Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Biotechnol ; 41(12): 1776-1786, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36959352

RESUMO

An average shotgun proteomics experiment detects approximately 10,000 human proteins from a single sample. However, individual proteins are typically identified by peptide sequences representing a small fraction of their total amino acids. Hence, an average shotgun experiment fails to distinguish different protein variants and isoforms. Deeper proteome sequencing is therefore required for the global discovery of protein isoforms. Using six different human cell lines, six proteases, deep fractionation and three tandem mass spectrometry fragmentation methods, we identify a million unique peptides from 17,717 protein groups, with a median sequence coverage of approximately 80%. Direct comparison with RNA expression data provides evidence for the translation of most nonsynonymous variants. We have also hypothesized that undetected variants likely arise from mutation-induced protein instability. We further observe comparable detection rates for exon-exon junction peptides representing constitutive and alternative splicing events. Our dataset represents a resource for proteoform discovery and provides direct evidence that most frame-preserving alternatively spliced isoforms are translated.


Assuntos
Processamento Alternativo , Proteoma , Humanos , Proteoma/genética , Proteoma/metabolismo , Isoformas de Proteínas/genética , Processamento Alternativo/genética , Peptídeos/química , Sequência de Aminoácidos
2.
Nature ; 606(7913): 382-388, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35614220

RESUMO

Mitochondria are epicentres of eukaryotic metabolism and bioenergetics. Pioneering efforts in recent decades have established the core protein componentry of these organelles1 and have linked their dysfunction to more than 150 distinct disorders2,3. Still, hundreds of mitochondrial proteins lack clear functions4, and the underlying genetic basis for approximately 40% of mitochondrial disorders remains unresolved5. Here, to establish a more complete functional compendium of human mitochondrial proteins, we profiled more than 200 CRISPR-mediated HAP1 cell knockout lines using mass spectrometry-based multiomics analyses. This effort generated approximately 8.3 million distinct biomolecule measurements, providing a deep survey of the cellular responses to mitochondrial perturbations and laying a foundation for mechanistic investigations into protein function. Guided by these data, we discovered that PIGY upstream open reading frame (PYURF) is an S-adenosylmethionine-dependent methyltransferase chaperone that supports both complex I assembly and coenzyme Q biosynthesis and is disrupted in a previously unresolved multisystemic mitochondrial disorder. We further linked the putative zinc transporter SLC30A9 to mitochondrial ribosomes and OxPhos integrity and established RAB5IF as the second gene harbouring pathogenic variants that cause cerebrofaciothoracic dysplasia. Our data, which can be explored through the interactive online MITOMICS.app resource, suggest biological roles for many other orphan mitochondrial proteins that still lack robust functional characterization and define a rich cell signature of mitochondrial dysfunction that can support the genetic diagnosis of mitochondrial diseases.


Assuntos
Mitocôndrias , Proteínas Mitocondriais , Proteínas de Transporte de Cátions , Proteínas de Ciclo Celular , Metabolismo Energético , Humanos , Espectrometria de Massas , Mitocôndrias/genética , Mitocôndrias/metabolismo , Doenças Mitocondriais/genética , Doenças Mitocondriais/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Fatores de Transcrição , Proteínas rab5 de Ligação ao GTP
3.
Anal Chem ; 94(7): 3328-3334, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35142486

RESUMO

Isobaric tagging facilitates multiplexed experiments that can determine sequences and relative amounts of peptides in biological samples using tandem mass spectrometry (MSn). Limited reporter ion generation limits quantitative accuracy and precision. As reporter ions are susceptible to unintended fragmentation and scattering by high-energy collisions, we activated peptides with IR photons and prevented successive dissociation of generated reporter ions with ion parking, which altogether boosted reporter ion yield by up to 55%. Even so, unintended co-isolation of contaminating peaks in MS2 experiments distorts reporter ion intensities and can distort quantitative information. MS3 experiments address contamination by generating reporter ions via collisional activation (HCD) of one or more peptide product ions rather than the isolated peptide precursor ion. Because HCD performance is related to m/z, activation of multiple synchronously isolated product ions generates less than optimal reporter ion intensities. In this work, we show that using infrared multiphoton dissociation, which is not dependent on m/z, to generate reporter ions from 10 synchronously isolated peptide product ions results in a 2.4-fold increase in reporter ion intensities, significantly enhancing the sensitivity and dynamic range of quantitation via isobaric tagging.


Assuntos
Peptídeos , Espectrometria de Massas em Tandem , Indicadores e Reagentes , Íons , Peptídeos/química , Espectrometria de Massas em Tandem/métodos
4.
Cell Rep ; 32(12): 108176, 2020 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-32966781

RESUMO

ADP-ribosylation (ADPr) is a post-translational modification that plays pivotal roles in a wide range of cellular processes. Mass spectrometry (MS)-based analysis of ADPr under physiological conditions, without relying on genetic or chemical perturbation, has been hindered by technical limitations. Here, we describe the applicability of activated ion electron transfer dissociation (AI-ETD) for MS-based proteomics analysis of physiological ADPr using our unbiased Af1521 enrichment strategy. To benchmark AI-ETD, we profile 9,000 ADPr peptides mapping to >5,000 unique ADPr sites from a limited number of cells exposed to oxidative stress and identify 120% and 28% more ADPr peptides compared to contemporary strategies using ETD and electron-transfer higher-energy collisional dissociation (EThcD), respectively. Under physiological conditions, AI-ETD identifies 450 ADPr sites on low-abundant proteins, including in vivo cysteine modifications on poly(ADP-ribosyl)polymerase (PARP) 8 and tyrosine modifications on PARP14, hinting at specialist enzymatic functions for these enzymes. Collectively, our data provide insights into the physiological regulation of ADPr.


Assuntos
ADP-Ribosilação/fisiologia , Elétrons , Adenosina Difosfato Ribose/metabolismo , Células HeLa , Humanos , Íons , Poli(ADP-Ribose) Polimerase-1/metabolismo
5.
Anal Chem ; 92(18): 12363-12370, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32786458

RESUMO

Photoactivation and photodissociation have long proven to be useful tools in tandem mass spectrometry, but implementation often involves cumbersome and potentially dangerous configurations. Here, we redress this problem by using a fiber-optic cable to couple an infrared (IR) laser to a mass spectrometer for robust, efficient, and safe photoactivation experiments. Transmitting 10.6 µm IR photons through a hollow-core fiber, we show that such fiber-assisted activated ion-electron transfer dissociation (AI-ETD) and IR multiphoton dissociation (IRMPD) experiments can be carried out as effectively as traditional mirror-based implementations. We report on the transmission efficiency of the hollow-core fiber for conducting photoactivation experiments and perform various intact protein and peptide analyses to illustrate the benefits of fiber-assisted AI-ETD, namely, a simplified system for irradiating the two-dimensional linear ion trap volume concurrent with ETD reactions to limit uninformative nondissociative events and thereby amplify sequence coverage. We also describe a calibration scheme for the routine analysis of IR laser alignment and power through the fiber and into the dual cell quadrupolar linear ion trap. In all, these advances allow for a more robust, straightforward, and safe instrumentation platform, permitting implementation of AI-ETD and IRMPD on commercial mass spectrometers and broadening the accessibility of these techniques.


Assuntos
Mioglobina/análise , Fibras Ópticas , Peptídeos/análise , Ubiquitina/análise , Animais , Calibragem , Bovinos , Cavalos , Lasers , Espectrometria de Massas , Processos Fotoquímicos
6.
Anal Chem ; 90(19): 11503-11508, 2018 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-30179449

RESUMO

Extreme sample complexity is an inherent challenge in shotgun proteomics that positions quality of chromatographic separations as one of the key determinants of attainable proteome coverage. In search of better separations, macroscopic physical characteristics of capillary columns, i.e., length and properties of stationary phase particles, are typically considered and optimized, while significance of packing bed morphology is frequently underappreciated. Here, we describe a technology that enables packing of capillary columns at excess of 30,000 psi and demonstrate that such columns exhibit reduced backpressure and remarkably reproducible chromatographic performance, improved on average by 23%. These enhancements afford up to 35% increase in the depth of commonplace bottom-up proteomic analyses, owning to augmented sensitivity and resolution of peptide separations and improvements in spectral quality. Our findings strongly corroborate advantages of ultra-high pressure packing of capillary columns for diverse shotgun proteomic workflows.


Assuntos
Peptídeos/análise , Proteômica/métodos , Acetilação , Animais , Encéfalo/metabolismo , Cromatografia Líquida de Alta Pressão , Humanos , Células K562 , Camundongos , Camundongos Endogâmicos C57BL , Nanotecnologia , Peptídeos/metabolismo , Fosforilação , Pressão , Espectrometria de Massas em Tandem
7.
Anal Chem ; 90(20): 12090-12093, 2018 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-30179504

RESUMO

We show that capillary-zone electrophoresis-electrospray ionization-tandem mass spectrometry (CZE-ESI-MS/MS) generates very large numbers of peptide and protein identifications (IDs) by combining four technologies: a separation capillary coated to generate very low electroosmosis, an electrokinetically pumped sheath-flow nanoelectrospray interface to produce high-sensitivity ionization, an Orbitrap Fusion Lumos Tribrid platform to provide high-speed analysis, and an advanced-peak-determination (APD) algorithm to take advantage of the mass spectrometer's data-acquisition speed. The use of the APD algorithm resulted in 2 times more identifications than the standard peak algorithm. We also investigated the effect of the isolation window, injection time, and loading amount. Optimization of these parameters produced over 27 000 peptide identifications and nearly 4400 protein-group identifications from 220 ng of K562-cell digest in a single 120 min run, which is 2.7 times more IDs produced by CZE-ESI-MS/MS than by the previous state-of-the-art technique.


Assuntos
Algoritmos , Peptídeos/análise , Proteínas/análise , Eletroforese Capilar , Humanos , Células K562 , Espectrometria de Massas em Tandem
8.
Anal Chem ; 90(15): 9529-9537, 2018 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-29969236

RESUMO

Liquid chromatography (LC) prefractionation is often implemented to increase proteomic coverage; however, while effective, this approach is laborious, requires considerable sample amount, and can be cumbersome. We describe how interfacing a recently described high-field asymmetric waveform ion mobility spectrometry (FAIMS) device between a nanoelectrospray ionization (nanoESI) emitter and an Orbitrap hybrid mass spectrometer (MS) enables the collection of single-shot proteomic data with comparable depth to that of conventional two-dimensional LC approaches. This next generation FAIMS device incorporates improved ion sampling at the ESI-FAIMS interface, increased electric field strength, and a helium-free ion transport gas. With fast internal compensation voltage (CV) stepping (25 ms/transition), multiple unique gas-phase fractions may be analyzed simultaneously over the course of an MS analysis. We have comprehensively demonstrated how this device performs for bottom-up proteomics experiments as well as characterized the effects of peptide charge state, mass loading, analysis time, and additional variables. We also offer recommendations for the number of CVs and which CVs to use for different lengths of experiments. Internal CV stepping experiments increase protein identifications from a single-shot experiment to >8000, from over 100 000 peptide identifications in as little as 5 h. In single-shot 4 h label-free quantitation (LFQ) experiments of a human cell line, we quantified 7818 proteins with FAIMS using intra-analysis CV switching compared to 6809 without FAIMS. Single-shot FAIMS results also compare favorably with LC fractionation experiments. A 6 h single-shot FAIMS experiment generates 8007 protein identifications, while four fractions analyzed for 1.5 h each produce 7776 protein identifications.


Assuntos
Espectrometria de Mobilidade Iônica/instrumentação , Peptídeos/análise , Proteínas/análise , Proteômica/instrumentação , Espectrometria de Massas por Ionização por Electrospray/instrumentação , Linhagem Celular , Humanos
9.
Anal Chem ; 90(14): 8553-8560, 2018 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-29924586

RESUMO

High-throughput top-down proteomic experiments directly identify proteoforms in complex mixtures, making high quality tandem mass spectra necessary to deeply characterize proteins with many sources of variation. Collision-based dissociation methods offer expedient data acquisition but often fail to extensively fragment proteoforms for thorough analysis. Electron-driven dissociation methods are a popular alternative approach, especially for precursor ions with high charge density. Combining infrared photoactivation concurrent with electron transfer dissociation (ETD) reactions, i.e., activated ion ETD (AI-ETD), can significantly improve ETD characterization of intact proteins, but benefits of AI-ETD have yet to be quantified in high-throughput top-down proteomics. Here, we report the first application of AI-ETD to LC-MS/MS characterization of intact proteins (<20 kDa), highlighting improved proteoform identification the method offers over higher energy-collisional dissociation (HCD), standard ETD, and ETD followed by supplemental HCD activation (EThcD). We identified 935 proteoforms from 295 proteins from human colorectal cancer cell line HCT116 using AI-ETD compared to 1014 proteoforms, 915 proteoforms, and 871 proteoforms with HCD, ETD, and EThcD, respectively. Importantly, AI-ETD outperformed each of the three other methods in MS/MS success rates and spectral quality metrics (e.g., sequence coverage achieved and proteoform characterization scores). In all, this four-method analysis offers the most extensive comparisons to date and demonstrates that AI-ETD both increases identifications over other ETD methods and improves proteoform characterization via higher sequence coverage, positioning it as a premier method for high-throughput top-down proteomics.


Assuntos
Neoplasias Colorretais/patologia , Proteínas/análise , Proteômica/métodos , Espectrometria de Massas em Tandem/métodos , Sequência de Aminoácidos , Linhagem Celular Tumoral , Cromatografia Líquida/economia , Cromatografia Líquida/métodos , Neoplasias Colorretais/química , Transporte de Elétrons , Elétrons , Ensaios de Triagem em Larga Escala/economia , Ensaios de Triagem em Larga Escala/métodos , Humanos , Processos Fotoquímicos , Processamento de Proteína Pós-Traducional , Proteômica/economia , Espectrometria de Massas em Tandem/economia
10.
Nat Protoc ; 13(1): 293-306, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29323663

RESUMO

We describe a protocol for multiplexed proteomic analysis using neutron-encoded (NeuCode) stable isotope labeling of amino acids in cells (SILAC) or mice (SILAM). This method currently enables simultaneous comparison of up to nine treatment and control proteomes. Another important advantage over traditional SILAC/SILAM is that shorter labeling times are required. Exploiting the small mass differences that correspond to subtle differences in the neutron-binding energies of different isotopes, the amino acids used in NeuCode SILAC/SILAM differ in mass by just a few milliDaltons. Isotopologs of lysine are introduced into cells or mammals, via the culture medium or diet, respectively, to metabolically label the proteome. Labeling time is ∼2 weeks for cultured cells and 3-4 weeks for mammals. The proteins are then extracted, relevant samples are combined, and these are enzymatically digested with lysyl endopeptidase (Lys-C). The resultant peptides are chromatographically separated and then mass analyzed. During mass spectrometry (MS) data acquisition, high-resolution MS1 spectra (≥240,000 resolving power at m/z = 400) reveal the embedded isotopic signatures, enabling relative quantification, while tandem mass spectra, collected at lower resolutions, provide peptide identities. Both types of spectra are processed using NeuCode-enabled MaxQuant software. In total, the approximate completion time for the protocol is 3-5 weeks.


Assuntos
Marcação por Isótopo/métodos , Proteômica/métodos , Aminoácidos , Animais , Células Cultivadas , Humanos , Lisina/metabolismo , Lisina/efeitos da radiação , Camundongos , Nêutrons , Peptídeos , Proteoma/análise , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae , Serina Endopeptidases , Software , Espectrometria de Massas em Tandem
11.
Anal Chem ; 89(12): 6358-6366, 2017 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-28383247

RESUMO

Using concurrent IR photoactivation during electron transfer dissociation (ETD) reactions, i.e., activated ion ETD (AI-ETD), significantly increases dissociation efficiency resulting in improved overall performance. Here we describe the first implementation of AI-ETD on a quadrupole-Orbitrap-quadrupole linear ion trap (QLT) hybrid MS system (Orbitrap Fusion Lumos) and demonstrate the substantial benefits it offers for peptide characterization. First, we show that AI-ETD can be implemented in a straightforward manner by fastening the laser and guiding optics to the instrument chassis itself, making alignment with the trapping volume of the QLT simple and robust. We then characterize the performance of AI-ETD using standard peptides in addition to a complex mixtures of tryptic peptides using LC-MS/MS, showing not only that AI-ETD can nearly double the identifications achieved with ETD alone but also that it outperforms the other available supplemental activation methods (ETcaD and EThcD). Finally, we introduce a new activation scheme called AI-ETD+ that combines AI-ETD in the high pressure cell of the QLT with a short infrared multiphoton dissociation (IRMPD) activation in the low-pressure cell. This reaction scheme introduces no addition time to the scan duty cycle but generates MS/MS spectra rich in b/y-type and c/z•-type product ions. The extensive generation of fragment ions in AI-ETD+ substantially increases peptide sequence coverage while also improving peptide identifications over all other ETD methods, making it a valuable new tool for hybrid fragmentation approaches.


Assuntos
Peptídeos/análise , Transporte de Elétrons , Raios Infravermelhos , Íons/química , Espectrometria de Massas
12.
Nat Biotechnol ; 34(11): 1191-1197, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27669165

RESUMO

Mitochondrial dysfunction is associated with many human diseases, including cancer and neurodegeneration, that are often linked to proteins and pathways that are not well-characterized. To begin defining the functions of such poorly characterized proteins, we used mass spectrometry to map the proteomes, lipidomes, and metabolomes of 174 yeast strains, each lacking a single gene related to mitochondrial biology. 144 of these genes have human homologs, 60 of which are associated with disease and 39 of which are uncharacterized. We present a multi-omic data analysis and visualization tool that we use to find covariance networks that can predict molecular functions, correlations between profiles of related gene deletions, gene-specific perturbations that reflect protein functions, and a global respiration deficiency response. Using this multi-omic approach, we link seven proteins including Hfd1p and its human homolog ALDH3A1 to mitochondrial coenzyme Q (CoQ) biosynthesis, an essential pathway disrupted in many human diseases. This Resource should provide molecular insights into mitochondrial protein functions.


Assuntos
Perfilação da Expressão Gênica/métodos , Espectrometria de Massas , Doenças Mitocondriais/metabolismo , Proteínas Mitocondriais/metabolismo , Proteoma/metabolismo , Células Cultivadas , Humanos , Metaboloma/fisiologia , Doenças Mitocondriais/genética , Proteínas Mitocondriais/genética , Mapeamento de Peptídeos , Proteoma/genética , Transdução de Sinais
13.
Mol Cell ; 63(4): 621-632, 2016 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-27499296

RESUMO

Mitochondria are essential for numerous cellular processes, yet hundreds of their proteins lack robust functional annotation. To reveal functions for these proteins (termed MXPs), we assessed condition-specific protein-protein interactions for 50 select MXPs using affinity enrichment mass spectrometry. Our data connect MXPs to diverse mitochondrial processes, including multiple aspects of respiratory chain function. Building upon these observations, we validated C17orf89 as a complex I (CI) assembly factor. Disruption of C17orf89 markedly reduced CI activity, and its depletion is found in an unresolved case of CI deficiency. We likewise discovered that LYRM5 interacts with and deflavinates the electron-transferring flavoprotein that shuttles electrons to coenzyme Q (CoQ). Finally, we identified a dynamic human CoQ biosynthetic complex involving multiple MXPs whose topology we map using purified components. Collectively, our data lend mechanistic insight into respiratory chain-related activities and prioritize hundreds of additional interactions for further exploration of mitochondrial protein function.


Assuntos
Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Mapeamento de Interação de Proteínas/métodos , Mapas de Interação de Proteínas , Proteômica/métodos , Bases de Dados de Proteínas , Complexo de Proteínas da Cadeia de Transporte de Elétrons/genética , Complexo I de Transporte de Elétrons/metabolismo , Células HEK293 , Células Hep G2 , Humanos , Proteínas Mitocondriais/genética , Interferência de RNA , Transdução de Sinais , Transfecção , Ubiquinona/metabolismo
14.
J Proteome Res ; 15(8): 2768-76, 2016 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-27402189

RESUMO

Negative electron-transfer dissociation (NETD) has emerged as a premier tool for peptide anion analysis, offering access to acidic post-translational modifications and regions of the proteome that are intractable with traditional positive-mode approaches. Whole-proteome scale characterization is now possible with NETD, but proper informatic tools are needed to capitalize on advances in instrumentation. Currently only one database search algorithm (OMSSA) can process NETD data. Here we implement NETD search capabilities into the Byonic platform to improve the sensitivity of negative-mode data analyses, and we benchmark these improvements using 90 min LC-MS/MS analyses of tryptic peptides from human embryonic stem cells. With this new algorithm for searching NETD data, we improved the number of successfully identified spectra by as much as 80% and identified 8665 unique peptides, 24 639 peptide spectral matches, and 1338 proteins in activated-ion NETD analyses, more than doubling identifications from previous negative-mode characterizations of the human proteome. Furthermore, we reanalyzed our recently published large-scale, multienzyme negative-mode yeast proteome data, improving peptide and peptide spectral match identifications and considerably increasing protein sequence coverage. In all, we show that new informatics tools, in combination with recent advances in data acquisition, can significantly improve proteome characterization in negative-mode approaches.


Assuntos
Algoritmos , Elétrons , Peptídeos/análise , Ânions/análise , Células Cultivadas , Cromatografia Líquida , Células-Tronco Embrionárias/química , Células-Tronco Embrionárias/citologia , Humanos , Processamento de Proteína Pós-Traducional , Proteoma/análise
15.
Cell Rep ; 16(2): 583-595, 2016 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-27373151

RESUMO

We introduce neutron-encoded (NeuCode) amino acid labeling of mice as a strategy for multiplexed proteomic analysis in vivo. Using NeuCode, we characterize an inducible knockout mouse model of Bap1, a tumor suppressor and deubiquitinase whose in vivo roles outside of cancer are not well established. NeuCode proteomics revealed altered metabolic pathways following Bap1 deletion, including profound elevation of cholesterol biosynthetic machinery coincident with reduced expression of gluconeogenic and lipid homeostasis proteins in liver. Bap1 loss increased pancreatitis biomarkers and reduced expression of mitochondrial proteins. These alterations accompany a metabolic remodeling with hypoglycemia, hypercholesterolemia, hepatic lipid loss, and acinar cell degeneration. Liver-specific Bap1 null mice present with fully penetrant perinatal lethality, severe hypoglycemia, and hepatic lipid deficiency. This work reveals Bap1 as a metabolic regulator in liver and pancreas, and it establishes NeuCode as a reliable proteomic method for deciphering in vivo biology.


Assuntos
Proteômica/métodos , Proteínas Supressoras de Tumor/fisiologia , Ubiquitina Tiolesterase/fisiologia , Animais , Hematopoese , Histonas/metabolismo , Marcação por Isótopo , Metabolismo dos Lipídeos , Lisina/metabolismo , Masculino , Redes e Vias Metabólicas , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mitocôndrias Hepáticas/metabolismo , Pâncreas/metabolismo , Proteoma/metabolismo , Ubiquitinação
16.
J Proteome Res ; 15(5): 1524-33, 2016 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-27005946

RESUMO

A system-wide understanding of biological processes requires a comprehensive knowledge of the proteins in the biological system. The eosinophil is a type of granulocytic leukocyte specified early in hematopoietic differentiation that participates in barrier defense, innate immunity, and allergic disease. The proteome of the eosinophil is largely unannotated with under 500 proteins identified. We now report a map of the nonstimulated peripheral blood eosinophil proteome assembled using two-dimensional liquid chromatography coupled with high-resolution mass spectrometry. Our analysis yielded 100,892 unique peptides mapping to 7,086 protein groups representing 6,813 genes as well as 4,802 site-specific phosphorylation events. We account for the contribution of platelets that routinely contaminate purified eosinophils and report the variability in the eosinophil proteome among five individuals and proteomic changes accompanying acute activation of eosinophils by interleukin-5. Our deep coverage and quantitative analyses fill an important gap in the existing maps of the human proteome and will enable the strategic use of proteomics to study eosinophils in human diseases.


Assuntos
Eosinófilos/química , Proteoma/análise , Cromatografia Líquida/métodos , Humanos , Interleucina-5/farmacologia , Espectrometria de Massas/métodos , Fosforilação , Proteômica/métodos
17.
Anal Chem ; 88(6): 3295-303, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26882330

RESUMO

We describe a new method to accomplish multiplexed, absolute protein quantification in a targeted fashion. The approach draws upon the recently developed neutron encoding (NeuCode) metabolic labeling strategy and parallel reaction monitoring (PRM). Since PRM scanning relies upon high-resolution tandem mass spectra for targeted protein quantification, incorporation of multiple NeuCode labeled peptides permits high levels of multiplexing that can be accessed from high-resolution tandem mass spectra. Here we demonstrate this approach in cultured cells by monitoring a viral infection and the corresponding viral protein production over many infection time points in a single experiment. In this context the NeuCode PRM combination affords up to 30 channels of quantitative information in a single MS experiment.


Assuntos
Proteínas/análise , Linhagem Celular Tumoral , Humanos , Masculino , Espectrometria de Massas em Tandem
18.
FEBS Lett ; 589(17): 2186-93, 2015 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-26188545

RESUMO

In plants and fungi the plasma membrane proton pump generates a large proton-motive force that performs essential functions in many processes, including solute transport and the control of cell elongation. Previous studies in yeast and higher plants have indicated that phosphorylation of an auto-inhibitory domain is involved in regulating pump activity. In this report we examine the Medicago truncatula plasma membrane proton pump gene family, and in particular MtAHA5. Yeast complementation assays with phosphomimetic mutations at six candidate sites support a phosphoregulatory role for two residues, suggesting a molecular model to explain early Nod factor-induced changes in the plasma membrane proton-motive force of legume root cells.


Assuntos
Membrana Celular/enzimologia , Medicago truncatula/enzimologia , Proteínas de Plantas/metabolismo , Raízes de Plantas/enzimologia , ATPases Translocadoras de Prótons/metabolismo , Sequência de Aminoácidos , Sítios de Ligação/genética , Western Blotting , Análise por Conglomerados , Regulação Enzimológica da Expressão Gênica , Teste de Complementação Genética , Interações Hospedeiro-Patógeno , Medicago truncatula/genética , Medicago truncatula/microbiologia , Dados de Sequência Molecular , Família Multigênica , Mutação , Fosforilação , Filogenia , Proteínas de Plantas/classificação , Proteínas de Plantas/genética , Raízes de Plantas/genética , Raízes de Plantas/microbiologia , ATPases Translocadoras de Prótons/classificação , ATPases Translocadoras de Prótons/genética , Rhizobium/fisiologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Homologia de Sequência de Aminoácidos , Serina/genética , Serina/metabolismo , Transdução de Sinais , Simbiose , Treonina/genética , Treonina/metabolismo
19.
J Am Soc Mass Spectrom ; 26(11): 1848-57, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26111518

RESUMO

Electron transfer dissociation (ETD) has been broadly adopted and is now available on a variety of commercial mass spectrometers. Unlike collisional activation techniques, optimal performance of ETD requires considerable user knowledge and input. ETD reaction duration is one key parameter that can greatly influence spectral quality and overall experiment outcome. We describe a calibration routine that determines the correct number of reagent anions necessary to reach a defined ETD reaction rate. Implementation of this automated calibration routine on two hybrid Orbitrap platforms illustrate considerable advantages, namely, increased product ion yield with concomitant reduction in scan rates netting up to 75% more unique peptide identifications in a shotgun experiment. Graphical Abstract ᅟ.


Assuntos
Proteômica/métodos , Proteômica/normas , Espectrometria de Massas em Tandem/métodos , Espectrometria de Massas em Tandem/normas , Calibragem , Cinética , Peptídeos/análise , Peptídeos/química
20.
Anal Chem ; 87(14): 7109-16, 2015 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-26067513

RESUMO

Here we report the first implementation of activated ion electron transfer dissociation (AI-ETD) for top down protein characterization, showing that AI-ETD definitively extends the m/z range over which ETD can be effective for fragmentation of intact proteins. AI-ETD, which leverages infrared photon bombardment concurrent to the ETD reaction to mitigate nondissociative electron transfer, was performed using a novel multipurpose dissociation cell that can perform both beam-type collisional dissociation and ion-ion reactions on an ion trap-Orbitrap hybrid mass spectrometer. AI-ETD increased the number of c- and z-type product ions for all charge states over ETD alone, boosting product ion yield by nearly 4-fold for low charge density precursors. AI-ETD also outperformed HCD, generating more matching fragments for all proteins at all charge states investigated. In addition to generating more unique fragment ions, AI-ETD provided greater protein sequence coverage compared to both HCD and ETD. In all, the effectiveness of AI-ETD across the entirety of the m/z spectrum demonstrates its efficacy for robust fragmentation of intact proteins.


Assuntos
Peptídeos/análise , Proteínas/química , Espectrometria de Massas por Ionização por Electrospray , Sequência de Aminoácidos , Transporte de Elétrons , Elétrons , Íons/química , Peptídeos/química , Proteínas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA