Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
J Immunol ; 207(1): 333-343, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34155069

RESUMO

Ex vivo expansion followed by reinfusion of tumor-infiltrating leukocytes (TILs) has been used successfully for the treatment of multiple malignancies. Most protocols rely on the use of the cytokine IL-2 to expand TILs prior to reinfusion. In addition, TIL administration relies on systemic administration of IL-2 after reinfusion to support transferred cell survival. The use of IL-2, however, can be problematic because of its preferential expansion of regulatory T and myeloid cells as well as its systemic side effects. In this study, we describe the use of a novel IL-2 mutant retargeted to NKG2D rather than the high-affinity IL-2R for TIL-mediated immunotherapy in a murine model of malignant melanoma. We demonstrate that the NKG2D-retargeted IL-2 (called OMCPmutIL-2) preferentially expands TIL-resident CTLs, such as CD8+ T cells, NK cells, and γδT cells, whereas wild-type IL-2 provides a growth advantage for CD4+Foxp3+ T cells as well as myeloid cells. OMCPmutIL-2-expanded CTLs express higher levels of tumor-homing receptors, such as LFA-1, CD49a, and CXCR3, which correlate with TIL localization to the tumor bed after i.v. injection. Consistent with this, OMCPmutIL-2-expanded TILs provided superior tumor control compared with those expanded in wild-type IL-2. Our data demonstrate that adoptive transfer immunotherapy can be improved by rational retargeting of cytokine signaling to NKG2D-expressing CTLs rather than indiscriminate expansion of all TILs.


Assuntos
Transferência Adotiva , Interleucina-2/imunologia , Leucócitos/imunologia , Melanoma/imunologia , Melanoma/terapia , Subfamília K de Receptores Semelhantes a Lectina de Células NK/genética , Animais , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Subfamília K de Receptores Semelhantes a Lectina de Células NK/imunologia , Transdução de Sinais/imunologia
2.
Front Pharmacol ; 8: 240, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28529483

RESUMO

Pulmonary arterial hypertension (PAH) has demonstrated multi-serotonin receptor dependent pathologies, characterized by increased tone (5-HT1B receptor) and complex lesions (SERT, 5-HT1B, 5-HT2B receptors) of the pulmonary vasculature together with right ventricular hypertrophy, ischemia and fibrosis (5-HT2B receptor). Selective inhibitors of individual signaling elements - SERT, 5-HT2A, 5HT2B, and combined 5-HT2A/B receptors, have all been tested clinically and failed. Thus, inhibition of tryptophan hydroxylase 1 (TPH1), the rate limiting step in 5-HT synthesis, has been suggested as a more broad, and thereby more effective, mode of 5-HT inhibition. However, selectivity over non-pathogenic enzyme family members, TPH2, phenylalanine hydroxylase, and tyrosine hydroxylase has hampered therapeutic development. Here we describe the site/sequence, biochemical, and biophysical characterization of a novel allosteric site on TPH1 through which selectivity over TPH2 and related aromatic amino acid hydroxylases is achieved. We demonstrate the mechanism of action by which novel compounds selectively inhibit TPH1 using surface plasma resonance and enzyme competition assays with both tryptophan ligand and BH4 co-factor. We demonstrate 15-fold greater potency within a human carcinoid cell line versus the most potent known TPH1/2 non-specific inhibitor. Lastly, we detail a novel canine in vivo system utilized to determine effective biologic inhibition of newly synthesized 5-HT. These findings are the first to demonstrate TPH1-selective inhibition and may pave the way to a truly effective means to reduce pathologic 5-HT and thereby treat complex remodeling diseases such as PAH.

3.
PLoS One ; 9(12): e113555, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25460003

RESUMO

Branching morphogenesis is a critical step in the development of many epithelial organs. The phosphoinositide-3-kinase (PI3K) pathway has been identified as a central component of this process but the precise role has not been fully established. Herein we sought to determine the role of PI3K in murine lung branching using a series of pharmacological inhibitors directed at this pathway. The pan-class I PI3K inhibitor ZSTK474 greatly enhanced the branching potential of whole murine lung explants as measured by an increase in the number of terminal branches compared with controls over 48 hours. This enhancement of branching was also observed following inhibition of the downstream signalling components of PI3K, Akt and mTOR. Isoform selective inhibitors of PI3K identified that the alpha isoform of PI3K is a key driver in branching morphogenesis. To determine if the effect of PI3K inhibition on branching was specific to the lung epithelium or secondary to an effect on the mesenchyme we assessed the impact of PI3K inhibition in cultures of mesenchyme-free lung epithelium. Isolated lung epithelium cultured with FGF7 formed large cyst-like structures, whereas co-culture with FGF7 and ZSTK474 induced the formation of defined branches with an intact lumen. Together these data suggest a novel role for PI3K in the branching program of the murine embryonic lung contradictory to that reported in other branching organs. Our observations also point towards PI3K acting as a morphogenic switch for FGF7 signalling.


Assuntos
Fator 7 de Crescimento de Fibroblastos/metabolismo , Pulmão/crescimento & desenvolvimento , Morfogênese/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Animais , Epitélio/efeitos dos fármacos , Epitélio/crescimento & desenvolvimento , Fator 7 de Crescimento de Fibroblastos/genética , Humanos , Pulmão/efeitos dos fármacos , Pulmão/embriologia , Camundongos , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositóis/metabolismo , Transdução de Sinais/efeitos dos fármacos , Triazinas/administração & dosagem
4.
Chem Biol ; 21(6): 743-53, 2014 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-24856822

RESUMO

Environmental exposures to chemically heterogeneous endocrine-disrupting chemicals (EDCs) mimic or interfere with hormone actions and negatively affect human health. Despite public interest and the prevalence of EDCs in the environment, methods to mechanistically classify these diverse chemicals in a high throughput (HT) manner have not been actively explored. Here, we describe the use of multiparametric, HT microscopy-based platforms to examine how a prototypical EDC, bisphenol A (BPA), and 18 poorly studied BPA analogs (BPXs), affect estrogen receptor (ER). We show that short exposure to BPA and most BPXs induces ERα and/or ERß loading to DNA changing target gene transcription. Many BPXs exhibit higher affinity for ERß and act as ERß antagonists, while they act largely as agonists or mixed agonists and antagonists on ERα. Finally, despite binding to ERs, some BPXs exhibit lower levels of activity. Our comprehensive view of BPXs activities allows their classification and the evaluation of potential harmful effects. The strategy described here used on a large-scale basis likely offers a faster, more cost-effective way to identify safer BPA alternatives.


Assuntos
Compostos Benzidrílicos/química , Compostos Benzidrílicos/farmacologia , Receptor alfa de Estrogênio/agonistas , Receptor beta de Estrogênio/antagonistas & inibidores , Ensaios de Triagem em Larga Escala , Fenóis/química , Fenóis/farmacologia , Compostos Benzidrílicos/efeitos adversos , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Receptor alfa de Estrogênio/metabolismo , Receptor beta de Estrogênio/metabolismo , Células HeLa , Humanos , Células MCF-7 , Microscopia , Fenóis/efeitos adversos , Relação Estrutura-Atividade , Células Tumorais Cultivadas
5.
Chest ; 145(5): 1006-1015, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24522562

RESUMO

BACKGROUND: Smoking cessation is of major importance for all smokers; however, in patients with COPD, little information exists on how smoking cessation influences lung function and high-resolution CT (HRCT) scan appearances. METHODS: In this single-center study, we performed screening spirometry in a group of heavy smokers aged 40 to 80 years (N = 358). We then studied the effects of smoking cessation in two groups of selected subjects: smokers with COPD (n = 38) and smokers with normal spirometry (n = 55). In parallel to subjects undergoing smoking cessation, we studied a control group of nonsmokers (n = 19). RESULTS: Subjects with COPD who quit smoking had a marked, but transient improvement in FEV1 at 6 weeks (184 mL, n = 17, P < .01) that was still present at 12 weeks (81 mL, n = 17, P < .05) and only partially maintained at 1 year. In contrast, we saw improvement in the transfer factor of lung for carbon monoxide at 6 weeks in both subjects with COPD who quit smoking (0.47 mmol/min/kPa, n = 17, P < .01) and subjects who quit smoking with normal spirometry (0.40 mmol/min/kPa, n = 35, P < .01). An upper-zone single HRCT image slice reliably identified emphysema at baseline in 74% of smokers with COPD (28 of 38) and 29% of healthy smokers (16 of 55). Smoking cessation had no significant effect on the appearances of emphysema but decreased the presence of micronodules on HRCT imaging. CONCLUSIONS: Cigarette smoking causes extensive lung function and HRCT image abnormalities, even in patients with normal spirometry. Smoking cessation has differential effects on lung function (FEV1 and gas transfer) and features on HRCT images (emphysema and micronodules). Cessation of smoking in patients with COPD causes a transient improvement in FEV1 and decreases the presence of micronodules, offering an opportunity for concomitant therapy during smoking cessation to augment these effects. Smoking cessation at the earliest possible opportunity is vital to minimize permanent damage to the lungs.


Assuntos
Pulmão/fisiopatologia , Doença Pulmonar Obstrutiva Crônica/diagnóstico por imagem , Intensificação de Imagem Radiográfica , Abandono do Hábito de Fumar , Prevenção do Hábito de Fumar , Espirometria , Tomografia Computadorizada por Raios X/métodos , Adulto , Idoso , Idoso de 80 Anos ou mais , Progressão da Doença , Feminino , Seguimentos , Volume Expiratório Forçado , Humanos , Pulmão/diagnóstico por imagem , Masculino , Pessoa de Meia-Idade , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Fumar/efeitos adversos , Fumar/fisiopatologia
6.
PLoS One ; 8(10): e78045, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24205083

RESUMO

Macrophages (MΦ) play an essential role in innate immune responses and can either display a pro-inflammatory, classically activated phenotype (M1) or undergo an alternative activation program (M2) promoting immune regulation. M-CSF is used to differentiate monocytes into MΦ and IFN-γ or IL-4+IL-13 to further polarize these cells towards M1 or M2, respectively. Recently, differentiation using only GM-CSF or M-CSF has been described to induce a M1- or M2-like phenotype, respectively. In this study, we combined both approaches by differentiating human MΦ in GM-CSF or M-CSF followed by polarization with either IFN-γ or IL-4+IL-13. We describe the phenotypic differences between CD14(hi) CD163(hi) CD206(int) FOLR2-expressing M-CSF MΦ and CD14(lo) CD163(lo) CD206(hi) GM-CSF MΦ but show that both macrophage populations reacted similarly to further polarization with IFN-γ or IL-4+IL-13 with up- and down-regulation of common M1 and M2 marker genes. We also show that high expression of the mannose receptor (CD206), a marker of alternative activation, is a distinct feature of GM-CSF MΦ. Changes of the chromatin structure carried out by chromatin modification enzymes (CME) have been shown to regulate myeloid differentiation. We analyzed the expression patterns of CME during MΦ polarization and show that M1 up-regulate the histone methyltransferase MLL and demethylase KDM6B, while resting and M2 MΦ were characterized by DNA methyltransferases and histone deacetylases. We demonstrate that MLL regulates CXCL10 expression and that this effect could be abrogated using a MLL-Menin inhibitor. Taken together we describe the distinct phenotypic differences of GM-CSF or M-CSF MΦ and demonstrate that MΦ polarization is regulated by specific epigenetic mechanisms. In addition, we describe a novel role for MLL as marker for classical activation. Our findings provide new insights into MΦ polarization that could be helpful to distinguish MΦ activation states.


Assuntos
Citocinas/farmacologia , Epigênese Genética/genética , Macrófagos/metabolismo , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , Células Cultivadas , Imunoprecipitação da Cromatina , Citometria de Fluxo , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Humanos , Fator Estimulador de Colônias de Macrófagos/metabolismo , Microscopia de Fluorescência
7.
Eur J Immunol ; 42(12): 3394-404, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22930133

RESUMO

The signalling molecule PI3Kγ has been reported to play a key role in the immune system and the inflammatory response. In particular, it facilitates the migration of haemato-poietic cells to the site of inflammation. In this study, we reveal a novel role for PI3Kγ in the regulation of the pro-inflammatory cytokine IL-17. Loss of PI3Kγ or expression of a catalytically inactive mutant of PI3Kγ in mice led to increased IL-17 production both in vitro and in vivo in response to various stimuli. The kinetic profile was unaltered from WT cells, with no effect on proliferation or other cytokines. Elevated levels of IL-17 were not due to an aberrant expansion of IL-17-producing cells. Furthermore, we also identified an increase in IL-17RA expression on PI3Kγ(-/-) CD4(+) T cells, yet these cells exhibited impaired PI3K-dependent signalling in response to IL-17A, and subsequent NF-κB phosphorylation. In vivo, instillation of recombinant IL-17 into the airways of mice lacking PI3Kγ signalling also resulted in reduced phosphorylation of Akt. Cell influx in response to IL-17 was also reduced in PI3Kγ(-/-) lungs. These data demonstrate PI3Kγ-dependent signalling downstream of IL-17RA, which plays a pivotal role in regulating IL-17 production in T cells.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Interleucina-17/imunologia , Fosfatidilinositol 3-Quinases/imunologia , Receptores de Interleucina-17/imunologia , Transdução de Sinais/imunologia , Animais , Linfócitos T CD4-Positivos/metabolismo , Regulação Enzimológica da Expressão Gênica/genética , Regulação Enzimológica da Expressão Gênica/imunologia , Interleucina-17/genética , Interleucina-17/metabolismo , Pulmão/imunologia , Pulmão/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação/genética , Fosforilação/imunologia , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/imunologia , Receptores de Interleucina-17/genética , Receptores de Interleucina-17/metabolismo , Transdução de Sinais/genética
8.
Int J Biochem Cell Biol ; 44(5): 776-89, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22330899

RESUMO

Epithelial-mesenchymal transition (EMT) is a process by which epithelial cells undergo phenotypic transition to mesenchymal cells and thus is involved in the pathogenesis of tumor metastasis and organ fibrosis. Notch signaling is a highly conserved pathway that regulates intercellular communication and directs cell fate decisions. Here, we show the critical role of Notch signaling in TGF-ß1-induced EMT. Inhibition of Notch signaling either by γ-secretase inhibitor or by knocking down of Notch signaling molecules by small interfering RNA abrogated EMT in association with decreased expression of Snai1. Constitutive activation of Notch signaling was sufficient for the induction of Snai1 as well as Notch ligand Jagged1. Notch signaling induced Snai1 expression via direct transcriptional activation. Collectively, these data show that Notch signaling activation promote TGF-ß1-induced EMT through the induction of Snai1. Further studies on Notch signaling may provide diagnostic and therapeutic targets for cancer and fibrotic disease.


Assuntos
Transição Epitelial-Mesenquimal/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Receptores Notch/genética , Transdução de Sinais/genética , Fatores de Transcrição/genética , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Comunicação Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Proteína Jagged-1 , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Plasmídeos , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Receptores Notch/metabolismo , Proteínas Serrate-Jagged , Transdução de Sinais/efeitos dos fármacos , Fatores de Transcrição da Família Snail , Fatores de Transcrição/metabolismo , Transfecção , Fator de Crescimento Transformador beta1/farmacologia
9.
J Immunol ; 186(8): 4936-45, 2011 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-21402888

RESUMO

SHIP-1 negatively regulates the PI3K pathway in hematopoietic cells and has an emerging role in T lymphocyte biology. PI3K and SHIP can regulate cell migration in leukocytes, particularly in neutrophils, although their role in T cell migration has been less clear. Therefore, we sought to explore the role of SHIP-1 in human CD4(+) T lymphocyte cell migration responses to chemoattractants using a lentiviral-mediated expression system and a short hairpin RNA approach. Silencing of SHIP-1 leads to increased basal phosphorylation of protein kinase B/Akt and its substrate GSK3ß, as well as an increase in basal levels of polymerized actin, suggesting that SHIP-1 might regulate changes in the cytoskeleton. Accordingly, silencing of SHIP-1 led to loss of microvilli and ezrin/radixin/moesin phosphorylation, which could not be rescued by the PI3K inhibitor Ly294002. There were striking morphological changes, including a loss of microvilli projections, which mirrored changes in wild type cells after stimulation with the chemokine CXCL11. There was no defect in directional T cell migration toward CXCL11 in the SHIP-1-silenced cells but, importantly, there was a defect in the overall basal motility of SHIP-1 knockdown cells. Taken together, these results implicate SHIP-1 as a key regulator of basal PI3K signaling in human CD4(+) T lymphocytes with important phosphatase-independent actions, which together are key for maintaining normal morphology and basal motility.


Assuntos
Linfócitos T CD4-Positivos/metabolismo , Movimento Celular , Monoéster Fosfórico Hidrolases/metabolismo , Actinas/metabolismo , Western Blotting , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD4-Positivos/ultraestrutura , Sobrevivência Celular , Células Cultivadas , Quimiocina CXCL11/farmacologia , Proteínas do Citoesqueleto/metabolismo , Citoesqueleto/metabolismo , Citometria de Fluxo , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Humanos , Inositol Polifosfato 5-Fosfatases , Proteínas de Membrana/metabolismo , Proteínas dos Microfilamentos/metabolismo , Microscopia Eletrônica de Varredura , Microvilosidades/metabolismo , Microvilosidades/ultraestrutura , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases , Fosfatidilinositóis/metabolismo , Monoéster Fosfórico Hidrolases/genética , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Interferência de RNA , Transdução de Sinais
10.
Immunol Lett ; 138(1): 15-8, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21333676

RESUMO

Phosphoinositide 3-kinase (PI3K)-dependent signaling has been placed at the heart of conserved biochemical mechanisms that facilitate cell migration of leukocytes in response to a range of chemoattractant stimuli. This review assesses the evidence for and against PI3K-dependent mechanisms of T lymphocyte migration and whether pharmacological targeting of PI3K isoforms is likely to offer potential benefit for T cell mediated pathologies.


Assuntos
Movimento Celular/imunologia , Fosfatidato Fosfatase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Linfócitos T/enzimologia , Linfócitos T/imunologia , Animais , Humanos , Intestinos/citologia , Intestinos/imunologia , PTEN Fosfo-Hidrolase/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Isoformas de Proteínas , Transdução de Sinais/imunologia , Linfócitos T/citologia
11.
Sci Transl Med ; 2(57): 57ra82, 2010 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-21068441

RESUMO

Idiopathic pulmonary fibrosis is characterized by diffuse alveolar damage and severe fibrosis, resulting in a steady worsening of lung function and gas exchange. Because idiopathic pulmonary fibrosis is a generally progressive disorder with highly heterogeneous disease progression, we classified affected patients as either rapid or slow progressors over the first year of follow-up and then identified differences between the two groups to investigate the mechanism governing rapid progression. Previous work from our laboratory has demonstrated that Toll-like receptor 9 (TLR9), a pathogen recognition receptor that recognizes unmethylated CpG motifs in bacterial and viral DNA, promotes myofibroblast differentiation in lung fibroblasts cultured from biopsies of patients with idiopathic pulmonary fibrosis. Therefore, we hypothesized that TLR9 functions as both a sensor of pathogenic molecules and a profibrotic signal in rapidly progressive idiopathic pulmonary fibrosis. Indeed, TLR9 was present at higher concentrations in surgical lung biopsies from rapidly progressive patients than in tissue from slowly progressing patients. Moreover, fibroblasts from rapid progressors were more responsive to the TLR9 agonist, CpG DNA, than were fibroblasts from slowly progressing patients. Using a humanized severe combined immunodeficient mouse, we then demonstrated increased fibrosis in murine lungs receiving human lung fibroblasts from rapid progressors compared with mice receiving fibroblasts from slowly progressing patients. This fibrosis was exacerbated by intranasal CpG challenges. Furthermore, CpG induced the differentiation of blood monocytes into fibrocytes and the epithelial-to-mesenchymal transition of A549 lung epithelial cells. These data suggest that TLR9 may drive the pathogenesis of rapidly progressive idiopathic pulmonary fibrosis and may serve as a potential indicator for this subset of the disease.


Assuntos
Fibrose Pulmonar Idiopática/fisiopatologia , Receptor Toll-Like 9/fisiologia , Idoso , Diferenciação Celular , Linhagem Celular , Ilhas de CpG , DNA Bacteriano/metabolismo , DNA Viral/metabolismo , Progressão da Doença , Transição Epitelial-Mesenquimal , Feminino , Humanos , Fibrose Pulmonar Idiopática/patologia , Masculino , Pessoa de Meia-Idade , Receptor Toll-Like 9/metabolismo
12.
Mol Immunol ; 47(14): 2367-77, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20627397

RESUMO

The chemokine receptor CXCR3, which has three known variants (CXCR3-A, CXCR3-B and CXCR3-Alt), has been implicated in the recruitment of mast cells to tissues in many different chronic diseases with its agonists found in elevated levels in several pulmonary diseases. All three variants of CXCR3 were detected in cord blood-derived mast cells at the mRNA level. Using an antibody that is unable to distinguish individual CXCR3 isoforms, we detected a marked down-regulation of intracellular protein during maturation from progenitor cells, with no concomitant changes in the modest surface expression of CXCR3. The known CXCR3 agonists CXCL9, CXCL10 and CXCL11 as well as the reported CXCR3-B agonist CXCL4, were able to induce Akt and ERK1/2 phosphorylation, as well as partial degranulation. Responses to all agonists were inhibited by pre-treatment with selective CXCR3 antagonists and pertussis toxin. Use of novel isoform-selective inhibitors, indicates that the p110 gamma isoform of PI3K is required for degranulation and signaling responses to CXCR3 agonists.


Assuntos
Mastócitos/fisiologia , Fosfatidilinositol 3-Quinases/metabolismo , Receptores CXCR3/agonistas , Antígeno AC133 , Antígenos CD/metabolismo , Sequência de Bases , Degranulação Celular , Diferenciação Celular , Células Cultivadas , Quimiocina CXCL10/metabolismo , Quimiocina CXCL11/metabolismo , Quimiocina CXCL9/metabolismo , Primers do DNA/genética , Sangue Fetal/citologia , Glicoproteínas/metabolismo , Humanos , Recém-Nascido , Sistema de Sinalização das MAP Quinases , Mastócitos/citologia , Mastócitos/imunologia , Microscopia Eletrônica de Transmissão , Peptídeos/metabolismo , Fator Plaquetário 4/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores CXCR3/genética , Transdução de Sinais
13.
Proc Natl Acad Sci U S A ; 107(20): 9446-51, 2010 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-20439741

RESUMO

Despite abundant evidence that aberrant Rho-family GTPase activation contributes to most steps of cancer initiation and progression, there is a dearth of inhibitors of their effectors (e.g., p21-activated kinases). Through high-throughput screening and structure-based design, we identify PF-3758309, a potent (K(d) = 2.7 nM), ATP-competitive, pyrrolopyrazole inhibitor of PAK4. In cells, PF-3758309 inhibits phosphorylation of the PAK4 substrate GEF-H1 (IC(50) = 1.3 nM) and anchorage-independent growth of a panel of tumor cell lines (IC(50) = 4.7 +/- 3 nM). The molecular underpinnings of PF-3758309 biological effects were characterized using an integration of traditional and emerging technologies. Crystallographic characterization of the PF-3758309/PAK4 complex defined determinants of potency and kinase selectivity. Global high-content cellular analysis confirms that PF-3758309 modulates known PAK4-dependent signaling nodes and identifies unexpected links to additional pathways (e.g., p53). In tumor models, PF-3758309 inhibits PAK4-dependent pathways in proteomic studies and regulates functional activities related to cell proliferation and survival. PF-3758309 blocks the growth of multiple human tumor xenografts, with a plasma EC(50) value of 0.4 nM in the most sensitive model. This study defines PAK4-related pathways, provides additional support for PAK4 as a therapeutic target with a unique combination of functions (apoptotic, cytoskeletal, cell-cycle), and identifies a potent, orally available small-molecule PAK inhibitor with significant promise for the treatment of human cancers.


Assuntos
Proliferação de Células/efeitos dos fármacos , Modelos Moleculares , Neoplasias/metabolismo , Pirazóis/farmacologia , Pirróis/farmacologia , Transdução de Sinais/efeitos dos fármacos , Quinases Ativadas por p21/antagonistas & inibidores , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cristalografia , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Humanos , Neoplasias/tratamento farmacológico , Fosforilação/efeitos dos fármacos , Pirazóis/química , Pirazóis/metabolismo , Pirróis/química , Pirróis/metabolismo , Fatores de Troca de Nucleotídeo Guanina Rho
14.
J Immunol ; 184(11): 6114-23, 2010 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-20427772

RESUMO

Tissue-resident mast cells (MCs) are important in allergic diseases. In a mouse model of allergic airways inflammation, an increase in peribronchiolar MCs was associated with increased concentrations of the chemokine CCL2 in lung lavage. MC progenitors (MCps) arising in bone marrow (BM) are recruited to tissues by transendothelial migration, and we found that CCL2 is chemotactic for MCps in freshly isolated BM in vitro. Immature, but not mature, BM-derived MCs migrated in response to CCL2 when cultured in IL-3+stem cell factor (SCF) but not when cultured in IL-3 alone. However, the cells under both culture conditions expressed mRNA for CCR2, the receptor for CCL2, and bound the radiolabeled chemokine with similar affinities, highlighting SCF as a key mediator in coupling CCR2 to downstream events, culminating in chemotaxis. Immature BM-derived MCs from IL-3 +SCF cultures, when administered i.v., accumulated at skin sites injected with CCL2 in vivo. MCp recruitment to the allergen-sensitized/challenged lung was significantly reduced in CCR2(-/-) and CCL2(-/-) mouse strains. However, reconstitution studies of sublethally irradiated and BM-reconstituted mice indicated that BM cells and stromal elements could provide CCL2, whereas the CCR2 function resided with stromal elements rather than BM cells. These experiments revealed a new function of SCF in chemokine receptor coupling, but they suggest a complex role of the CCL2/CCR2 axis in recruiting MCps during pulmonary inflammation.


Assuntos
Quimiocina CCL2/imunologia , Quimiotaxia de Leucócito/imunologia , Mastócitos/imunologia , Receptores CCR2/imunologia , Alérgenos/imunologia , Alérgenos/farmacologia , Animais , Líquido da Lavagem Broncoalveolar/imunologia , Quimiocina CCL2/metabolismo , Feminino , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/imunologia , Mastócitos/citologia , Camundongos , Camundongos Endogâmicos BALB C , Ovalbumina/imunologia , Ovalbumina/farmacologia , Receptores CCR2/metabolismo , Hipersensibilidade Respiratória/imunologia , Hipersensibilidade Respiratória/patologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fator de Células-Tronco/imunologia , Fator de Células-Tronco/metabolismo
15.
PLoS One ; 5(3): e9910, 2010 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-20361045

RESUMO

Frequent activation of the AKT serine-threonine kinase in cancer confers resistance to therapy. AKT is activated by a multi-step process involving phosphatidylinositide (PtdIns) phosphate-mediated recruitment of AKT and its upstream kinases, including 3-Phosphoinositide-dependent kinase 1 (PDK1), to the inner surface of the cell membrane. PDK1 in the appropriate context phosphorylates AKT at threonine 308 (T308) to activate AKT. Whether PtdIns(3,4,5)Ps (PtdInsP3) binding and AKT membrane translocation mediate functions other than formation of a functional PDK1::AKT complex have not been fully elucidated. We fused complementary fragments of intensely fluorescent protein (IFP) to AKT1 and PDK1 to induce a stable complex to study the prerequisites of AKT1 phosphorylation and function. In the stabilized PDK1-IFPC::IFPN-AKT1 complex, AKT1 T308 phosphorylation was independent of PtdIns, as demonstrated by treatment with Phosphatidylinositol 3 Kinase (PI3K) inhibitors. Further when interaction with PtdIns and the cell membrane was prevented by creating PH-domain mutants of AKT1 (R25A) and PDK1 (R474A), AKT1 phosphorylation on T308 was maintained in the PDK1-IFPC::IFPN-AKT1 complex. The PDK1-IFPC::IFPN-AKT1 complex was sufficient for phosphorylation of known AKT substrates, and conferred resistance to inhibitors of PI3K (LY294002, PI103, GDC0941 and TGX286) but not inhibitors of the downstream TORC1 complex (rapamycin). Thus the locus of action of targeted therapeutics can be elucidated by the constitutively active AKT1 complex. Our data indicate that PtdIns and membrane localization are not required for AKT phosphorylation and activation, but rather serve to induce a functional physical interaction between PDK1 and AKT. The PDK1-IFPC::IFPN-AKT1 complex provides a cell-based platform to examine specificity of drugs targeting PI3K pathway components.


Assuntos
Regulação Enzimológica da Expressão Gênica , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Membrana Celular/metabolismo , Sobrevivência Celular , Corantes Fluorescentes/química , Proteínas de Fluorescência Verde/química , Células HeLa , Humanos , Mutação , Fosforilação , Ligação Proteica , Piruvato Desidrogenase Quinase de Transferência de Acetil , RNA Interferente Pequeno/metabolismo , Treonina/química
16.
Immunology ; 129(1): 115-24, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20050333

RESUMO

The mechanisms governing the population of tissues by mast cells are not fully understood, but several studies using human mast cells have suggested that expression of the chemokine receptor CCR3 and migration to its ligands may be important. In CCR3-deficient mice, a change in mast cell tissue distribution in the airways following allergen challenge was reported compared with wild-type mice. In addition, there is evidence that CCR3 is important in mast cell maturation in mouse. In this study, bone marrow-derived mast cells (BMMCs) were cultured and CCR3 expression and the migratory response to CCR3 ligands were characterized. In addition, BMMCs were cultured from wild-type and CCR3-deficient mice and their phenotype and migratory responses were compared. CCR3 messenger RNA was detectable in BMMCs, but this was not significantly increased after activation by immunoglobulin E (IgE). CCR3 protein was not detected on BMMCs during maturation and expression could not be enhanced after IgE activation. Resting and IgE-activated immature and mature BMMCs did not migrate in response to the CCR3 ligands eotaxin- 1 and eotaxin-2. Comparing wild-type and CCR3-deficient BMMCs, there were no differences in mast cell phenotype or ability to migrate to the mast cell chemoattractants leukotriene B4 and stem cell factor. The results of this study show that CCR3 may not mediate mast cell migration in mouse BMMCs in vitro. These observations need to be considered in relation to the findings of CCR3 deficiency on mast cells in vivo.


Assuntos
Leucotrieno B4/metabolismo , Mastócitos/metabolismo , Receptores CCR3/metabolismo , Fator de Células-Tronco/metabolismo , Animais , Medula Óssea/metabolismo , Medula Óssea/patologia , Ensaios de Migração Celular , Células Cultivadas , Quimiocina CCL11/metabolismo , Quimiocina CCL24/metabolismo , Feminino , Imunoglobulina E/imunologia , Mastócitos/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Receptores CCR3/genética , Receptores CCR3/imunologia
17.
J Immunol ; 183(8): 5171-9, 2009 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-19783686

RESUMO

Aspergillus fumigatus is a sporulating fungus found ubiquitously in the environment and is easily cleared from immunocompetent hosts. Invasive aspergillosis develops in immunocompromised patients, and is a leading cause of mortality in hematopoietic stem cell transplant recipients. CCR7 and its ligands, CCL19 and CCL21, are responsible for the migration of dendritic cells from sites of infection and inflammation to secondary lymphoid organs. To investigate the role of CCR7 during invasive aspergillosis, we used a well-characterized neutropenic murine model. During invasive aspergillosis, mice with a CCR7 deficiency in the hematopoietic compartment exhibited increased survival and less pulmonary injury compared with the appropriate wild-type control. Flow cytometric analysis of the chimeric mice revealed an increase in the number of dendritic cells present in the lungs of CCR7-deficient chimeras following infection with Aspergillus conidia. An adoptive transfer of dendritic cells into neutropenic mice provided a protective effect during invasive aspergillosis, which was further enhanced with the adoptive transfer of CCR7-deficient dendritic cells. Additionally, CCR7-deficient dendritic cells activated in vitro with Aspergillus conidia expressed higher TNF-alpha, CXCL10, and CXCL2 levels, indicating a more activated cellular response to the fungus. Our results suggest that the absence of CCR7 is protective during invasive aspergillosis in neutropenic mice. Collectively, these data demonstrate a potential deleterious role for CCR7 during primary immune responses directed against A. fumigatus.


Assuntos
Aspergillus fumigatus , Quimiocina CXCL10/imunologia , Quimiocina CXCL2/imunologia , Células Dendríticas/imunologia , Aspergilose Pulmonar Invasiva/imunologia , Receptores CCR7/imunologia , Fator de Necrose Tumoral alfa/imunologia , Animais , Quimiocina CCL19/imunologia , Quimiocina CCL19/metabolismo , Quimiocina CCL21/imunologia , Quimiocina CCL21/metabolismo , Quimiocina CXCL10/metabolismo , Quimiocina CXCL2/metabolismo , Células Dendríticas/metabolismo , Células Dendríticas/microbiologia , Modelos Animais de Doenças , Feminino , Aspergilose Pulmonar Invasiva/microbiologia , Pulmão/imunologia , Pulmão/metabolismo , Pulmão/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neutropenia/imunologia , Neutropenia/metabolismo , Neutrófilos/imunologia , Neutrófilos/metabolismo , Receptores CCR7/genética , Receptores CCR7/metabolismo , Receptores de Quimiocinas/imunologia , Receptores de Quimiocinas/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
18.
Immunology ; 126(3): 413-22, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18754810

RESUMO

We and others have established an important role for phosphoinositide-3 kinase gamma (PI3Kgamma) in the chemotactic responses of macrophages and neutrophils. The involvement of this lipid kinase in allergic inflammatory responses is, however, yet to be fully determined. Here we compare wild-type (WT) and PI3Kgamma(-/-) (KO) mice within a model of ovalbumin (OVA) -specific pulmonary inflammation. Upon OVA aerosol challenge, cell influx into the bronchoalveolar lavage (BAL) fluid consisted of neutrophils, macrophages and, more significantly, eosinophils - which are key effector cells in allergic inflammation. Each population was reduced by up to 80% in KO mice, demonstrating a role for PI3Kgamma in cell infiltration into the airways. The mechanism of reduced eosinophilia was analysed within both development and effector stages of the immune response. Comparable levels of OVA-specific T-cell proliferation and immunoglobulin production were established in both strains. Furthermore, no significant differences between WT and KO chemokine production were observed. Having identified the critical point of PI3Kgamma involvement, KO eosinophil chemotactic dysfunction was confirmed in vitro. These data are the first to demonstrate the vital role of PI3Kgamma in acute allergic inflammation. The profound dependency of eosinophils on PI3Kgamma for pulmonary influx identifies this lipid kinase as an attractive target for the pharmacological intervention of asthma.


Assuntos
Quimiotaxia de Leucócito/imunologia , Eosinófilos/imunologia , Fosfatidilinositol 3-Quinases/imunologia , Pneumonia/imunologia , Doença Aguda , Animais , Asma/imunologia , Linfócitos B/imunologia , Líquido da Lavagem Broncoalveolar/imunologia , Linfócitos T CD4-Positivos/imunologia , Classe Ib de Fosfatidilinositol 3-Quinase , Citocinas/biossíntese , Modelos Animais de Doenças , Eosinofilia/imunologia , Epitopos de Linfócito T/imunologia , Feminino , Isoenzimas/imunologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Ovalbumina/imunologia
19.
J Biol Chem ; 283(5): 2465-9, 2008 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-18073217

RESUMO

The phosphoinositide 3-kinase signaling pathway has been implicated in a range of T lymphocyte cellular functions, particularly growth, proliferation, cytokine secretion, and survival. Dysregulation of phosphoinositide 3-kinase-dependent signaling and function in leukocytes, including B and T lymphocytes, has been implicated in many inflammatory and autoimmune diseases. As befits a pivotal signaling cascade, several mechanisms exist to ensure that the pathway is tightly regulated. This minireview focuses on two lipid phosphatases, viz. the 3'-phosphatase PTEN (phosphatase and tensin homolog deleted on chromosome 10) and SHIP (Src homology 2 domain-containing inositol-5-phosphatase). We discuss their role in regulating T lymphocyte signaling as well their potential as future therapeutic targets.


Assuntos
PTEN Fosfo-Hidrolase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Linfócitos T/enzimologia , Animais , Movimento Celular , Desenho de Fármacos , Marcação de Genes , Humanos , Inositol Polifosfato 5-Fosfatases , Ativação Linfocitária , Modelos Biológicos , Monoéster Fosfórico Hidrolases/química , Monoéster Fosfórico Hidrolases/genética , Transdução de Sinais , Linfócitos T/imunologia , Linfócitos T/fisiologia
20.
Cell Signal ; 19(12): 2528-39, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17900864

RESUMO

Use of mice in which individual PI3K isoforms have been deleted or mutated by gene targeting, has determined that PI3Kgamma provides a key migratory signal for T lymphocyte migration. Since PI3Kgamma can be a dispensable signal for directional migration of human T cells, we have adopted a pharmacological and siRNA strategy to assess the contribution of individual PI3K isoforms to chemokine-stimulated migration of human T cells. The broad spectrum PI3K isoform inhibitor Ly294002 inhibits CXCL12-stimulated migration of freshly isolated T lymphocytes. Use of second generation inhibitors that can discriminate between individual PI3K isoforms, revealed that PI3Kgamma was the major contributor to CXCL12-induced migration and PI3K/Akt signaling (as assessed by S6 phosphorylation). Non-viral delivery of siRNA targeting class I (PI3Kgamma), class II (PI3KC2alpha and PI3KC2beta) and class III PI3Ks, followed by 3 days ex vivo culture, reduces the levels of isoform mRNA, but is insufficient to impact on cell migration responses. However, ex vivo maintenance of T cells alone, independently of siRNA treatment, resulted in the migratory response of T cells toward CXCL12 becoming insensitive to Ly294002. Remarkably, random migration remains sensitive to Ly294002. This study therefore, highlights that the migratory response of freshly isolated human T cells is dependent on PI3K signals that are provided predominantly by PI3Kgamma. However, the role of PI3K in cell migration is context-dependent and diminishes during ex vivo maintenance.


Assuntos
Técnicas de Cultura de Células , Quimiotaxia de Leucócito , Fosfatidilinositol 3-Quinases/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Linfócitos T/metabolismo , Transfecção/métodos , Células Cultivadas , Quimiocina CXCL12/metabolismo , Quimiotaxia de Leucócito/efeitos dos fármacos , Classe Ib de Fosfatidilinositol 3-Quinase , Relação Dose-Resposta a Droga , Humanos , Isoenzimas/antagonistas & inibidores , Isoenzimas/genética , Isoenzimas/metabolismo , Fosfatidilinositol 3-Quinases/genética , Inibidores de Fosfoinositídeo-3 Quinase , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Mensageiro/metabolismo , Linfócitos T/efeitos dos fármacos , Linfócitos T/enzimologia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA