Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 11: 1329, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32760355

RESUMO

The bacterial family Brucellaceae is currently composed of seven genera, including species of the genus Brucella, a number of which are significant veterinary and zoonotic pathogens. The bacteriological identification of pathogenic Brucella spp. may be hindered by their close phenotypic similarity to other members of the Brucellaceae, particularly of the genus Ochrobactrum. Additionally, a number of novel atypical Brucella taxa have recently been identified, which exhibit greater genetic diversity than observed within the previously described species, and which share genomic features with organisms outside of the genus. Furthermore, previous work has indicated that the genus Ochrobactrum is polyphyletic, raising further questions regarding the relationship between the genus Brucella and wider Brucellaceae. We have applied whole genome sequencing (WGS) and pan-family multi-locus sequence analysis (MLSA) approaches to a comprehensive panel of Brucellaceae type strains, in order to characterize relationships within the family. Phylogenies based on WGS core genome alignments were able to resolve phylogenetic relationships of 31 non-Brucella spp. type strains from within the family, alongside type strains of twelve Brucella species. A phylogeny based on concatenated pan-family MLSA data was largely consistent with WGS based analyses. Notably, recently described atypical Brucella isolates were consistently placed in a single clade with existing species, clearly distinct from all members of the genus Ochrobactrum and wider family. Both WGS and MLSA methods closely grouped Brucella spp. with a sub-set of Ochrobactrum species. However, results also confirmed that the genus Ochrobactrum is polyphyletic, with seven species forming a separate grouping. The pan-family MLSA scheme was subsequently applied to a panel of 50 field strains of the family Brucellaceae, isolated from a wide variety of sources. This analysis confirmed the utility of the pan-Brucellaceae MLSA scheme in placing field isolates in relation to recognized type strains. However, a significant number of these isolates did not cluster with currently identified type strains, suggesting the existence of additional taxonomic diversity within some members of the Brucellaceae. The WGS and pan-family MLSA approaches applied here provide valuable tools for resolving the identity and phylogenetic relationships of isolates from an expanding bacterial family containing a number of important pathogens.

2.
Sci Rep ; 7: 44420, 2017 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-28300153

RESUMO

Twenty-one small Gram-negative motile coccobacilli were isolated from 15 systemically diseased African bullfrogs (Pyxicephalus edulis), and were initially identified as Ochrobactrum anthropi by standard microbiological identification systems. Phylogenetic reconstructions using combined molecular analyses and comparative whole genome analysis of the most diverse of the bullfrog strains verified affiliation with the genus Brucella and placed the isolates in a cluster containing B. inopinata and the other non-classical Brucella species but also revealed significant genetic differences within the group. Four representative but molecularly and phenotypically diverse strains were used for in vitro and in vivo infection experiments. All readily multiplied in macrophage-like murine J774-cells, and their overall intramacrophagic growth rate was comparable to that of B. inopinata BO1 and slightly higher than that of B. microti CCM 4915. In the BALB/c murine model of infection these strains replicated in both spleen and liver, but were less efficient than B. suis 1330. Some strains survived in the mammalian host for up to 12 weeks. The heterogeneity of these novel strains hampers a single species description but their phenotypic and genetic features suggest that they represent an evolutionary link between a soil-associated ancestor and the mammalian host-adapted pathogenic Brucella species.


Assuntos
Proteínas de Bactérias/genética , Brucellaceae/genética , Regulação Bacteriana da Expressão Gênica , Infecções por Bactérias Gram-Negativas/veterinária , Interações Hospedeiro-Patógeno , Filogenia , Animais , Animais de Zoológico , Anuros , Proteínas de Bactérias/metabolismo , Evolução Biológica , Brucellaceae/classificação , Brucellaceae/crescimento & desenvolvimento , Brucellaceae/metabolismo , Linhagem Celular , Flagelos/genética , Flagelos/metabolismo , Flagelos/ultraestrutura , Heterogeneidade Genética , Alemanha , Infecções por Bactérias Gram-Negativas/microbiologia , Fígado/microbiologia , Macrófagos/microbiologia , Camundongos , Camundongos Endogâmicos BALB C , Tipagem de Sequências Multilocus , Baço/microbiologia , Tanzânia
3.
Int J Syst Evol Microbiol ; 66(5): 2090-2098, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26928956

RESUMO

Two slow-growing, Gram-negative, non-motile, non-spore-forming, coccoid bacteria (strains F60T and F965), isolated in Austria from mandibular lymph nodes of two red foxes (Vulpes vulpes), were subjected to a polyphasic taxonomic analysis. In a recent study, both isolates were assigned to the genus Brucella but could not be attributed to any of the existing species. Hence, we have analysed both strains in further detail to determine their exact taxonomic position and genetic relatedness to other members of the genus Brucella. The genome sizes of F60T and F965 were 3 236 779 and 3 237 765 bp, respectively. Each genome consisted of two chromosomes, with a DNA G+C content of 57.2 %. A genome-to-genome distance of >80 %, an average nucleotide identity (ANI) of 97 % and an average amino acid identity (AAI) of 98 % compared with the type species Brucella melitensis confirmed affiliation to the genus. Remarkably, 5 % of the entire genetic information of both strains was of non-Brucella origin, including as-yet uncharacterized bacteriophages and insertion sequences as well as ABC transporters and other genes of metabolic function from various soil-living bacteria. Core-genome-based phylogenetic reconstructions placed the novel species well separated from all hitherto-described species of the genus Brucella, forming a long-branched sister clade to the classical species of Brucella. In summary, based on phenotypic and molecular data, we conclude that strains F60T and F965 are members of a novel species of the genus Brucella, for which the name Brucella vulpis sp. nov. is proposed, with the type strain F60T ( = BCCN 09-2T = DSM 101715T).


Assuntos
Brucella/classificação , Raposas/microbiologia , Linfonodos/microbiologia , Filogenia , Animais , Áustria , Técnicas de Tipagem Bacteriana , Tipagem de Bacteriófagos , Composição de Bases , Brucella/genética , Brucella/isolamento & purificação , DNA Bacteriano/genética , Análise de Sequência de DNA
4.
Int J Syst Evol Microbiol ; 64(Pt 12): 4120-4128, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25242540

RESUMO

Two Gram-negative, non-motile, non-spore-forming coccoid bacteria (strains F8/08-60(T) and F8/08-61) isolated from clinical specimens obtained from baboons (Papio spp.) that had delivered stillborn offspring were subjected to a polyphasic taxonomic study. On the basis of 16S rRNA gene sequence similarities, both strains, which possessed identical sequences, were assigned to the genus Brucella. This placement was confirmed by extended multilocus sequence analysis (MLSA), where both strains possessed identical sequences, and whole-genome sequencing of a representative isolate. All of the above analyses suggested that the two strains represent a novel lineage within the genus Brucella. The strains also possessed a unique profile when subjected to the phenotyping approach classically used to separate species of the genus Brucella, reacting only with Brucella A monospecific antiserum, being sensitive to the dyes thionin and fuchsin, being lysed by bacteriophage Wb, Bk2 and Fi phage at routine test dilution (RTD) but only partially sensitive to bacteriophage Tb, and with no requirement for CO2 and no production of H2S but strong urease activity. Biochemical profiling revealed a pattern of enzyme activity and metabolic capabilities distinct from existing species of the genus Brucella. Molecular analysis of the omp2 locus genes showed that both strains had a novel combination of two highly similar omp2b gene copies. The two strains shared a unique fingerprint profile of the multiple-copy Brucella-specific element IS711. Like MLSA, a multilocus variable number of tandem repeat analysis (MLVA) showed that the isolates clustered together very closely, but represent a distinct group within the genus Brucella. Isolates F8/08-60(T) and F8/08-61 could be distinguished clearly from all known species of the genus Brucella and their biovars by both phenotypic and molecular properties. Therefore, by applying the species concept for the genus Brucella suggested by the ICSP Subcommittee on the Taxonomy of Brucella, they represent a novel species within the genus Brucella, for which the name Brucella papionis sp. nov. is proposed, with the type strain F8/08-60(T) ( = NCTC 13660(T) = CIRMBP 0958(T)).


Assuntos
Brucella/classificação , Papio/microbiologia , Filogenia , Animais , Técnicas de Tipagem Bacteriana , Brucella/genética , Brucella/isolamento & purificação , DNA Bacteriano/genética , Feminino , Genes Bacterianos , Dados de Sequência Molecular , Tipagem de Sequências Multilocus , Hibridização de Ácido Nucleico , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
5.
Appl Environ Microbiol ; 80(5): 1570-9, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24362435

RESUMO

Brucella taxonomy is perpetually being reshuffled, at both the species and intraspecies levels. Biovar 7 of Brucella abortus was suspended from the Approved Lists of Bacterial Names Brucella classification in 1988, because of unpublished evidence that the reference strain 63/75 was a mixture of B. abortus biovars 3 and 5. To formally clarify the situation, all isolates previously identified as B. abortus bv. 7 in the AHVLA and ANSES strain collections were characterized by classical microbiological and multiple molecular approaches. Among the 14 investigated strains, including strain 63/75, only four strains, isolated in Kenya, Turkey, and Mongolia, were pure and showed a phenotypic profile in agreement with the former biovar 7, particularly agglutination with both anti-A/anti-M monospecific sera. These results were strengthened by molecular strategies. Indeed, genus- and species-specific methods allowed confirmation that the four pure strains belonged to the B. abortus species. The combination of most approaches excluded their affiliation with the recognized biovars (biovars 1 to 6 and 9), while some suggested that they were close to biovar 3.These assays were complemented by phylogenetic and/or epidemiological methods, such as multilocus sequence analysis (MLSA) and variable-number tandem repeat (VNTR) analysis. The results of this polyphasic investigation allow us to propose the reintroduction of biovar 7 into the Brucella classification, with at least three representative strains. Interestingly, the Kenyan strain, sharing the same biovar 7 phenotype, was genetically divergent from other three isolates. These discrepancies illustrate the complexity of Brucella taxonomy. This study suggests that worldwide collections could include strains misidentified as B. abortus bv. 7, and it highlights the need to verify their real taxonomic position.


Assuntos
Brucella abortus/classificação , Tipagem Molecular/métodos , Sorotipagem/métodos , Técnicas de Tipagem Bacteriana , Brucella abortus/genética , Brucella abortus/isolamento & purificação , Brucella abortus/fisiologia
6.
Appl Environ Microbiol ; 78(5): 1534-43, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22210211

RESUMO

Brucellosis is one of the major bacterial zoonoses worldwide. In the past decade, an increasing number of atypical Brucella strains and species have been described. Brucella microti in particular has attracted attention, because this species not only infects mammalian hosts but also persists in soil. An environmental reservoir may pose a new public health risk, leading to the reemergence of brucellosis. In a polyphasic approach, comprising conventional microbiological techniques and extensive biochemical and molecular techniques, all currently available Brucella microti strains were characterized. While differing in their natural habitats and host preferences, B. microti isolates were found to possess identical 16S rRNA, recA, omp2a, and omp2b gene sequences and identical multilocus sequence analysis (MLSA) profiles at 21 different genomic loci. Only highly variable microsatellite markers of multiple-locus variable-number tandem repeat (VNTR) analysis comprising 16 loci (MLVA-16) showed intraspecies discriminatory power. In contrast, biotyping demonstrated striking differences within the genetically homologous species. The majority of the mammalian isolates agglutinated only with monospecific anti-M serum, whereas soil isolates agglutinated with anti-A, anti-M, and anti-R sera. Bacteria isolated from animal sources were lysed by phages F1, F25, Tb, BK2, Iz, and Wb, whereas soil isolates usually were not. Rough strains of environmental origin were lysed only by phage R/C. B. microti exhibited high metabolic activities similar to those of closely related soil organisms, such as Ochrobactrum spp. Each strain was tested with 93 different substrates and showed an individual metabolic profile. In summary, the adaptation of Brucella microti to a specific habitat or host seems to be a matter of gene regulation rather than a matter of gene configuration.


Assuntos
Biodiversidade , Brucella/classificação , Animais , Técnicas de Tipagem Bacteriana , Bacteriólise , Bacteriófagos/crescimento & desenvolvimento , Brucella/genética , Brucella/isolamento & purificação , Brucella/fisiologia , Brucelose/microbiologia , Brucelose/veterinária , Genes Bacterianos , Genótipo , Mamíferos/microbiologia , Tipagem de Sequências Multilocus , Fenótipo , Análise de Sequência de DNA , Microbiologia do Solo
7.
Int J Syst Evol Microbiol ; 58(Pt 2): 375-82, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18218934

RESUMO

Two Gram-negative, non-motile, non-spore-forming, coccoid bacteria (strains CCM 4915(T) and CCM 4916), isolated from clinical specimens of the common vole Microtus arvalis during an epizootic in the Czech Republic in 2001, were subjected to a polyphasic taxonomic study. On the basis of 16S rRNA (rrs) and recA gene sequence similarities, both isolates were allocated to the genus Brucella. Affiliation to Brucella was confirmed by DNA-DNA hybridization studies. Both strains reacted equally with Brucella M-monospecific antiserum and were lysed by the bacteriophages Tb, Wb, F1 and F25. Biochemical profiling revealed a high degree of enzyme activity and metabolic capabilities not observed in other Brucella species. The omp2a and omp2b genes of isolates CCM 4915(T) and CCM 4916 were indistinguishable. Whereas omp2a was identical to omp2a of brucellae from certain pinniped marine mammals, omp2b clustered with omp2b of terrestrial brucellae. Analysis of the bp26 gene downstream region identified strains CCM 4915(T) and CCM 4916 as Brucella of terrestrial origin. Both strains harboured five to six copies of the insertion element IS711, displaying a unique banding pattern as determined by Southern blotting. In comparative multilocus VNTR (variable-number tandem-repeat) analysis (MLVA) with 296 different genotypes, the two isolates grouped together, but formed a separate cluster within the genus Brucella. Multilocus sequence typing (MLST) analysis using nine different loci also placed the two isolates separately from other brucellae. In the IS711-based AMOS PCR, a 1900 bp fragment was generated with the Brucella ovis-specific primers, revealing that the insertion element had integrated between a putative membrane protein and cboL, encoding a methyltransferase, an integration site not observed in other brucellae. Isolates CCM 4915(T) and CCM 4916 could be clearly distinguished from all known Brucella species and their biovars by means of both their phenotypic and molecular properties, and therefore represent a novel species within the genus Brucella, for which the name Brucella microti sp. nov. with the type strain CCM 4915(T) (=BCCN 07-01(T)=CAPM 6434(T)) is proposed.


Assuntos
Arvicolinae/microbiologia , Brucella/classificação , Brucella/isolamento & purificação , Brucelose/veterinária , Doenças dos Roedores/microbiologia , Animais , Proteínas da Membrana Bacteriana Externa/genética , Técnicas de Tipagem Bacteriana , Brucella/genética , Brucella/fisiologia , Brucelose/microbiologia , DNA Bacteriano/análise , Genes de RNAr , Genótipo , Repetições Minissatélites/genética , Dados de Sequência Molecular , Hibridização de Ácido Nucleico , Fenótipo , Filogenia , RNA Ribossômico 16S/genética , Recombinases Rec A/genética , Análise de Sequência de DNA , Especificidade da Espécie
8.
J Bacteriol ; 186(14): 4740-7, 2004 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15231806

RESUMO

Although Streptococcus suis is an economically important pathogen of pigs and an occasional cause of zoonotic infections of humans knowledge of crucial virulence factors, and as a consequence targets for therapeutic or prophylactic intervention, remains limited. Here we describe a detailed study of the distribution, diversity, and in vitro expression of hyaluronate lyase, a protein implicated as a virulence factor of many mucosal pathogens. The gene encoding hyaluronate lyase, hyl, was present in all 309 bona fide S. suis isolates examined representing diverse serotypes, geographic sources, and clinical backgrounds. Examination of the genetic diversity of hyl by RFLP and sequence analysis indicated a pattern of diversity shared by many gram-positive surface proteins with a variable 5' region encoding the most distal cell surface-exposed regions of the protein and a much more conserved 3' region encoding domains more closely associated with the bacterial cell. Variation occurs by several mechanisms, including the accumulation of point mutations and deletion and insertion events, and there is clear evidence that genetic recombination has contributed to molecular variation in this gene. Despite the ubiquitous presence of hyl, the corresponding enzyme activity was detected in fewer than 30% of the 309 isolates. In several cases this lack of activity correlates with the presence of mutations (either sequence duplications or point mutations) within hyl that result in a truncated polypeptide. There is a striking absence of hyaluronate lyase activity in a large majority of isolates from classic S. suis invasive disease, indicating that this protein is probably not a crucial virulence factor, although activity is present in significantly higher numbers of isolates associated with pneumonia.


Assuntos
Variação Genética , Polissacarídeo-Liases/genética , Streptococcus suis/enzimologia , Streptococcus suis/genética , Fatores de Virulência/genética , Animais , Sequência de Bases , Impressões Digitais de DNA , DNA Bacteriano/análise , DNA Bacteriano/química , DNA Bacteriano/isolamento & purificação , Proteínas de Membrana/genética , Dados de Sequência Molecular , Mutação Puntual , Reação em Cadeia da Polimerase , Polimorfismo de Fragmento de Restrição , Polissacarídeo-Liases/metabolismo , Recombinação Genética , Alinhamento de Sequência , Deleção de Sequência , Infecções Estreptocócicas/microbiologia , Infecções Estreptocócicas/veterinária , Streptococcus suis/isolamento & purificação , Streptococcus suis/patogenicidade , Suínos , Doenças dos Suínos/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA