Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Rep Med ; 2(10): 100422, 2021 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-34755134

RESUMO

Provoked by sterile/nonsterile insults, prolonged monocyte mobilization and uncontrolled monocyte/macrophage activation can pose imminent or impending harm to the affected organs. Curiously, folate receptor beta (FRß), with subnanomolar affinity for the vitamin folic acid (FA), is upregulated during immune activation in hematopoietic cells of the myeloid lineage. This phenomenon has inspired a strong interest in exploring FRß-directed diagnostics/therapeutics. Previously, we have reported that FA-targeted aminopterin (AMT) therapy can modulate macrophage function and effectively treat animal models of inflammation. Our current investigation of a lead compound (EC2319) leads to discovery of a highly FR-specific mechanism of action independent of the root causes against inflammatory monocytes. We further show that EC2319 suppresses interleukin-6/interleukin-1ß release by FRß+ monocytes in a triple co-culture leukemic model of cytokine release syndrome with anti-CD19 chimeric antigen receptor T cells. Because of its chemical stability and metabolically activated linker, EC2319 demonstrates favorable pharmacokinetic characteristics and cross-species translatability to support future pre-clinical and clinical development.


Assuntos
Aminopterina/farmacologia , Síndrome da Liberação de Citocina/prevenção & controle , Receptor 2 de Folato/genética , Antagonistas do Ácido Fólico/farmacologia , Ácido Fólico/metabolismo , Macrófagos/efeitos dos fármacos , Animais , Antígenos CD19/genética , Antígenos CD19/imunologia , Células CHO , Cricetulus , Síndrome da Liberação de Citocina/genética , Síndrome da Liberação de Citocina/imunologia , Síndrome da Liberação de Citocina/patologia , Feminino , Receptor 1 de Folato/antagonistas & inibidores , Receptor 1 de Folato/genética , Receptor 1 de Folato/imunologia , Receptor 2 de Folato/antagonistas & inibidores , Receptor 2 de Folato/imunologia , Humanos , Interleucina-1beta/genética , Interleucina-1beta/imunologia , Interleucina-6/genética , Interleucina-6/imunologia , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/patologia , Camundongos , Modelos Biológicos , Monócitos/efeitos dos fármacos , Monócitos/imunologia , Monócitos/patologia , Células RAW 264.7 , Ratos , Ratos Endogâmicos Lew , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/imunologia , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Linfócitos T/patologia
2.
Sci Rep ; 10(1): 12772, 2020 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-32728172

RESUMO

Folate receptor (FR)-targeted small molecule drug conjugates (SMDCs) have shown promising results in early stage clinical trials with microtubule destabilizing agents, such as vintafolide and EC1456. In our effort to develop FR-targeted SMDCs with varying mechanisms of action, we synthesized EC2629, a folate conjugate of a DNA crosslinking agent based on a novel DNA-alkylating moiety. This agent was found to be extremely potent with an in vitro IC50 ~ 100× lower than folate SMDCs constructed with various microtubule inhibitors. EC2629 treatment of nude mice bearing FR-positive KB human xenografts led to cures in 100% of the test animals with very low dose levels (300 nmol/kg) following a convenient once a week schedule. The observed activity was not accompanied by any noticeable weight loss (up to 20 weeks post end of dosing). Complete responses were also observed against FR-positive paclitaxel (KB-PR) and cisplatin (KB-CR) resistant models. When evaluated against FR-positive patient derived xenograft (PDX) models of ovarian (ST070), endometrial (ST040) and triple negative breast cancers (ST502, ST738), EC2629 showed significantly greater anti-tumor activity compared to their corresponding standard of care treatments. Taken together, these studies thus demonstrated that EC2629, with its distinct DNA reacting mechanism, may be useful in treating FR-positive tumors, including those that are classified as drug resistant.


Assuntos
Antineoplásicos/farmacologia , Reagentes de Ligações Cruzadas/farmacologia , DNA/química , Neoplasias do Endométrio/tratamento farmacológico , Receptores de Folato com Âncoras de GPI/química , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Alquilantes/química , Animais , Bovinos , Cisplatino/administração & dosagem , Cães , Sistemas de Liberação de Medicamentos , Desenho de Fármacos , Avaliação Pré-Clínica de Medicamentos , Feminino , Ácido Fólico/análogos & derivados , Ácido Fólico/farmacologia , Humanos , Concentração Inibidora 50 , Células KB , Ligantes , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Nus , Paclitaxel/administração & dosagem , Ratos , Alcaloides de Vinca/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Mol Pharm ; 16(9): 3985-3995, 2019 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-31356752

RESUMO

Folate-based small molecule drug conjugates (SMDCs) are currently under development and have shown promising preclinical and clinical results against various cancers and polycystic kidney disease. Two requisites for response to a folate-based SMDC are (i) folate receptor alpha (FRα) protein is expressed in the diseased tissues, and (ii) FRα in those tissues is accessible and functionally competent to bind systemically administered SMDCs. Here we report on the development of a small molecule reporter conjugate (SMRC), called EC2220, which is composed of a folate ligand for FRα binding, a multilysine containing linker that can cross-link to FRα in the presence of formaldehyde fixation, and a small hapten (fluorescein) used for immunohistochemical detection. Data show that EC2220 produces a far greater IHC signal in FRα-positive tissues over that produced with EC17, a folate-fluorescein SMRC that is released from the formaldehyde-denatured FRα protein. Furthermore, the extent of the EC2220 IHC signal was proportional to the level of FRα expression. This EC2220-based assay was qualified both in vitro and in vivo using normal tissue, cancer tissue, and polycystic kidneys. Overall, EC2220 is a sensitive and effective reagent for evaluating functional and accessible receptor expression in vitro and in vivo.


Assuntos
Receptor 1 de Folato/metabolismo , Terapia de Alvo Molecular/métodos , Neoplasias/tratamento farmacológico , Doenças Renais Policísticas/tratamento farmacológico , Células A549 , Animais , Doxiciclina/farmacologia , Fluoresceína-5-Isotiocianato/química , Fluoresceína-5-Isotiocianato/metabolismo , Receptor 1 de Folato/análise , Ácido Fólico/análogos & derivados , Ácido Fólico/química , Ácido Fólico/metabolismo , Células HeLa , Humanos , Lisina/análogos & derivados , Lisina/química , Lisina/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Camundongos Transgênicos , Neoplasias/metabolismo , Oligopeptídeos/química , Oligopeptídeos/metabolismo , Doenças Renais Policísticas/induzido quimicamente , Doenças Renais Policísticas/metabolismo , Proteína Quinase C/genética , Distribuição Tecidual , Compostos de Tritil/química , Compostos de Tritil/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Front Oncol ; 9: 151, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30941303

RESUMO

Chimeric antigen receptor (CAR)-T cell therapy has transformed pediatric oncology by producing high remission rates and potent effects in CD19+ B-cell malignancies. This scenario is ideal as CD19 expression is homogeneous and human blood provides a favorable environment for CAR-T cells to thrive and destroy cancer cells (along with normal B cells). Yet, CAR-T cell therapies for solid tumors remain challenged by fewer tumor targets and poor CAR-T cell performances in a hostile tumor microenvironment. For acute myeloid leukemia and childhood solid tumors such as osteosarcoma, the primary treatment is systemic chemotherapy that often falls short of expectation especially for relapsed and refractory conditions. We aim to develop a CAR-T adaptor molecule (CAM)-based therapy that uses a bispecific small-molecule ligand EC17, fluorescein isothiocyanate (FITC) conjugated with folic acid, to redirect FITC-specific CAR-T cells against folate receptor (FR)-positive tumors. As previously confirmed in rodents as well as in human clinical studies, EC17 penetrates solid tumors within minutes and is retained due to high affinity for the FR, whereas unbound EC17 rapidly clears from the blood and from receptor-negative tissues. When combined with a rationally designed CAR construct, EC17 CAM was shown to trigger CAR-modified T cell activation and cytolytic activity with a low FR threshold against tumor targets. However, maximal cytolytic potential correlated with (i) functional FR levels (in a semi-log fashion), (ii) the amount of effector cells present, and (iii) tumors' natural sensitivity to T cell mediated killing. In tumor-bearing mice, administration of EC17 CAM was the key to drive CAR-T cell activation, proliferation, and persistence against FR+ pediatric hematologic and solid tumors. In our modeling systems, cytokine release syndrome (CRS) was induced under specific conditions, but the risk of severe CRS could be easily mitigated or prevented by applying intermittent dosing and/or dose-titration strategies for the EC17 CAM. Our approach offers the flexibility of antigen control, prevents T cell exhaustion, and provides additional safety mechanisms including rapid reversal of severe CRS with intravenous sodium fluorescein. In this paper, we summarize the translational aspects of our technology in support of clinical development.

5.
Cancer Chemother Pharmacol ; 79(6): 1151-1160, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28451831

RESUMO

PURPOSE: EC0305 represents a folate-tubulysin B construct capable of specifically eradicating folate receptor (FR)-positive subcutaneous tumors from mice (Leamon et al., Cancer Res 68:9839-9844, 8). Herein we report on the use of multiple polar carbohydrate segments (e.g. 1-amino-1-deoxy-glucitolyl-γ-glutamate) placed in-between the folate and tubulysin B moieties of EC0305 creating a new conjugate, herein referred to as EC0531, with more desirable biological properties. METHODS: The synthesis of EC0531 and its tritium-labeled counterpart are described. EC0531's affinity for FR binding and specific cytotoxic activity was assessed using standard in vitro assays. Human tumor xenografts were used to directly compare EC0305 and EC0531's antitumor activity. Finally, bile duct cannulated, female Sprague-Dawley rats were used to compare hepatobiliary clearance of these two targeted chemotherapeutic agents. RESULTS: EC0531 tightly binds to the FR with an affinity about half that of folic acid. It was found to specifically inhibit the growth of FR+ cells (IC50 of ~2 nM) in a dose-dependent manner. Using 3H-labeled compounds, more than a 12-fold higher amount of tubulysin was measured in a FR + human tumor xenograft compared to the unconjugated drug, a finding that explains, in part, why EC0531 displays curative activity, whereas the unconjugated tubulysin agent is essentially inactive. EC0531 was found to produce greater FR-specific anti-tumor activity at lower dose levels than EC0305; furthermore, EC0531's maximum tolerated dose level was significantly higher than that of EC0305, likely because EC0531's saccharopeptidic-based spacer allows for ~sixfold reduction in hepatic clearance. CONCLUSIONS: These data provide additional evidence that the therapeutic range of targeted small-molecule drug conjugates can be favorably increased using molecular spacers constructed with 1-amino-1-deoxy-glucitolyl-γ-glutamate residues.


Assuntos
Antineoplásicos/síntese química , Antineoplásicos/uso terapêutico , Receptor 1 de Folato/efeitos dos fármacos , Ácido Fólico/análogos & derivados , Oligopeptídeos/química , Oligopeptídeos/farmacologia , Ácidos Pipecólicos/química , Animais , Antineoplásicos/farmacocinética , Bile/metabolismo , Relação Dose-Resposta a Droga , Sistemas de Liberação de Medicamentos , Feminino , Ácido Fólico/metabolismo , Ácido Fólico/farmacologia , Humanos , Marcação por Isótopo , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Ratos , Ratos Sprague-Dawley , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Bioconjug Chem ; 25(3): 560-8, 2014 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-24564229

RESUMO

Vintafolide is a potent folate-targeted vinca alkaloid small molecule drug conjugate (SMDC) that has shown promising results in multiple clinical oncology studies. Structurally, vintafolide consists of 4 essential modules: (1) folic acid, (2) a hydrophilic peptide spacer, (3) a disulfide-containing, self-immolative linker, and (4) the cytotoxic drug, desacetylvinblastine hydrazide (DAVLBH). Here, we report a structure-activity study evaluating the biological impact of (i) substituting DAVLBH within the vintafolide molecule with other vinca alkaloid analogues such as vincristine, vindesine, vinflunine, or vinorelbine; (ii) substituting the naturally (S)-configured Asp-Arg-Asp-Asp-Cys peptide with alternative hydrophilic spacers of varied composition; and (iii) varying the composition of the linker module. A series of vinca alkaloid-containing SMDCs were synthesized and purified by HPLC and LCMS. The SMDCs were screened in vitro against folate receptor (FR)-positive cells, and anti-tumor activity was tested against well-established subcutaneous FR-positive tumor xenografts. The cytotoxic and anti-tumor activity was directly compared to that produced by vintafolide. Among all the folate vinca alkaloid SMDCs tested, DAVLBH-containing SMDCs were active, while those constructed with vincristine, vindesine, or vinorelbine analogues failed to produce meaningful biological activity. Within the DAVLBH series, having a bioreleasable, self-immolative linker system was found to be critical for activity since multiple analogues constructed with thioether-based linkers all failed to produce meaningful activity both in vitro and in vivo. Substitutions of some or all of the natural amino acids within vintafolide's hydrophilic spacer module did not significantly change the in vitro or in vivo potency of the SMDCs. Vintafolide remains one of the most potent folate-vinca alkaloid SMDCs produced to date, and continued clinical development is warranted.


Assuntos
Antineoplásicos/farmacologia , Ácido Fólico/farmacologia , Neoplasias Experimentais/tratamento farmacológico , Alcaloides de Vinca/farmacologia , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Ácido Fólico/química , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Conformação Molecular , Neoplasias Experimentais/patologia , Estereoisomerismo , Relação Estrutura-Atividade , Alcaloides de Vinca/química
7.
Clin Immunol ; 150(1): 64-77, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24333534

RESUMO

EC0746 is a rationally designed anti-inflammatory drug conjugate consisting of a modified folic acid-based ligand linked to a γ-hydrazide analog of aminopterin. In this report, EC0746's effectiveness was evaluated against experimental retinal S-antigen (PDSAg) induced autoimmune uveitis (EAU) and myelin-basic-protein induced autoimmune encephalomyelitis (EAE). In both models, functional FR-ß was detected on activated macrophages in local (retinal or central-nervous-system, respectively) and systemic (peritoneal cavity) sites of inflammation. In myelin-rich regions of EAE rats, an increased uptake of (99m)Tc-EC20 (etarfolatide; a FR-specific radioimaging agent) was also observed. EC0746 treatment at disease onset suppressed the clinical severity of both EAU and EAE, and it strongly attenuated progressive histopathological changes in the affected organs. In all parameters assessed, EC0746 activity was completely blocked by a benign folate competitor, suggesting that these therapeutic outcomes were specifically FR-ß mediated. EC0746 may emerge as a useful macrophage-modulating agent for treating inflammatory episodes of organ-specific autoimmunity.


Assuntos
Aminopterina/uso terapêutico , Anti-Inflamatórios/uso terapêutico , Encefalomielite Autoimune Experimental/tratamento farmacológico , Antagonistas do Ácido Fólico/uso terapêutico , Uveíte/tratamento farmacológico , Aminopterina/farmacologia , Animais , Anti-Inflamatórios/farmacologia , Encéfalo/efeitos dos fármacos , Encéfalo/imunologia , Encéfalo/patologia , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/patologia , Feminino , Receptor 2 de Folato/imunologia , Antagonistas do Ácido Fólico/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Ratos , Ratos Endogâmicos Lew , Medula Espinal/efeitos dos fármacos , Medula Espinal/imunologia , Uveíte/imunologia , Uveíte/patologia
8.
Arthritis Res Ther ; 13(2): R56, 2011 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-21463515

RESUMO

INTRODUCTION: Folate receptor (FR)-expressing macrophages have been shown to accumulate at sites of inflammation, where they promote development of inflammatory symptoms. To target such a macrophage population, we designed and evaluated the biologic activity of EC0746, a novel folic acid conjugate of the highly potent antifolate, aminopterin. METHODS: Using a FR-positive subclone of murine macrophage-derived RAW264.7 cells and rat thioglycollate-elicited macrophages, we studied the effect of EC0746 on dihydrofolate reductase activity, cell proliferation, and cellular response towards bacterial lipopolysaccharide as well as IFNγ activation. The EC0746 anti-inflammatory activity, pharmacokinetics, and toxicity were also evaluated in normal rats or in rats with adjuvant-induced arthritis; that is, a FR-positive macrophage model that closely resembles rheumatoid arthritis in humans. RESULTS: EC0746 suppresses the proliferation of RAW264.7 cells and prevents the ability of nonproliferating rat macrophages to respond to inflammatory stimuli. In the macrophage-rich rat arthritis model, brief treatment with subcutaneously administered EC0746 is shown to mediate an FR-specific anti-inflammatory response that is more potent than either orally administered methotrexate or subcutaneously delivered etanercept. More importantly, EC0746 therapy is also shown to be ~40-fold less toxic than unmodified aminopterin, with fewer bone marrow and gastrointestinal problems. CONCLUSIONS: EC0746 is the first high FR-binding dihydrofolate reductase inhibitor that demonstrates FR-specific anti-inflammatory activities both in vitro and in vivo. Our data reveal that a relatively toxic anti-inflammatory drug, such as aminopterin, can be targeted with folic acid to inflammatory macrophages and thereby relieve inflammatory symptoms with greatly reduced toxicity.


Assuntos
Aminopterina/análogos & derivados , Aminopterina/farmacologia , Anti-Inflamatórios/farmacologia , Artrite Experimental/tratamento farmacológico , Antagonistas do Ácido Fólico/farmacologia , Ácido Fólico/análogos & derivados , Ácido Fólico/farmacologia , Aminopterina/síntese química , Aminopterina/farmacocinética , Animais , Anti-Inflamatórios/síntese química , Anti-Inflamatórios/farmacocinética , Feminino , Receptores de Folato com Âncoras de GPI/efeitos dos fármacos , Ácido Fólico/síntese química , Ácido Fólico/farmacocinética , Antagonistas do Ácido Fólico/síntese química , Antagonistas do Ácido Fólico/farmacocinética , Macrófagos/efeitos dos fármacos , Camundongos , Ratos , Ratos Endogâmicos Lew
9.
J Pharmacol Exp Ther ; 336(2): 336-43, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20978169

RESUMO

During a phase I trial of EC145 (a folate-targeted vinca alkaloid conjugate), constipation was identified as the dose-limiting toxicity, probably from a nonfolate receptor-related liver clearance process capable of releasing unconjugated vinca alkaloid from EC145 and shuttling it to the bile. Here, we report on the selective placement of novel carbohydrate segments (1-amino-1-deoxy-glucitolyl-γ-glutamate) spaced in-between the folate and vinca alkaloid moieties of EC145, which yielded a new agent (EC0489) that is equipotent but less toxic than EC145. Whereas both compounds could cure tumor-bearing mice reproducibly, EC0489 differed from EC145 with i) a shorter elimination half-life, ii) approximately 70% decrease in bile clearance, iii) a 4-fold increase in urinary excretion, and iv) improved tolerability in rodents. This combination of improvements justified the clinical evaluation of EC0489 where currently administered dose levels have exceeded the maximal tolerated dose of EC145 by approximately 70%, thereby reflecting the translational benefits to this new approach.


Assuntos
Antineoplásicos/farmacocinética , Ácido Fólico/análogos & derivados , Fígado/metabolismo , Alcaloides de Vinca/farmacocinética , Animais , Antineoplásicos/toxicidade , Relação Dose-Resposta a Droga , Descoberta de Drogas , Feminino , Receptores de Folato com Âncoras de GPI/fisiologia , Ácido Fólico/farmacocinética , Ácido Fólico/toxicidade , Rim/metabolismo , Masculino , Taxa de Depuração Metabólica , Ratos , Ratos Sprague-Dawley , Relação Estrutura-Atividade , Alcaloides de Vinca/toxicidade
10.
AAPS J ; 11(3): 628-38, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19728104

RESUMO

Cancer vaccine/immunotherapy rarely involves systemic administration of an immunogenic compound to an actively immunized host. We have developed such a strategy that utilizes folate to deliver antigenic haptens [e.g., fluorescein (FITC) and dinitrophenyl] to folate receptor-positive tumors in a hapten-pre-vaccinated host. Here, we investigated the safety of this novel approach and developed strategies to prevent drug-related hypersensitivity. Using FITC as the model hapten, we identified a potential source of allergic species in folate-FITC preparations by LC-MS/MS. In mice and guinea pigs, we tested the significance of this impurity by passive cutaneous anaphylaxis and active systemic anaphylaxis assays. We studied the effect of immunogen (e.g., KLH-FITC) dose and derived a desensitization regimen that was further evaluated in a murine tumor model. Administration of folate-FITC with low multi-haptenated contaminants (e.g. bis-FITC) resulted in hypersensitivity in underimmunized animals. However, this drug-related hypersensitivity may be independently prevented by (1) increasing the immunogen dose and/or (2) desensitizing animals with folate-FITC during vaccination. In addition, such manipulation in vivo did not appear to negatively alter the effectiveness of immunotherapy. This study provided confidence on the safety of folate-hapten-targeted cancer immunotherapy in an actively immunized host.


Assuntos
Hipersensibilidade a Drogas/prevenção & controle , Antagonistas do Ácido Fólico/uso terapêutico , Haptenos/uso terapêutico , Imunoterapia , Neoplasias/terapia , Animais , Linhagem Celular Tumoral , Feminino , Antagonistas do Ácido Fólico/efeitos adversos , Cobaias , Haptenos/efeitos adversos , Camundongos , Camundongos Endogâmicos BALB C , Neoplasias/tratamento farmacológico
11.
Mol Pharm ; 6(5): 1518-25, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19630399

RESUMO

Herein we report on the potencies of 4 related folate-conjugated tubulysins constructed with either tubulysin B hydrazide (EC0305), tubulysin A hydrazide (EC0510), the N,O-acetal derivative of natural tubulysins (EC0317) or a tubulysin B ester (EC0302). Our results confirmed that EC0305 is the most favorable conjugate of the group due to its potent antitumor activity [100% cures at 1 micromol/kg, three times a week (TIW) for 2 weeks] and its favorably low toxicity profile. In contrast, the natural tubulysin B drug proved to be inactive against a human nasopharyngeal tumor model when administered at doses near to or greater than the maximum tolerated dose (MTD). When tested against more chemoresistant folate receptor expressing M109 and 4T1-cl2 tumors, EC0305 displayed superior antitumor activity over a previously disclosed folate conjugate of desacetylvinblastine monohydrazide (EC145). These studies demonstrate that EC0305 has significant antiproliferative activity against FR expressing tumors, including those which are generally more chemoresistant, and that EC0305 should be considered for development as a candidate for the treatment of advanced FR-expressing human cancers.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Ácido Fólico/análogos & derivados , Oligopeptídeos/química , Oligopeptídeos/farmacologia , Animais , Antineoplásicos/toxicidade , Proteínas Sanguíneas/metabolismo , Proteínas de Transporte/metabolismo , Bovinos , Linhagem Celular Tumoral , Cães , Feminino , Receptores de Folato com Âncoras de GPI , Ácido Fólico/química , Ácido Fólico/farmacologia , Humanos , Técnicas In Vitro , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Oligopeptídeos/toxicidade , Ligação Proteica , Coelhos , Ratos , Receptores de Superfície Celular/metabolismo , Relação Estrutura-Atividade
12.
Cancer Res ; 68(23): 9839-44, 2008 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-19047164

RESUMO

The membrane-bound high-affinity folate receptor (FR) is highly expressed on a wide range of primary and metastatic human cancers, such as those originating in ovary, lung, breast, endometrium, kidney, and brain. Because folate-linked conjugates bind to and become internalized within FR-expressing cells (similar to that of free folic acid), we explored the possibility of using the folate ligand to target a potent, semisynthetic analogue of the microtubule inhibitor tubulysin B to FR-enriched tumors. When tested in vitro, a novel folate conjugate, herein referred to as EC0305, was found to specifically inhibit the growth of a panel of FR-positive cell lines (IC50 range, 1-10 nmol/L) in a dose-dependent manner, whereas cells lacking FR expression were unaffected. The potency of EC0305 was also confirmed against a human KB xenograft-nu/nu mouse cancer model. Here, a brief three times per week, 2-week regimen yielded remarkable antitumor activity (100% tumor-free animals) without causing significant weight loss or major organ tissue degeneration. In contrast, antitumor activity was completely abolished in EC0305-treated animals that were co-dosed with an excess of a nontoxic folate-containing analogue, thereby confirming that the antitumor effect of this agent was mediated by FRs. The advantage provided by folate conjugation was further proved by the untargeted free drug, which was found to be completely inactive at both tolerable and highly toxic dose levels. Collectively, these results show that this potent antiproliferative tubulysin compound can be specifically delivered to FR-positive tumors to provide substantial therapeutic benefit using well-tolerable dosing regimens.


Assuntos
Antineoplásicos/farmacologia , Proteínas de Transporte/metabolismo , Oligopeptídeos/farmacologia , Receptores de Superfície Celular/metabolismo , Animais , Antineoplásicos/metabolismo , Relação Dose-Resposta a Droga , Sistemas de Liberação de Medicamentos/métodos , Etilenodiaminas/farmacologia , Feminino , Fluoresceína/farmacologia , Receptores de Folato com Âncoras de GPI , Ácido Fólico/metabolismo , Ácido Fólico/farmacologia , Humanos , Células KB , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Oligopeptídeos/metabolismo , Especificidade por Substrato , Ensaios Antitumorais Modelo de Xenoenxerto
13.
J Pharmacol Exp Ther ; 327(3): 918-25, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18791065

RESUMO

Herein, we present a detailed analysis on the effects of feeding laboratory mice both high and low folic acid (folate)-containing diets as related to associated changes in serum and red blood cell (RBC) folate levels, tissue-derived folate receptor levels, and the ability of folate-drug conjugates to bind and effectuate activity against folate receptor (FR)-positive tumor xenografts. Our data show that serum and RBC folate concentrations sharply drop immediately after mice are switched to low folate diets; however, both parameters reach steady-state, "human-like" levels after 6 weeks. Interestingly, tissue-related folate binding capacities were also lowered during the dietary modulation period, whereas the net uptake of a radiolabeled folate conjugate was simultaneously increased 2.6- and 5-fold in FR-positive kidney and tumor tissue, respectively. Finally, the performances of several clinically and preclinically relevant folate-drug conjugates were evaluated against tumors in mice that were fed high or low folate diets. Except when administered at a dose level 6-fold less than that required to saturate endogenous FRs, no significant loss of antitumor activity was observed. From these findings, we conclude that lowering the dietary intake of folates in mice has little impact on the biological activity of repetitively dosed folate-targeted agents but that low folate diet regimens will reduce serum and RBC folate levels down to levels that more closely approximate the normal human ranges.


Assuntos
Proteínas de Transporte/análise , Ácido Fólico/administração & dosagem , Neoplasias/tratamento farmacológico , Receptores de Superfície Celular/análise , Animais , Proteínas de Transporte/efeitos dos fármacos , Dieta , Sistemas de Liberação de Medicamentos , Receptores de Folato com Âncoras de GPI , Ácido Fólico/sangue , Ácido Fólico/farmacologia , Humanos , Camundongos , Receptores de Superfície Celular/efeitos dos fármacos , Transplante Heterólogo , Ensaios Antitumorais Modelo de Xenoenxerto
14.
Mol Pharm ; 4(5): 695-706, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17784727

RESUMO

Targeting of malignancies with folate-linked therapeutics has proven to be a promising endeavor due to the preferential expression of folate receptors (FR) on human tumors. We have shown that folic acid (pteroyl-glutamate) can be used to deliver an antigenic hapten, fluorescein, to the surface of tumor cells to promote their opsonization within a fluorescein-immunized host. Here, we investigate structure-activity relationships among members of another class of folate-hapten conjugates ( EC57, EC63, EC0293, and EC0294), namely, those containing the dinitrophenyl (DNP) group as the antigenic hapten. We report that despite exhibiting similar affinities for the FR, the antitumor activity and allergic potential of these DNP conjugates varied depending on their linker chemistries and abilities to bind anti-DNP IgG/IgE antibodies. Unlike EC57 and EC63, both EC0293 and EC0294 (i) share the identical DNP bridging chemistry to that found in keyhole limpet hemocyanin (KLH)-DNP (i.e., the immunogen), (ii) efficiently recognize DNP-specific IgG, and (iii) mediate more pronounced antitumor responses. However, EC0293 and EC0294 were also found to recognize DNP-specific IgE, and they displayed a greater risk of allergy when evaluated in a passive cutaneous anaphylaxis assay. Nonetheless, upon co-stimulation with the appropriate cytokines (IL-2/IFN-alpha), the folate-targeted "haptenization" process allowed for tumor rejection and protective antitumor immunity without causing any visible allergy in immunized mice. Our data further support the concept that folate-hapten-targeted immunotherapy may offer an effective therapeutic option for treatment of FR-positive cancers, but such treatment should proceed with caution given the risk of a potential allergic reaction.


Assuntos
Alérgenos/imunologia , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Reagentes de Ligações Cruzadas/química , Ácido Fólico/metabolismo , Haptenos/química , Haptenos/uso terapêutico , Animais , Anticorpos/imunologia , Antineoplásicos/imunologia , Antineoplásicos/toxicidade , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos , Feminino , Haptenos/imunologia , Imunoterapia , Interferon-alfa/farmacologia , Interleucina-2/farmacologia , Camundongos , Camundongos Endogâmicos BALB C , Estrutura Molecular , Nitrogênio/química , Ratos , Especificidade por Substrato , Taxa de Sobrevida , Ensaios Antitumorais Modelo de Xenoenxerto
15.
Mol Pharm ; 4(5): 659-67, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17874843

RESUMO

We have designed a new type of tumor-targeted agent by tethering two different drug molecules, with distinct biological mechanisms of action, to the same ligand. This compound, named EC0225, represents the "first in class" multidrug, folate receptor (FR)-targeted agent to be disclosed. It was constructed with a single folate molecule, extended by a hydrophilic peptide-based spacer, which was in turn attached to mitomycin and Vinca alkaloid units via two separate disulfide-containing linkers. EC0225 produced potent, dose-responsive activity in vitro, and curative activity was observed against FR-positive syngeneic and xenograft tumors following the administration of well-tolerated dosing regimens. Multiple complete responses and cures were also noted when EC0225 was used to treat mice initially bearing tumors as large as 750 mm (3) in volume. Overall, EC0225's impressive preclinical activity allowed for its selection as a development candidate and for the start of Phase 1 clinical trials, which began in March of 2007, for the treatment of advanced malignancies.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Avaliação Pré-Clínica de Medicamentos , Ácido Fólico/metabolismo , Neoplasias/metabolismo , Animais , Antineoplásicos/toxicidade , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Ácido Fólico/química , Ácido Fólico/farmacologia , Ácido Fólico/toxicidade , Humanos , Camundongos , Camundongos Nus , Estrutura Molecular , Neoplasias/patologia , Especificidade por Substrato , Ensaios Antitumorais Modelo de Xenoenxerto
16.
J Org Chem ; 72(16): 5968-72, 2007 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-17602528

RESUMO

We describe the development of methodology which allows for the introduction of a second disulfide bond into a molecular framework with a pre-existing disulfide linker system. Compounds which contain an S-9-fluorenylmethyl-protected thiol and an additional disulfide linkage are deprotected in situ and trapped with an activated thiophile. This methodology allowed for the synthesis of the first molecule possessing two different biologically active agents covalently attached to a folate receptor targeting ligand unit via two disulfide-based release systems.


Assuntos
Proteínas de Transporte/química , Química Orgânica/métodos , Ácido Fólico/química , Química Farmacêutica/métodos , Dissulfetos/química , Sistemas de Liberação de Medicamentos , Desenho de Fármacos , Ligantes , Modelos Químicos , Peptídeos/química , Compostos de Sulfidrila
17.
Cancer Res ; 67(13): 6376-82, 2007 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-17616697

RESUMO

EC131, a new folate receptor (FR)-targeted drug conjugate, was prepared by covalently attaching the vitamin folic acid (FA) to a potent microtubule-inhibiting agent, maytansinoid DM1, via an intramolecular disulfide bond. When tested on cells in culture, EC131 was found to retain high affinity for FR-positive cells and to provide FR-specific cytotoxicity with an IC(50) in the low nanomolar range. The activity of EC131 was completely blocked in the presence of an excess of free FA, and no activity was detected against FR-negative cells. When evaluated against s.c. FR-positive M109 tumors in BALB/c mice, EC131 showed marked antitumor efficacy. Furthermore, this therapeutic effect occurred in the apparent absence of weight loss or noticeable organ tissue degeneration. In contrast, no significant antitumor activity was observed in EC131-treated animals that were codosed with an excess of FA, thus demonstrating the targeted specificity of the in vivo activity. EC131 also showed marked antitumor activity against FR-positive human KB tumors, but not against FR-negative A549 tumors, in nude mice with no evidence of systemic toxicity during or after the therapy. In contrast, therapy with the free maytansinoid drug (in the form of DM1-S-Me) proved not to be effective against the KB model when administered at its maximum tolerated dose (MTD). Taken together, these results indicate that EC131 is a highly potent agent capable of producing therapeutic benefit in murine tumor models at sub-MTD levels.


Assuntos
Antineoplásicos/farmacologia , Proteínas de Transporte/metabolismo , Ácido Fólico/farmacologia , Maitansina/farmacologia , Extratos Vegetais/farmacologia , Receptores de Superfície Celular/metabolismo , Animais , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Receptores de Folato com Âncoras de GPI , Ácido Fólico/química , Ácido Fólico/metabolismo , Humanos , Células KB , Dose Máxima Tolerável , Maitansina/química , Maytenus/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Transplante de Neoplasias
18.
Int J Cancer ; 121(7): 1585-92, 2007 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-17551919

RESUMO

EC140 is a water soluble folate conjugate of desacetylvinblastine monohydrazide (DAVLBH), which is constructed with an endosome-cleavable acyl hydrazone bond. This agent has proven to be active and specific against well established, subcutaneous folate receptor (FR)-positive tumors in multiple animal models. Recent structure-activity and optimization studies have yielded a disulfide bond-containing counterpart to EC140, herein referred to as EC145. This new conjugate was found to retain high affinity for FR-positive cells, and it produced specific, dose-responsive activity in vitro. Comparative in vivo efficacy tests confirmed that, like EC140, EC145 displays activity against both syngeneic and xenograft tumor models. However, EC145 was found to be more active and better tolerated than EC140; hence, more durable complete responses were consistently observed in EC145-treated tumor-bearing animals. Furthermore, EC145 was not found to be active against a FR-negative tumor model. Additional preclinical studies are therefore warranted to better understand EC145's breadth of activity against FR-positive tumors.


Assuntos
Ácido Fólico/análogos & derivados , Neoplasias Experimentais/prevenção & controle , Pterinas/farmacologia , Alcaloides de Vinca/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Adenocarcinoma/prevenção & controle , Animais , Ligação Competitiva , Proteínas Sanguíneas/metabolismo , Proteínas de Transporte/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Receptores de Folato com Âncoras de GPI , Ácido Fólico/química , Ácido Fólico/farmacologia , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/prevenção & controle , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Estrutura Molecular , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Ligação Proteica , Pterinas/química , Pterinas/metabolismo , Receptores de Superfície Celular/metabolismo , Fatores de Tempo , Carga Tumoral , Alcaloides de Vinca/química , Alcaloides de Vinca/metabolismo
19.
Cancer Res ; 67(9): 4434-42, 2007 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-17483358

RESUMO

We recently developed a new group of folate-conjugated Vinca alkaloids, one of which, EC145, emerged as a candidate for clinical development. Brief treatment of nude mice bearing approximately 100 mm(3) folate receptor-positive human xenografts led to complete response (CR) in 5/5 mice and cures (i.e., remission without a relapse for >90 days post-tumor implantation) in 4/5 mice. Multiple CRs and cures were also noted when EC145 was used to treat mice initially bearing tumors as large as 750 mm(3). Likewise, complete cures (5/5) resulted following the treatment of an aggressive folate receptor-positive J6456 lymphoma model. The activity of EC145 was not accompanied by noticeable weight loss or major organ tissue degeneration. Furthermore, no significant antitumor activity (0/5 CR) was observed in EC145-treated animals that were co-dosed with an excess of a benign folate ligand, thus demonstrating the target-specific activity of EC145. The enhanced therapeutic index due to folate conjugation was also evidenced by the fact that the unconjugated drug (desacetylvinblastine monohydrazide) was found to be completely inactive when administered at nontoxic dose levels and only marginally active when given at highly toxic dose levels. Subsequent dose regimen studies confirmed that EC145 given on a more frequent, qdx5 schedule resulted in the most effective antitumor response as compared with an equivalent total dose given on thrice- or single-injection-per-week schedule. Taken together, these studies show that EC145 has significant antiproliferative activity and tolerability, thus lending support to an ongoing phase 1 trial for the treatment of advanced malignancies.


Assuntos
Antineoplásicos/farmacologia , Ácido Fólico/análogos & derivados , Ácido Fólico/farmacologia , Alcaloides de Vinca/farmacologia , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/química , Esquema de Medicação , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Ácido Fólico/administração & dosagem , Humanos , Células KB , Linfoma/tratamento farmacológico , Camundongos , Camundongos Endogâmicos BALB C , Alcaloides de Vinca/administração & dosagem , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Mol Cancer Ther ; 5(12): 3258-67, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17172429

RESUMO

Folic acid (pteroylglutamic acid) represents a useful ligand for targeted cancer therapies because it binds to a common epithelial tumor antigen known as the folate receptor. We previously devised an immunotherapy strategy that uses a bispecific ligand, a folate-hapten (FITC) conjugate, to redirect endogenously induced anti-FITC antibodies to folate receptor-positive tumor cells following parenteral administration. Here, we present results from preclinical pharmacokinetic and tissue biodistribution studies using a radioactive folate-FITC conjugate and results from dose optimization studies done in tumor-bearing animals. Folate-FITC was found to be rapidly eliminated in non-immunized mice; however, in immunized hosts, folate-FITC was shown to form immune complexes with FITC-specific antibodies, the consequence of which was a approximately 173-fold increase in drug exposure (i.e., area under the curve). Using a newly developed ELISA assay, the extent of circulating anti-FITC antibodies occupied by parenterally given folate-FITC was determined to be proportional to the given dose. Furthermore, high doses of folate-FITC were found to promote the cosaturation of tumor cell surface folate receptors and circulating FITC-specific antibodies, blocking the immune recognition of tumor cells and thereby reducing antitumor activity. Nonetheless, by extending the duration of treatment and administering subsaturating doses of folate-FITC, enhanced antitumor response was observed in mice bearing established folate receptor-positive M109 tumors. Overall, results from the present study may help to guide clinicians through on-going clinical investigations of folate-targeted immunotherapy.


Assuntos
Citocinas/farmacocinética , Ácido Fólico/farmacocinética , Imunoconjugados/farmacocinética , Imunoterapia/métodos , Animais , Citocinas/farmacologia , Feminino , Fluoresceína-5-Isotiocianato/farmacocinética , Ácido Fólico/farmacologia , Haptenos/farmacologia , Imunoconjugados/farmacologia , Camundongos , Camundongos Endogâmicos BALB C , Distribuição Tecidual , Trítio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA