Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 15(5)2022 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-35269161

RESUMO

The mechanical performance of fibre-reinforced ultra-high-performance concrete based on alkali-activated slag was investigated, concentrating on the use of steel fibres. The flexural strength is slightly higher compared to the UHPC based on Ordinary Portland Cement (OPC) as the binder. Correlating the flexural strength test with multiple fibre-pullout tests, an increase in the bonding behaviour at the interfacial-transition zone of the AAM-UHPC was found compared to the OPC-UHPC. Microstructural investigations on the fibres after storage in an artificial pore solution and a potassium waterglass indicated a dissolution of the metallic surface. This occurred more strongly with the potassium waterglass, which was used as an activator solution in the case of the AAM-UHPC. From this, it can be assumed that the stronger bond results from this initial etching for steel fibres in the AAM-UHPC compared to the OPC-UHPC. The difference in the bond strength of both fibre types, the brass-coated steel fibres and the stainless-steel fibres, was rather low for the AAM-UHPC compared to the OPC-UHPC.

2.
Bioorg Med Chem Lett ; 21(18): 5446-50, 2011 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-21784633

RESUMO

The highly constitutively active G-protein coupled receptor US28 of human cytomegalovirus (HCMV) is an interesting pharmacological target because of its implication on viral dissemination, cardiovascular diseases and tumorigenesis. We found that dihydroisoquinolinone and tetrahydroisoquinoline scaffolds may be promising lead structures for novel US28 allosteric inverse agonists. These scaffolds were rapidly synthesized by radical carboamination reactions followed by non-radical transformations. Our novel US28 allosteric modulators provide valuable scaffolds for further ligand optimization and may be helpful chemical tools to investigate molecular mechanisms of US28 constitutive signaling and its role in pathogenesis.


Assuntos
Isoquinolinas/farmacologia , Receptores de Quimiocinas/agonistas , Proteínas Virais/agonistas , Regulação Alostérica/efeitos dos fármacos , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Células HEK293 , Humanos , Isoquinolinas/síntese química , Isoquinolinas/química , Estrutura Molecular , Estereoisomerismo , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA