Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Science ; 379(6636): 1023-1030, 2023 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-36893254

RESUMO

Cell-cell interactions in the central nervous system play important roles in neurologic diseases. However, little is known about the specific molecular pathways involved, and methods for their systematic identification are limited. Here, we developed a forward genetic screening platform that combines CRISPR-Cas9 perturbations, cell coculture in picoliter droplets, and microfluidic-based fluorescence-activated droplet sorting to identify mechanisms of cell-cell communication. We used SPEAC-seq (systematic perturbation of encapsulated associated cells followed by sequencing), in combination with in vivo genetic perturbations, to identify microglia-produced amphiregulin as a suppressor of disease-promoting astrocyte responses in multiple sclerosis preclinical models and clinical samples. Thus, SPEAC-seq enables the high-throughput systematic identification of cell-cell communication mechanisms.


Assuntos
Anfirregulina , Astrócitos , Comunicação Autócrina , Testes Genéticos , Técnicas Analíticas Microfluídicas , Microglia , Astrócitos/fisiologia , Testes Genéticos/métodos , Ensaios de Triagem em Larga Escala , Técnicas Analíticas Microfluídicas/métodos , Microglia/fisiologia , Anfirregulina/genética , Comunicação Autócrina/genética , Expressão Gênica , Humanos
2.
Nat Rev Cancer ; 21(12): 786-802, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34584243

RESUMO

Brain cancers carry bleak prognoses, with therapeutic advances helping only a minority of patients over the past decade. The brain tumour microenvironment (TME) is highly immunosuppressive and differs from that of other malignancies as a result of the glial, neural and immune cell populations that constitute it. Until recently, the study of the brain TME was limited by the lack of methods to de-convolute this complex system at the single-cell level. However, novel technical approaches have begun to reveal the immunosuppressive and tumour-promoting properties of distinct glial and myeloid cell populations in the TME, identifying new therapeutic opportunities. Here, we discuss the immune modulatory functions of microglia, monocyte-derived macrophages and astrocytes in brain metastases and glioma, highlighting their disease-associated heterogeneity and drawing from the insights gained by studying these malignancies and other neurological disorders. Lastly, we consider potential approaches for the therapeutic modulation of the brain TME.


Assuntos
Neoplasias Encefálicas , Glioma , Encéfalo , Neoplasias Encefálicas/patologia , Glioma/patologia , Humanos , Microglia/patologia , Microambiente Tumoral
3.
Annu Rev Immunol ; 39: 251-277, 2021 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-33556248

RESUMO

The immune system of the central nervous system (CNS) consists primarily of innate immune cells. These are highly specialized macrophages found either in the parenchyma, called microglia, or at the CNS interfaces, such as leptomeningeal, perivascular, and choroid plexus macrophages. While they were primarily thought of as phagocytes, their function extends well beyond simple removal of cell debris during development and diseases. Brain-resident innate immune cells were found to be plastic, long-lived, and host to an outstanding number of risk genes for multiple pathologies. As a result, they are now considered the most suitable targets for modulating CNS diseases. Additionally, recent single-cell technologies enhanced our molecular understanding of their origins, fates, interactomes, and functional cell statesduring health and perturbation. Here, we review the current state of our understanding and challenges of the myeloid cell biology in the CNS and treatment options for related diseases.


Assuntos
Sistema Nervoso Central , Microglia , Animais , Encéfalo , Humanos , Macrófagos , Células Mieloides
4.
Nature ; 590(7846): 473-479, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33408417

RESUMO

Astrocytes are glial cells that are abundant in the central nervous system (CNS) and that have important homeostatic and disease-promoting functions1. However, little is known about the homeostatic anti-inflammatory activities of astrocytes and their regulation. Here, using high-throughput flow cytometry screening, single-cell RNA sequencing and CRISPR-Cas9-based cell-specific in vivo genetic perturbations in mice, we identify a subset of astrocytes that expresses the lysosomal protein LAMP12 and the death receptor ligand TRAIL3. LAMP1+TRAIL+ astrocytes limit inflammation in the CNS by inducing T cell apoptosis through TRAIL-DR5 signalling. In homeostatic conditions, the expression of TRAIL in astrocytes is driven by interferon-γ (IFNγ) produced by meningeal natural killer (NK) cells, in which IFNγ expression is modulated by the gut microbiome. TRAIL expression in astrocytes is repressed by molecules produced by T cells and microglia in the context of inflammation. Altogether, we show that LAMP1+TRAIL+ astrocytes limit CNS inflammation by inducing T cell apoptosis, and that this astrocyte subset is maintained by meningeal IFNγ+ NK cells that are licensed by the microbiome.


Assuntos
Astrócitos/imunologia , Microbioma Gastrointestinal/imunologia , Inflamação/prevenção & controle , Interferon gama/imunologia , Células Matadoras Naturais/imunologia , Proteínas de Membrana Lisossomal/metabolismo , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Animais , Apoptose , Astrócitos/metabolismo , Biomarcadores , Sistema Nervoso Central/imunologia , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/prevenção & controle , Feminino , Homeostase , Humanos , Inflamação/imunologia , Meninges/citologia , Meninges/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Linfócitos T/citologia , Linfócitos T/imunologia
5.
Nature ; 586(7829): 417-423, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32999463

RESUMO

Microglia, the brain's resident macrophages, help to regulate brain function by removing dying neurons, pruning non-functional synapses, and producing ligands that support neuronal survival1. Here we show that microglia are also critical modulators of neuronal activity and associated behavioural responses in mice. Microglia respond to neuronal activation by suppressing neuronal activity, and ablation of microglia amplifies and synchronizes the activity of neurons, leading to seizures. Suppression of neuronal activation by microglia occurs in a highly region-specific fashion and depends on the ability of microglia to sense and catabolize extracellular ATP, which is released upon neuronal activation by neurons and astrocytes. ATP triggers the recruitment of microglial protrusions and is converted by the microglial ATP/ADP hydrolysing ectoenzyme CD39 into AMP; AMP is then converted into adenosine by CD73, which is expressed on microglia as well as other brain cells. Microglial sensing of ATP, the ensuing microglia-dependent production of adenosine, and the adenosine-mediated suppression of neuronal responses via the adenosine receptor A1R are essential for the regulation of neuronal activity and animal behaviour. Our findings suggest that this microglia-driven negative feedback mechanism operates similarly to inhibitory neurons and is essential for protecting the brain from excessive activation in health and disease.


Assuntos
Retroalimentação Fisiológica , Microglia/fisiologia , Inibição Neural , Neurônios/fisiologia , 5'-Nucleotidase/metabolismo , Potenciais de Ação , Adenosina/metabolismo , Monofosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Antígenos CD/metabolismo , Apirase/metabolismo , Cálcio/metabolismo , Corpo Estriado/citologia , Corpo Estriado/fisiologia , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microglia/citologia , Inibição Neural/genética , Receptor A1 de Adenosina/metabolismo , Receptor Muscarínico M3/genética , Receptor Muscarínico M3/metabolismo , Fatores de Tempo
6.
Nat Neurosci ; 23(8): 939-951, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32690969

RESUMO

Zika virus (ZIKV) is a flavivirus linked to multiple birth defects including microcephaly, known as congenital ZIKV syndrome. The identification of host factors involved in ZIKV replication may guide efficacious therapeutic interventions. In genome-wide transcriptional studies, we found that ZIKV infection triggers aryl hydrocarbon receptor (AHR) activation. Specifically, ZIKV infection induces kynurenine (Kyn) production, which activates AHR, limiting the production of type I interferons (IFN-I) involved in antiviral immunity. Moreover, ZIKV-triggered AHR activation suppresses intrinsic immunity driven by the promyelocytic leukemia (PML) protein, which limits ZIKV replication. AHR inhibition suppressed the replication of multiple ZIKV strains in vitro and also suppressed replication of the related flavivirus dengue. Finally, AHR inhibition with a nanoparticle-delivered AHR antagonist or an inhibitor developed for human use limited ZIKV replication and ameliorated newborn microcephaly in a murine model. In summary, we identified AHR as a host factor for ZIKV replication and PML protein as a driver of anti-ZIKV intrinsic immunity.


Assuntos
Receptores de Hidrocarboneto Arílico/metabolismo , Replicação Viral , Zika virus/metabolismo , Animais , Chlorocebus aethiops , Células Hep G2 , Humanos , Células Vero , Infecção por Zika virus/metabolismo
7.
Nature ; 578(7796): 593-599, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32051591

RESUMO

Multiple sclerosis is a chronic inflammatory disease of the CNS1. Astrocytes contribute to the pathogenesis of multiple sclerosis2, but little is known about the heterogeneity of astrocytes and its regulation. Here we report the analysis of astrocytes in multiple sclerosis and its preclinical model experimental autoimmune encephalomyelitis (EAE) by single-cell RNA sequencing in combination with cell-specific Ribotag RNA profiling, assay for transposase-accessible chromatin with sequencing (ATAC-seq), chromatin immunoprecipitation with sequencing (ChIP-seq), genome-wide analysis of DNA methylation and in vivo CRISPR-Cas9-based genetic perturbations. We identified astrocytes in EAE and multiple sclerosis that were characterized by decreased expression of NRF2 and increased expression of MAFG, which cooperates with MAT2α to promote DNA methylation and represses antioxidant and anti-inflammatory transcriptional programs. Granulocyte-macrophage colony-stimulating factor (GM-CSF) signalling in astrocytes drives the expression of MAFG and MAT2α and pro-inflammatory transcriptional modules, contributing to CNS pathology in EAE and, potentially, multiple sclerosis. Our results identify candidate therapeutic targets in multiple sclerosis.


Assuntos
Astrócitos/patologia , Sistema Nervoso Central/patologia , Inflamação/patologia , Fator de Transcrição MafG/genética , Proteínas Repressoras/genética , Animais , Antioxidantes/metabolismo , Astrócitos/metabolismo , Sistema Nervoso Central/metabolismo , Metilação de DNA , Encefalomielite Autoimune Experimental/genética , Encefalomielite Autoimune Experimental/patologia , Feminino , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Humanos , Inflamação/genética , Masculino , Metionina Adenosiltransferase/genética , Camundongos , Esclerose Múltipla/genética , Esclerose Múltipla/patologia , Fator 2 Relacionado a NF-E2/genética , Análise de Sequência de RNA , Transdução de Sinais , Transcrição Gênica
9.
Nat Neurosci ; 22(5): 729-740, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30962630

RESUMO

Tumor-associated macrophages (TAMs) play an important role in the immune response to cancer, but the mechanisms by which the tumor microenvironment controls TAMs and T cell immunity are not completely understood. Here we report that kynurenine produced by glioblastoma cells activates aryl hydrocarbon receptor (AHR) in TAMs to modulate their function and T cell immunity. AHR promotes CCR2 expression, driving TAM recruitment in response to CCL2. AHR also drives the expression of KLF4 and suppresses NF-κB activation in TAMs. Finally, AHR drives the expression of the ectonucleotidase CD39 in TAMs, which promotes CD8+ T cell dysfunction by producing adenosine in cooperation with CD73. In humans, the expression of AHR and CD39 was highest in grade 4 glioma, and high AHR expression was associated with poor prognosis. In summary, AHR and CD39 expressed in TAMs participate in the regulation of the immune response in glioblastoma and constitute potential targets for immunotherapy.


Assuntos
Antígenos CD/metabolismo , Apirase/metabolismo , Neoplasias Encefálicas/imunologia , Glioblastoma/imunologia , Cinurenina/metabolismo , Macrófagos/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo , Linfócitos T/metabolismo , Animais , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Progressão da Doença , Glioblastoma/metabolismo , Humanos , Fator 4 Semelhante a Kruppel , Receptores de Lipopolissacarídeos/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , MicroRNAs/metabolismo , Fator de Transcrição STAT1 , Fator de Transcrição STAT3/metabolismo , Linfócitos T/imunologia , Microambiente Tumoral
10.
Artigo em Inglês | MEDLINE | ID: mdl-29358321

RESUMO

Astrocytes play complex roles in health and disease. Here, we review recent findings on molecular pathways that control astrocyte function in multiple sclerosis (MS) as well as new tools for their investigation. In particular, we describe positive and negative regulators of astrocyte-mediated pathogenesis in MS, such as sphingolipid metabolism and aryl hydrocarbon receptor signaling, respectively. In addition, we also discuss the issue of astrocyte heterogeneity and its relevance for the contribution of astrocytes to MS pathogenesis. Finally, we discuss how new genomic tools could transform the study of astrocyte biology in MS.


Assuntos
Astrócitos/imunologia , Esclerose Múltipla/imunologia , Astrócitos/metabolismo , Citocinas/imunologia , Citotoxicidade Imunológica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Esclerose Múltipla/metabolismo , Esclerose Múltipla/patologia , Transdução de Sinais/imunologia
11.
PLoS Genet ; 13(4): e1006712, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28379965

RESUMO

Somatosensory information from the periphery is routed to the spinal cord through centrally-projecting sensory axons that cross into the central nervous system (CNS) via the dorsal root entry zone (DREZ). The glial cells that ensheath these axons ensure rapid propagation of this information. Despite the importance of this glial-axon arrangement, how this afferent nerve is assembled during development is unknown. Using in vivo, time-lapse imaging we show that as centrally-projecting pioneer axons from dorsal root ganglia (DRG) enter the spinal cord, they initiate expression of the cytokine TNFalpha. This induction coincides with ensheathment of these axons by associated glia via a TNF receptor 2 (TNFR2)-mediated process. This work identifies a signaling cascade that mediates peripheral glial-axon interactions and it functions to ensure that DRG afferent projections are ensheathed after pioneer axons complete their navigation, which promotes efficient somatosensory neural function.


Assuntos
Neuroglia/metabolismo , Receptores Tipo II do Fator de Necrose Tumoral/genética , Raízes Nervosas Espinhais/metabolismo , Fator de Necrose Tumoral alfa/genética , Animais , Astrócitos/metabolismo , Axônios/metabolismo , Sistema Nervoso Central/crescimento & desenvolvimento , Sistema Nervoso Central/metabolismo , Gânglios Espinais , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Neuroglia/citologia , Neurônios Aferentes/metabolismo , Sistema Nervoso Periférico/crescimento & desenvolvimento , Sistema Nervoso Periférico/metabolismo , Receptores Tipo II do Fator de Necrose Tumoral/biossíntese , Transdução de Sinais , Medula Espinal/crescimento & desenvolvimento , Medula Espinal/metabolismo , Raízes Nervosas Espinhais/crescimento & desenvolvimento , Fator de Necrose Tumoral alfa/biossíntese , Peixe-Zebra/genética , Peixe-Zebra/crescimento & desenvolvimento
12.
Trends Endocrinol Metab ; 28(6): 428-436, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28318896

RESUMO

Glioblastoma (GBM) progression is associated with metabolic remodeling in both glioma and immune cells, resulting in the use of aerobic glycolysis as the main source of energy and biosynthetic molecules. The transcription factor hypoxia-inducible factor (HIF)-1α drives this metabolic reorganization. Oxygen levels, as well as other factors, control the activity of HIF-1α. In addition, the ligand-activated transcription factor aryl hydrocarbon receptor (AHR) modulates tumor-specific immunity and can also participate in metabolic remodeling. AHR activity is regulated by tryptophan derivatives present in the tumor microenvironment. Thus, the tumor microenvironment and signaling via HIF-1α and AHR regulate the metabolism of gliomas and immune cells, modulating tumor-specific immunity and, consequently, tumor growth. Here, we review the roles of HIF-1α and AHR in cancer and immune cell metabolism in GBM.


Assuntos
Glioblastoma/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo , Regulação da Expressão Gênica , Glioblastoma/genética , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Oxigênio/metabolismo , Receptores de Hidrocarboneto Arílico/genética
13.
Neuron ; 82(3): 587-602, 2014 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-24811380

RESUMO

Primary nociceptors relay painful touch information from the periphery to the spinal cord. Although it is established that signals generated by receptor tyrosine kinases TrkA and Ret coordinate the development of distinct nociceptive circuits, mechanisms modulating TrkA or Ret pathways in developing nociceptors are unknown. We have identified tumor necrosis factor (TNF) receptor 1 (TNFR1) as a critical modifier of TrkA and Ret signaling in peptidergic and nonpeptidergic nociceptors. Specifically, TrkA+ peptidergic nociceptors require TNF-α-TNFR1 forward signaling to suppress nerve growth factor (NGF)-mediated neurite growth, survival, excitability, and differentiation. Conversely, TNFR1-TNF-α reverse signaling augments the neurite growth and excitability of Ret+ nonpeptidergic nociceptors. The developmental and functional nociceptive defects associated with loss of TNFR1 signaling manifest behaviorally as lower pain thresholds caused by increased sensitivity to NGF. Thus, TNFR1 exerts a dual role in nociceptor information processing by suppressing TrkA and enhancing Ret signaling in peptidergic and nonpeptidergic nociceptors, respectively.


Assuntos
Nociceptores/fisiologia , Medição da Dor/métodos , Receptores Tipo I de Fatores de Necrose Tumoral/fisiologia , Transdução de Sinais/fisiologia , Fator de Necrose Tumoral alfa/fisiologia , Animais , Sobrevivência Celular/fisiologia , Células Cultivadas , Regulação para Baixo/fisiologia , Camundongos , Camundongos da Linhagem 129 , Camundongos Knockout , Neurônios/fisiologia , Proteínas Proto-Oncogênicas c-ret/fisiologia , Receptor trkA/antagonistas & inibidores , Receptor trkA/fisiologia , Regulação para Cima/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA