Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(9)2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38732936

RESUMO

Lung diseases are the third-leading cause of mortality in the world. Due to compromised lung function, respiratory difficulties, and physiological complications, lung disease brought on by toxic substances, pollution, infections, or smoking results in millions of deaths every year. Chest X-ray images pose a challenge for classification due to their visual similarity, leading to confusion among radiologists. To imitate those issues, we created an automated system with a large data hub that contains 17 datasets of chest X-ray images for a total of 71,096, and we aim to classify ten different disease classes. For combining various resources, our large datasets contain noise and annotations, class imbalances, data redundancy, etc. We conducted several image pre-processing techniques to eliminate noise and artifacts from images, such as resizing, de-annotation, CLAHE, and filtering. The elastic deformation augmentation technique also generates a balanced dataset. Then, we developed DeepChestGNN, a novel medical image classification model utilizing a deep convolutional neural network (DCNN) to extract 100 significant deep features indicative of various lung diseases. This model, incorporating Batch Normalization, MaxPooling, and Dropout layers, achieved a remarkable 99.74% accuracy in extensive trials. By combining graph neural networks (GNNs) with feedforward layers, the architecture is very flexible when it comes to working with graph data for accurate lung disease classification. This study highlights the significant impact of combining advanced research with clinical application potential in diagnosing lung diseases, providing an optimal framework for precise and efficient disease identification and classification.


Assuntos
Pneumopatias , Redes Neurais de Computação , Humanos , Pneumopatias/diagnóstico por imagem , Pneumopatias/diagnóstico , Processamento de Imagem Assistida por Computador/métodos , Aprendizado Profundo , Algoritmos , Pulmão/diagnóstico por imagem , Pulmão/patologia
2.
Comput Biol Med ; 139: 104961, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34741906

RESUMO

Lung cancer, also known as pulmonary cancer, is one of the deadliest cancers, but yet curable if detected at the early stage. At present, the ambiguous features of the lung cancer nodule make the computer-aided automatic diagnosis a challenging task. To alleviate this, we present LungNet, a novel hybrid deep-convolutional neural network-based model, trained with CT scan and wearable sensor-based medical IoT (MIoT) data. LungNet consists of a unique 22-layers Convolutional Neural Network (CNN), which combines latent features that are learned from CT scan images and MIoT data to enhance the diagnostic accuracy of the system. Operated from a centralized server, the network has been trained with a balanced dataset having 525,000 images that can classify lung cancer into five classes with high accuracy (96.81%) and low false positive rate (3.35%), outperforming similar CNN-based classifiers. Moreover, it classifies the stage-1 and stage-2 lung cancers into 1A, 1B, 2A and 2B sub-classes with 91.6% accuracy and false positive rate of 7.25%. High predictive capability accompanied with sub-stage classification renders LungNet as a promising prospect in developing CNN-based automatic lung cancer diagnosis systems.


Assuntos
Neoplasias Pulmonares , Dispositivos Eletrônicos Vestíveis , Humanos , Pulmão , Neoplasias Pulmonares/diagnóstico por imagem , Redes Neurais de Computação , Tomografia Computadorizada por Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA