study enrolled 103 patients and analyzed 96 patients with stage II/III NSCLC and Zubrod performance status of at least 2, with greater than 10% weight loss in the previous 6 months, and/or who were ineligible for concurrent chemoradiotherapy after oncology consultation. Enrollment occurred at multiple US institutions. Patients were enrolled from November 13, 2012, to August 28, 2018, with a median follow-up of 8.7 (3.6-19.9) months. Data were analyzed from September 14, 2018, to April 11, 2021. INTERVENTIONS: Eligible patients were randomized to hypofractionated IGRT (60 Gy in 15 fractions) vs CFRT (60 Gy in 30 fractions). MAIN OUTCOMES AND MEASURES: The primary end point was 1-year overall survival. RESULTS: A total of 103 patients (96 of whom were analyzed [63 men (65.6%); mean (SD) age, 71.0 (10.2) years (range, 50-90 years)]) were randomized to hypofractionated IGRT (n = 50) or CFRT (n = 46) when a planned interim analysis suggested futility in reaching the primary end point, and the study was closed to further accrual. There was no statistically significant difference between the treatment groups for 1-year overall survival (37.7% [95% CI, 24.2%-51.0%] for hypofractionated IGRT vs 44.6% [95% CI, 29.9%-58.3%] for CFRT; P = .29). There were also no significant differences in median overall survival, progression-free survival, time to local failure, time to distant metastasis, and toxic effects of grade 3 or greater between the 2 treatment groups. CONCLUSIONS AND RELEVANCE: This phase 3 randomized clinical trial found that hypofractionated IGRT (60 Gy in 15 fractions) was not superior to CFRT (60 Gy in 30 fractions) for patients with stage II/III NSCLC ineligible for concurrent chemoradiotherapy. Further studies are needed to verify equivalence between these radiotherapy regimens. Regardless, for well-selected patients with NSCLC (ie, peripheral primary tumors and limited mediastinal/hilar adenopathy), the convenience of hypofractionated radiotherapy regimens may offer an appropriate treatment option. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT01459497.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Carcinoma Pulmonar de Células não Pequenas/radioterapia , Quimiorradioterapia , Fracionamento da Dose de Radiação , Humanos , Neoplasias Pulmonares/radioterapia , Resultado do Tratamento
15.
J Exp Clin Cancer Res ; 40(1): 220, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34210327

RESUMO

BACKGROUND: Metastasis is a major challenge in cervical cancer treatment. Previous studies have shown that the dual functional protein apurinic/apyrimidinic endonuclease 1 (APE1) promotes tumor metastasis and is overexpressed in cervical cancer. However, the biological role and mechanism of APE1 in cervical cancer metastasis have rarely been studied. METHODS: We used gene set enrichment analysis (GSEA) to determine the APE1-related signaling pathways in cervical cancer. To investigate the role and mechanism of APE1 in cervical cancer metastasis and invasion, immunohistochemistry, immunofluorescence, western blotting, secondary structure prediction, coimmunoprecipitation, luciferase reporter, and electrophoretic mobility shift assays were performed. The inhibitory effects of the APE1 redox function inhibitor APX3330 on cervical cancer metastasis were evaluated using animal models. RESULTS: Clinical data showed that high expression of APE1 was associated with lymph node metastasis in cervical cancer patients. GSEA results showed that APE1 was associated with epithelial to mesenchymal transition (EMT) in cervical cancer. Ectopic expression of APE1 promoted EMT and invasion of cervical cancer cells, whereas inhibition of APE1 suppressed EMT and invasion of cervical cancer cells in a redox function-dependent manner. Notably, APE1 redox function inhibitor APX3330 treatment dramatically suppressed cervical cancer cell lymph node and distant metastasis in vivo. Furthermore, we found that APE1 enhanced the interaction between ZEB1 and the E-cadherin promoter by binding to ZEB1, thereby suppressing the expression of E-cadherin, a negative regulator of EMT. CONCLUSION: Our findings help to elucidate the role played by APE1 in cervical cancer metastasis and targeting APE1 redox function may be a novel strategy for inhibiting cervical cancer metastasis.


Assuntos
Antígenos CD/metabolismo , Caderinas/metabolismo , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Neoplasias do Colo do Útero/metabolismo , Homeobox 1 de Ligação a E-box em Dedo de Zinco/metabolismo , Animais , Antígenos CD/genética , Caderinas/genética , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/biossíntese , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/genética , Transição Epitelial-Mesenquimal , Feminino , Células HeLa , Xenoenxertos , Humanos , Metástase Linfática , Camundongos , Pessoa de Meia-Idade , Metástase Neoplásica , Oxirredução , Transfecção , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/patologia , Homeobox 1 de Ligação a E-box em Dedo de Zinco/genética
16.
Cancer Res ; 81(18): 4685-4695, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34301758

RESUMO

Identifying resistance mutations in a drug target provides crucial information. Lentiviral transduction creates multiple types of mutations due to the error-prone nature of the HIV-1 reverse transcriptase (RT). Here we optimized and leveraged this property to identify drug resistance mutations, developing a technique we term LentiMutate. This technique was validated by identifying clinically relevant EGFR resistance mutations, then applied to two additional clinical anticancer drugs: imatinib, a BCR-ABL inhibitor, and AMG 510, a KRAS G12C inhibitor. Novel deletions in BCR-ABL1 conferred resistance to imatinib. In KRAS-G12C or wild-type KRAS, point mutations in the AMG 510 binding pocket or oncogenic non-G12C mutations conferred resistance to AMG 510. LentiMutate should prove highly valuable for clinical and preclinical cancer-drug development. SIGNIFICANCE: LentiMutate can evaluate a drug's on-target activity and can nominate resistance mutations before they occur in patients, which could accelerate and refine drug development to increase the survival of patients with cancer.


Assuntos
Biomarcadores Tumorais , Descoberta de Drogas/métodos , Resistencia a Medicamentos Antineoplásicos/genética , Vetores Genéticos/genética , Lentivirus/genética , Mutação , Neoplasias/genética , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Expressão Gênica , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Modelos Moleculares , Neoplasias/tratamento farmacológico , Relação Estrutura-Atividade
17.
STAR Protoc ; 2(2): 100587, 2021 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-34159321

RESUMO

Peptide mobility shift assays provide a sensitive measure of kinase enzymatic activity and can be used to evaluate kinase inhibitors. Herein, we describe a protocol adapted for rapid assessment of doublecortin-like kinase inhibitors. Advantages include rapid iterations of therapeutic compound assessment and the ability to characterize kinase mutations, such as drug-resistant mutants for biological rescue experiments, on kinase activity. For complete details on the use and execution of this protocol, please refer to Liu et al. (2020).


Assuntos
Quinases Semelhantes a Duplacortina/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Humanos , Cinética , Especificidade por Substrato
18.
PLoS Biol ; 19(6): e3001281, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34077419

RESUMO

Nutrient-responsive protein kinases control the balance between anabolic growth and catabolic processes such as autophagy. Aberrant regulation of these kinases is a major cause of human disease. We report here that the vertebrate nonreceptor tyrosine kinase Src-related kinase lacking C-terminal regulatory tyrosine and N-terminal myristylation sites (SRMS) inhibits autophagy and promotes growth in a nutrient-responsive manner. Under nutrient-replete conditions, SRMS phosphorylates the PHLPP scaffold FK506-binding protein 51 (FKBP51), disrupts the FKBP51-PHLPP complex, and promotes FKBP51 degradation through the ubiquitin-proteasome pathway. This prevents PHLPP-mediated dephosphorylation of AKT, causing sustained AKT activation that promotes growth and inhibits autophagy. SRMS is amplified and overexpressed in human cancers where it drives unrestrained AKT signaling in a kinase-dependent manner. SRMS kinase inhibition activates autophagy, inhibits cancer growth, and can be accomplished using the FDA-approved tyrosine kinase inhibitor ibrutinib. This illuminates SRMS as a targetable vulnerability in human cancers and as a new target for pharmacological induction of autophagy in vertebrates.


Assuntos
Autofagia , Neoplasias/metabolismo , Neoplasias/patologia , Proteínas de Ligação a Tacrolimo/metabolismo , Quinases da Família src/metabolismo , Adenina/análogos & derivados , Adenina/farmacologia , Animais , Autofagia/efeitos dos fármacos , Proteína Beclina-1/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Senescência Celular/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Camundongos , Proteínas Nucleares/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Fosforilação/efeitos dos fármacos , Fosfotirosina/metabolismo , Piperidinas/farmacologia , Ligação Proteica/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Quinases da Família src/antagonistas & inibidores
19.
Lung Cancer ; 153: 73-80, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33465697

RESUMO

OBJECTIVES: Wild type RAS (RASWT) suppresses the function of oncogenic RAS mutants (RASMUT) in laboratory models. Loss of RASWT, which we termed loss of heterozygosity (LOH) for any RAS (LAR) or LAKR in the context of KRAS (LOH at KRAS), is found in patients with RASMUT cancers. However, the incidence and prognostic significance of LAR has not been studied in modern patient cohorts. LAR or LAKR in RASMUT cancers is attractive as a potential biomarker for targeted therapy. MATERIALS AND METHODS: We evaluated for associations between LAKR and cancer mortality in patients with KRASMUT lung adenocarcinoma (LUAD). We also evaluated for associations between LAKR and the metabolic state of cancer cell lines, given that KRAS has been shown to regulate fatty acid synthesis. In line with this, we investigated fatty acid synthase (FASN) inhibitors as potential therapies for KRASMUT LAKR, including combination strategies involving clinical KRASG12C and FASN inhibitors. RESULTS: 24 % of patients with KRASMUT LUAD showed LAKR. KRASMUT LAKR cases had a median survival of 16 vs. 30 months in KRASMUT non-LAKR (p =  0.017) and LAKR was independently associated with death in this cohort (p =  0.011). We also found that KRASMUT LUAD cell lines with LAKR contained elevated levels of FASN and fatty acids relative to non-LAKR cell lines. KRASMUT LUAD cells with LAKR showed higher sensitivity to treatment with FASN inhibitors than those without. FASN inhibitors such as TVB-3664 showed synergistic effects with the KRASG12C inhibitor MRTX849 in LUAD cells with KRASG12C and LAKR, including an in vivo trial using a xenograft model. CONCLUSIONS: LAKR in KRASMUT cancers may represent an independent negative prognostic factor for patients with KRASMUT LUAD. It also predicts for response to treatment with FASN inhibitors. Prospective testing of combination therapies including KRASG12C and FASN inhibitors in patients with KRASG12C LAKR is warranted.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Adenocarcinoma de Pulmão/tratamento farmacológico , Adenocarcinoma de Pulmão/genética , Ácido Graxo Sintase Tipo I/genética , Ácido Graxo Sintases , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Mutação , Estudos Prospectivos , Proteínas Proto-Oncogênicas p21(ras)/genética
20.
Cell Chem Biol ; 27(10): 1229-1240.e4, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32755567

RESUMO

Doublecortin-like kinase 1 (DCLK1) is critical for neurogenesis, but overexpression is also observed in multiple cancers and is associated with poor prognosis. Nevertheless, the function of DCLK1 in cancer, especially the context-dependent functions, are poorly understood. We present a "toolkit" that includes the DCLK1 inhibitor DCLK1-IN-1, a complementary DCLK1-IN-1-resistant mutation G532A, and kinase dead mutants D511N and D533N, which can be used to investigate signaling pathways regulated by DCLK1. Using a cancer cell line engineered to be DCLK1 dependent for growth and cell migration, we show that this toolkit can be used to discover associations between DCLK1 kinase activity and biological processes. In particular, we show an association between DCLK1 and RNA processing, including the identification of CDK11 as a potential substrate of DCLK1 using phosphoproteomics.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , RNA/metabolismo , Linhagem Celular , Quinases Semelhantes a Duplacortina , Feminino , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/química , Peptídeos e Proteínas de Sinalização Intracelular/genética , Masculino , Modelos Moleculares , Estrutura Molecular , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/genética , RNA/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA