Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(11)2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38892205

RESUMO

Understanding the factors which control endothelial cell (EC) function and angiogenesis is crucial for developing the horse as a disease model, but equine ECs remain poorly studied. In this study, we have optimised methods for the isolation and culture of equine aortic endothelial cells (EAoECs) and characterised their angiogenic functions in vitro. Mechanical dissociation, followed by magnetic purification using an anti-VE-cadherin antibody, resulted in EC-enriched cultures suitable for further study. Fibroblast growth factor 2 (FGF2) increased the EAoEC proliferation rate and stimulated scratch wound closure and tube formation by EAoECs on the extracellular matrix. Pharmacological inhibitors of FGF receptor 1 (FGFR1) (SU5402) or mitogen-activated protein kinase (MEK) (PD184352) blocked FGF2-induced extracellular signal-regulated kinase 1/2 (ERK1/2) phosphorylation and functional responses, suggesting that these are dependent on FGFR1/MEK-ERK signalling. In marked contrast, vascular endothelial growth factor-A (VEGF-A) had no effect on EAoEC proliferation, migration, or tubulogenesis and did not promote ERK1/2 phosphorylation, indicating a lack of sensitivity to this classical pro-angiogenic growth factor. Gene expression analysis showed that unlike human ECs, FGFR1 is expressed by EAoECs at a much higher level than both VEGF receptor (VEGFR)1 and VEGFR2. These results suggest a predominant role for FGF2 versus VEGF-A in controlling the angiogenic functions of equine ECs. Collectively, our novel data provide a sound basis for studying angiogenic processes in horses and lay the foundations for comparative studies of EC biology in horses versus humans.


Assuntos
Proliferação de Células , Células Endoteliais , Fator 2 de Crescimento de Fibroblastos , Neovascularização Fisiológica , Fator A de Crescimento do Endotélio Vascular , Animais , Fator 2 de Crescimento de Fibroblastos/metabolismo , Fator 2 de Crescimento de Fibroblastos/farmacologia , Cavalos , Células Endoteliais/metabolismo , Células Endoteliais/efeitos dos fármacos , Neovascularização Fisiológica/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/farmacologia , Proliferação de Células/efeitos dos fármacos , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo , Movimento Celular/efeitos dos fármacos , Células Cultivadas , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Fosforilação/efeitos dos fármacos
2.
Bone ; 176: 116868, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37549801

RESUMO

Extracellular pyrophosphate (PPi) is well known for its fundamental role as a physiochemical mineralisation inhibitor. However, information about its direct actions on bone cells remains limited. This study shows that PPi decreased osteoclast formation and resorptive activity by ≤50 %. These inhibitory actions were associated with reduced expression of genes involved in osteoclastogenesis (Tnfrsf11a, Dcstamp) and bone resorption (Ctsk, Car2, Acp5). In osteoblasts, PPi present for the entire (0-21 days) or latter stages of culture (7-21/14-21 days) decreased bone mineralisation by ≤95 %. However, PPi present for the differentiation phase only (0-7/0-14 days) increased bone formation (≤70 %). Prolonged treatment with PPi resulted in earlier matrix deposition and increased soluble collagen levels (≤2.3-fold). Expression of osteoblast (RUNX2, Bglap) and early osteocyte (E11, Dmp1) genes along with mineralisation inhibitors (Spp1, Mgp) was increased by PPi (≤3-fold). PPi levels are regulated by tissue non-specific alkaline phosphatase (TNAP) and ecto-nucleotide pyrophosphatase/phosphodiesterase 1 (NPP1). PPi reduced NPP1 expression in both cell types whereas TNAP expression (≤2.5-fold) and activity (≤35 %) were increased in osteoblasts. Breakdown of extracellular ATP by NPP1 represents a key source of PPi. ATP release from osteoclasts and osteoblasts was decreased ≤60 % by PPi and by a selective TNAP inhibitor (CAS496014-12-2). Pertussis toxin, which prevents Gαi subunit activation, was used to investigate whether G-protein coupled receptor (GPCR) signalling mediates the effects of PPi. The actions of PPi on bone mineralisation, collagen production, ATP release, gene/protein expression and osteoclast formation were abolished or attenuated by pertussis toxin. Together these findings show that PPi, modulates differentiation, function and gene expression in osteoblasts and osteoclasts. The ability of PPi to alter ATP release and NPP1/TNAP expression and activity indicates that cells can detect PPi levels and respond accordingly. Our data also raise the possibility that some actions of PPi on bone cells could be mediated by a Gαi-linked GPCR.


Assuntos
Difosfatos , Osteoclastos , Osteoclastos/metabolismo , Difosfatos/farmacologia , Toxina Pertussis/metabolismo , Toxina Pertussis/farmacologia , Osteoblastos/metabolismo , Colágeno/metabolismo , Trifosfato de Adenosina/metabolismo , Fosfatase Alcalina/metabolismo
3.
Methods Mol Biol ; 2475: 197-204, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35451758

RESUMO

Angiogenesis is essential for wound healing and regeneration and plays a significant role in several pathologies including cancer and atherosclerosis. In vitro assays offer simple and powerful tools for investigating the regulation of the angiogenic functions of primary endothelial cells (ECs) before moving to in vivo studies. The classic in vitro two-dimensional angiogenesis assay utilizes Basement Membrane Extract (BME) to study the differentiation and sprouting of ECs over a 24-h period. The protocol described here details a thin layer BME adaptation of the angiogenesis assay requiring significantly less BME and carried out in 96-well plates, allowing for a larger data yield at a greatly reduced cost, while maintaining the robustness of an assay used extensively over the past three decades.


Assuntos
Neovascularização Patológica , Neovascularização Fisiológica , Bioensaio , Diferenciação Celular , Células Endoteliais da Veia Umbilical Humana , Humanos , Neovascularização Fisiológica/fisiologia
4.
J Cell Physiol ; 237(1): 1070-1086, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34658034

RESUMO

Arterial medial calcification (AMC) is the deposition of calcium phosphate in the arteries. AMC is widely thought to share similarities with physiological bone formation; however, emerging evidence suggests several key differences between these processes. N-acetylcysteine (NAC) displays antioxidant properties and can generate hydrogen sulphide (H2 S) and glutathione (GSH) from its deacetylation to l-cysteine. This study found that NAC exerts divergent effects in vitro, increasing osteoblast differentiation and bone formation by up to 5.5-fold but reducing vascular smooth muscle cell (VSMC) calcification and cell death by up to 80%. In vivo, NAC reduced AMC in a site-specific manner by 25% but had no effect on the bone. The actions of l-cysteine and H2 S mimicked those of NAC; however, the effects of H2 S were much less efficacious than NAC and l-cysteine. Pharmacological inhibition of H2 S-generating enzymes did not alter the actions of NAC or l-cysteine; endogenous production of H2 S was also unaffected. In contrast, NAC and l-cysteine increased GSH levels in calcifying VSMCs and osteoblasts by up to 3-fold. This suggests that the beneficial actions of NAC are likely to be mediated via the breakdown of l-cysteine and the subsequent GSH generation. Together, these data show that while the molecular mechanisms driving the actions of NAC appear similar, the downstream effects on cell function differ significantly between osteoblasts and calcifying VSMCs. The ability of NAC to exert these differential actions further supports the notion that there are differences between the development of pathological AMC and physiological bone formation. NAC could represent a therapeutic option for treating AMC without exerting negative effects on bone.


Assuntos
Acetilcisteína , Sulfeto de Hidrogênio , Acetilcisteína/farmacologia , Artérias/metabolismo , Glutationa/metabolismo , Sulfeto de Hidrogênio/metabolismo , Sulfeto de Hidrogênio/farmacologia , Osteoblastos/metabolismo , Osteogênese
5.
Int J Mol Sci ; 22(3)2021 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-33499110

RESUMO

Patients harbouring mutations in genes encoding C-type natriuretic peptide (CNP; NPPC) or its receptor guanylyl cyclase B (GC-B, NPR2) suffer from severe growth phenotypes; loss-of-function mutations cause achondroplasia, whereas gain-of-function mutations cause skeletal overgrowth. Although most of the effects of CNP/GC-B on growth are mediated directly on bone, evidence suggests the natriuretic peptides may also affect anterior pituitary control of growth. Our previous studies described the expression of NPPC and NPR2 in a range of human pituitary tumours, normal human pituitary, and normal fetal human pituitary. However, the natriuretic peptide system in somatotropes has not been extensively explored. Here, we examine the expression and function of the CNP/GC-B system in rat GH3 somatolactotrope cell line and pituitary tumours from a cohort of feline hypersomatotropism (HST; acromegaly) patients. Using multiplex RT-qPCR, all three natriuretic peptides and their receptors were detected in GH3 cells. The expression of Nppc was significantly enhanced following treatment with either 100 nM TRH or 10 µM forskolin, yet only Npr1 expression was sensitive to forskolin stimulation; the effects of forskolin and TRH on Nppc expression were PKA- and MAPK-dependent, respectively. CNP stimulation of GH3 somatolactotropes significantly inhibited Esr1, Insr and Lepr expression, but dramatically enhanced cFos expression at the same time point. Oestrogen treatment significantly enhanced expression of Nppa, Nppc, Npr1, and Npr2 in GH3 somatolactotropes, but inhibited CNP-stimulated cGMP accumulation. Finally, transcripts for all three natriuretic peptides and receptors were expressed in feline pituitary tumours from patients with HST. NPPC expression was negatively correlated with pituitary tumour volume and SSTR5 expression, but positively correlated with D2R and GHR expression. Collectively, these data provide mechanisms that control expression and function of CNP in somatolactotrope cells, and identify putative transcriptional targets for CNP action in somatotropes.


Assuntos
Mutação , Peptídeo Natriurético Tipo C/metabolismo , Neoplasias Hipofisárias/metabolismo , Receptores do Fator Natriurético Atrial/metabolismo , Acromegalia/metabolismo , Animais , Gatos , Linhagem Celular , Colforsina/farmacologia , AMP Cíclico/metabolismo , GMP Cíclico/metabolismo , Estrogênios/metabolismo , Feminino , Masculino , Fenótipo , Hipófise/metabolismo , Ratos , Ratos Wistar , Hormônio Liberador de Tireotropina/farmacologia
6.
Purinergic Signal ; 15(3): 315-326, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31338672

RESUMO

Arterial medial calcification (AMC) has been associated with phenotypic changes in vascular smooth muscle cells (VSMCs) that reportedly makes them more osteoblast-like. Previous work has shown that ATP/UTP can inhibit AMC directly via P2 receptors and indirectly by NPP1-mediated hydrolysis to produce the mineralisation inhibitor, pyrophosphate (PPi). This study investigated the role of P2X receptors in the inhibitory effects of extracellular nucleotides on VSMC calcification. We found that Bz-ATP, α,ß-meATP and ß,γ-meATP inhibited calcification by up to 100%. Culture in a high-phosphate medium (2 mM) was associated with increased VSMC death and apoptosis; treatment with Bz-ATP, α,ß-meATP and ß,γ-meATP reduced apoptosis to levels seen in non-calcifying cells. Calcification was also associated with alterations in the protein levels of VSMC (e.g. SM22α and SMA) and osteoblast-associated (e.g. Runx2 and osteopontin) markers; Bz-ATP, α,ß-meATP and ß,γ-meATP attenuated these changes in protein expression. Long-term culture with Bz-ATP, α,ß-meATP and ß,γ-meATP resulted in lower extracellular ATP levels and an increased rate of ATP breakdown. P2X receptor antagonists failed to prevent the inhibitory effects of these analogues suggesting that they act via P2X receptor-independent mechanisms. In agreement, the breakdown products of α,ß-meATP and ß,γ-meATP (α,ß-meADP and methylene diphosphonate, respectively) also dose-dependently inhibited VSMC calcification. Furthermore, the actions of Bz-ATP, α,ß-meATP and ß,γ-meATP were unchanged in VSMCs isolated from NPP1-knockout mice, suggesting that the functional effects of these compounds do not involve NPP1-mediated generation of PPi. Together, these results indicate that the inhibitory effects of ATP analogues on VSMC calcification and apoptosis in vitro may be mediated, at least in part, by mechanisms that are independent of purinergic signalling and PPi.


Assuntos
Trifosfato de Adenosina/farmacologia , Calcinose/patologia , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/patologia , Trifosfato de Adenosina/análogos & derivados , Animais , Calcinose/metabolismo , Camundongos , Camundongos Knockout , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Diester Fosfórico Hidrolases/metabolismo , Pirofosfatases/metabolismo , Receptores Purinérgicos P2/metabolismo
7.
PLoS One ; 13(8): e0202577, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30138414

RESUMO

Chronic kidney disease (CKD) is common in both geriatric cats and aging humans, and is pathologically characterised by chronic tubulointerstitial inflammation and fibrosis in both species. Cats with CKD may represent a spontaneously occurring, non-rodent animal model of human disease, however little is known of feline renal cell biology. In other species, TGF-ß1 signalling in the proximal tubular epithelium is thought to play a key role in the initiation and progression of renal fibrosis. In this study, we first aimed to isolate and characterise feline proximal tubular epithelial cells (FPTEC), comparing them to human primary renal epithelial cells (HREC) and the human proximal tubular cell line HK-2. Secondly, we aimed to examine and compare the effect of human recombinant TGF-ß1 on cell proliferation, pro-apoptotic signalling and genes associated with epithelial-to-mesenchymal transition (EMT) in feline and human renal epithelial cells. FPTEC were successfully isolated from cadaverous feline renal tissue, and demonstrated a marker protein expression profile identical to that of HREC and HK-2. Exposure to TGF-ß1 (0-10 ng/ml) induced a concentration-dependent loss of epithelial morphology and alterations in gene expression consistent with the occurrence of partial EMT in all cell types. This was associated with transcription of downstream pro-fibrotic mediators, growth arrest in FPTEC and HREC (but not HK-2), and increased apoptotic signalling at high concentrations of TGF- ß1. These effects were inhibited by the ALK5 (TGF-ß1RI) antagonist SB431542 (5 µM), suggesting they are mediated via the ALK5/TGF-ß1RII receptor complex. Taken together, these results suggest that TGF-ß1 may be involved in epithelial cell dedifferentiation, growth arrest and apoptosis in feline CKD as in human disease, and that cats may be a useful, naturally occurring model of human CKD.


Assuntos
Fibrose/genética , Inflamação/genética , Rim/fisiopatologia , Insuficiência Renal Crônica/genética , Fator de Crescimento Transformador beta1/genética , Animais , Benzamidas/administração & dosagem , Gatos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Desdiferenciação Celular/efeitos dos fármacos , Células Cultivadas , Dioxóis/administração & dosagem , Modelos Animais de Doenças , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/patologia , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Fibrose/fisiopatologia , Humanos , Inflamação/fisiopatologia , Rim/efeitos dos fármacos , Túbulos Renais Proximais/metabolismo , Túbulos Renais Proximais/fisiopatologia , Receptor do Fator de Crescimento Transformador beta Tipo I/antagonistas & inibidores , Receptor do Fator de Crescimento Transformador beta Tipo I/genética , Insuficiência Renal Crônica/fisiopatologia , Transdução de Sinais , Fator de Crescimento Transformador beta1/administração & dosagem , Sistema Urinário/fisiopatologia
8.
Sci Rep ; 8(1): 6271, 2018 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-29674687

RESUMO

Although concern remains about the athero-thrombotic risk posed by cyclo-oxygenase (COX)-2-selective inhibitors, recent data implicates rofecoxib, while celecoxib appears equivalent to NSAIDs naproxen and ibuprofen. We investigated the hypothesis that celecoxib activates AMP kinase (AMPK) signalling to enhance vascular endothelial protection. In human arterial and venous endothelial cells (EC), and in contrast to ibuprofen and naproxen, celecoxib induced the protective protein heme oxygenase-1 (HO-1). Celecoxib derivative 2,5-dimethyl-celecoxib (DMC) which lacks COX-2 inhibition also upregulated HO-1, implicating a COX-2-independent mechanism. Celecoxib activated AMPKα(Thr172) and CREB-1(Ser133) phosphorylation leading to Nrf2 nuclear translocation. Importantly, these responses were not reproduced by ibuprofen or naproxen, while AMPKα silencing abrogated celecoxib-mediated CREB and Nrf2 activation. Moreover, celecoxib induced H-ferritin via the same pathway, and increased HO-1 and H-ferritin in the aortic endothelium of mice fed celecoxib (1000 ppm) or control chow. Functionally, celecoxib inhibited TNF-α-induced NF-κB p65(Ser536) phosphorylation by activating AMPK. This attenuated VCAM-1 upregulation via induction of HO-1, a response reproduced by DMC but not ibuprofen or naproxen. Similarly, celecoxib prevented IL-1ß-mediated induction of IL-6. Celecoxib enhances vascular protection via AMPK-CREB-Nrf2 signalling, a mechanism which may mitigate cardiovascular risk in patients prescribed celecoxib. Understanding NSAID heterogeneity and COX-2-independent signalling will ultimately lead to safer anti-inflammatory drugs.


Assuntos
Adenilato Quinase/metabolismo , Celecoxib/farmacologia , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Inibidores de Ciclo-Oxigenase 2/farmacologia , Endotélio Vascular/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/metabolismo , Transdução de Sinais/efeitos dos fármacos , Endotélio Vascular/citologia , Endotélio Vascular/enzimologia , Endotélio Vascular/metabolismo , Indução Enzimática , Heme Oxigenase-1/biossíntese , Células Endoteliais da Veia Umbilical Humana , Humanos , NF-kappa B/antagonistas & inibidores , Fosforilação , Fator de Necrose Tumoral alfa/metabolismo
9.
J Cell Physiol ; 233(4): 3230-3243, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-28976001

RESUMO

Arterial medial calcification (AMC) is thought to share some outward similarities to skeletal mineralization and has been associated with the transdifferentiation of vascular smooth muscle cells (VSMCs) to an osteoblast-like phenotype. ATP and UTP have previously been shown to inhibit bone mineralization. This investigation compared the effects of extracellular nucleotides on calcification in VSMCs with those seen in osteoblasts. ATP, UTP and the ubiquitous mineralization inhibitor, pyrophosphate (PPi ), dose dependently inhibited VSMC calcification by ≤85%. Culture of VSMCs in calcifying conditions was associated with an increase in apoptosis; treatment with ATP, UTP, and PPi reduced apoptosis to levels seen in non-calcifying cells. Extracellular nucleotides had no effect on osteoblast viability. Basal alkaline phosphatase (TNAP) activity was over 100-fold higher in osteoblasts than VSMCs. ATP and UTP reduced osteoblast TNAP activity (≤50%) but stimulated VSMC TNAP activity (≤88%). The effects of extracellular nucleotides on VSMC calcification, cell viability and TNAP activity were unchanged by deletion or inhibition of the P2Y2 receptor. Conversely, the actions of ATP/UTP on bone mineralization and TNAP activity were attenuated in osteoblasts lacking the P2Y2 receptor. Ecto-nucleotide pyrophosphatase/phosphodiesterase 1 (NPP1) hydrolyses ATP and UTP to produce PPi . In both VSMCs and osteoblasts, deletion of NPP1 blunted the inhibitory effects of extracellular nucleotides suggesting involvement of P2 receptor independent pathways. Our results show that although the overall functional effect of extracellular nucleotides on AMC and bone mineralization is similar there are clear differences in the cellular mechanisms mediating these actions.


Assuntos
Calcificação Fisiológica , Espaço Extracelular/metabolismo , Nucleotídeos/farmacologia , Túnica Média/patologia , Calcificação Vascular/patologia , Trifosfato de Adenosina/farmacologia , Fosfatase Alcalina/metabolismo , Animais , Apoptose/efeitos dos fármacos , Calcificação Fisiológica/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Difosfatos/farmacologia , Camundongos , Modelos Biológicos , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/enzimologia , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/metabolismo , Osteoblastos/efeitos dos fármacos , Osteoblastos/enzimologia , Diester Fosfórico Hidrolases/deficiência , Diester Fosfórico Hidrolases/metabolismo , Pirofosfatases/deficiência , Pirofosfatases/metabolismo , Receptores Purinérgicos P2/metabolismo , Uridina Trifosfato/farmacologia
10.
Antioxid Redox Signal ; 28(2): 110-130, 2018 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-28793782

RESUMO

AIMS: Deoxyribose-1-phosphate (dRP) is a proangiogenic paracrine stimulus released by cancer cells, platelets, and macrophages and acting on endothelial cells. The objective of this study was to clarify how dRP stimulates angiogenic responses in human endothelial cells. RESULTS: Live cell imaging, electron paramagnetic resonance, pull-down of dRP-interacting proteins, followed by immunoblotting, gene silencing of different NADPH oxidases (NOXs), and their regulatory cosubunits by small interfering RNA (siRNA) transfection, and experiments with inhibitors of the sugar transporter glucose transporter 1 (GLUT1) were utilized to demonstrate that dRP acts intracellularly by directly activating the endothelial NOX2 complex, but not NOX4. Increased reactive oxygen species generation in response to NOX2 activity leads to redox-dependent activation of the transcription factor nuclear factor kappa B (NF-κB), which, in turn, induces vascular endothelial growth factor receptor 2 (VEGFR2) upregulation. Using endothelial tube formation assays, gene silencing by siRNA, and antibody-based receptor inhibition, we demonstrate that the activation of NF-κB and VEGFR2 is necessary for the angiogenic responses elicited by dRP. The upregulation of VEGFR2 and NOX2-dependent stimulation of angiogenesis by dRP were confirmed in excisional wound and Matrigel plug vascularization assays in vivo using NOX2-/- mice. INNOVATION: For the first time, we demonstrate that dRP acts intracellularly and stimulates superoxide anion generation by direct binding and activation of the NOX2 enzymatic complex. CONCLUSIONS: This study describes a novel molecular mechanism underlying the proangiogenic activity of dRP, which involves the sequential activation of NOX2 and NF-κB and upregulation of VEGFR2. Antioxid. Redox Signal. 28, 110-130.


Assuntos
NADPH Oxidase 2/metabolismo , NF-kappa B/metabolismo , Neovascularização Fisiológica/efeitos dos fármacos , Ribosemonofosfatos/farmacologia , Linhagem Celular , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Humanos , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
11.
Cell Tissue Res ; 369(3): 567-578, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28451751

RESUMO

The natriuretic peptides, Atrial-, B-type and C-type natriuretric peptides (ANP, BNP, CNP), are regulators of many endocrine tissues and exert their effects predominantly through the activation of their specific guanylyl cyclase receptors (GC-A and GC-B) to generate cGMP. Whereas cGMP-independent signalling has been reported in response to natriuretic peptides, this is mediated via either the clearance receptor (Npr-C) or a renal-specific NPR-Bi isoform, which both lack intrinsic guanylyl cyclase activity. Here, we report evidence of GC-B-dependent cGMP-independent signalling in pituitary GH3 cells. Stimulation of GH3 cells with CNP resulted in a rapid and sustained enhancement of ERK1/2 phosphorylation (P-ERK1/2), an effect that was not mimicked by dibutryl-cGMP. Furthermore, CNP-stimulated P-ERK1/2 occurred at concentrations below that required for cGMP accumulation. The effect of CNP on P-ERK1/2 was sensitive to pharmacological blockade of MEK (U0126) and Src kinases (PP2). Silencing of the GC-B1 and GC-B2 splice variants of the GC-B receptor by using targeted short interfering RNAs completely blocked the CNP effects on P-ERK1/2. CNP failed to alter GH3 cell proliferation or cell cycle distribution but caused a concentration-dependent increase in the activity of the human glycoprotein α-subunit promoter (αGSU) in a MEK-dependent manner. Finally, CNP also activated the p38 and JNK MAPK pathways in GH3 cells. These findings reveal an additional mechanism of GC-B signalling and suggest additional biological roles for CNP in its target tissues.


Assuntos
Guanilato Ciclase/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Peptídeo Natriurético Tipo C/farmacologia , Somatotrofos/metabolismo , Animais , Linhagem Celular , GMP Cíclico/metabolismo , Humanos , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Fosforilação/efeitos dos fármacos , Regiões Promotoras Genéticas/genética , Receptores Acoplados a Guanilato Ciclase/metabolismo , Somatotrofos/efeitos dos fármacos
12.
BMC Res Notes ; 9: 362, 2016 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-27456002

RESUMO

BACKGROUND: Endoglin/CD105 is an auxiliary receptor for transforming growth factor-ß with established roles in vascular remodelling. It has recently been shown that heterozygous endoglin deficiency in mice decreases insulin secretion in an animal model of obesity, highlighting a potential role for endoglin in the regulation of islet function. We have previously identified two different populations of endoglin expressing cells in human and mouse islets which are: (i) endothelial cells (ECs) and (ii) islet mesenchymal stromal cells. The contribution of islet EC endoglin expression to islet development and sensitivity to VEGF is unknown and is the focus of this study. RESULTS: In vitro culture of mouse islets with VEGF164 for 48 h increased endoglin mRNA levels above untreated controls but VEGF did not modulate VEGFR2, CD31 or CD34 mRNA expression or islet viability. Removal of EC-endoglin expression in vivo reduced islet EC area but had no apparent effect on islet size or architecture. CONCLUSION: EC-specific endoglin expression in islets is sensitive to VEGF and plays partial roles in driving islet vascular development, however such regulation appears to be distinct to mechanisms required to modulate islet viability and size.


Assuntos
Endoglina/genética , Células Endoteliais/efeitos dos fármacos , Ilhotas Pancreáticas/efeitos dos fármacos , RNA Mensageiro/genética , Fator A de Crescimento do Endotélio Vascular/farmacologia , Animais , Antígenos CD34/genética , Antígenos CD34/metabolismo , Endoglina/agonistas , Endoglina/metabolismo , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Regulação da Expressão Gênica , Ilhotas Pancreáticas/citologia , Ilhotas Pancreáticas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos ICR , Molécula-1 de Adesão Celular Endotelial a Plaquetas/genética , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , RNA Mensageiro/agonistas , RNA Mensageiro/metabolismo , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacologia , Transdução de Sinais , Técnicas de Cultura de Tecidos , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
13.
Mol Cell Endocrinol ; 393(1-2): 129-42, 2014 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-24973767

RESUMO

Obesity and saturated fatty acid (SFA) treatment are both associated with skeletal muscle insulin resistance (IR) and increased macrophage infiltration. However, the relative effects of SFA and unsaturated fatty acid (UFA)-activated macrophages on muscle are unknown. Here, macrophages were treated with palmitic acid, palmitoleic acid or both and the effects of the conditioned medium (CM) on C2C12 myotubes investigated. CM from palmitic acid-treated J774s (palm-mac-CM) impaired insulin signalling and insulin-stimulated glycogen synthesis, reduced Inhibitor κBα and increased phosphorylation of p38 mitogen-activated protein kinase (MAPK) and c-Jun N-terminal kinase in myotubes. p38 MAPK inhibition or siRNA partially ameliorated these defects, as did addition of tumour necrosis factor-α blocking antibody to the CM. Macrophages incubated with both FAs generated CM that did not induce IR, while palmitoleic acid-mac-CM alone was insulin sensitising. Thus UFAs may improve muscle insulin sensitivity and counteract SFA-mediated IR through an effect on macrophage activation.


Assuntos
Ácidos Graxos Monoinsaturados/farmacologia , Resistência à Insulina , Ativação de Macrófagos/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Células Cultivadas , Eletroforese em Gel de Poliacrilamida , Ensaio de Imunoadsorção Enzimática , Humanos , Mioblastos/citologia , Mioblastos/efeitos dos fármacos , Ácido Palmítico/toxicidade , Reação em Cadeia da Polimerase em Tempo Real
14.
Vet J ; 200(2): 305-11, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24662025

RESUMO

Dogs with congenital portosystemic shunts (CPSS) have liver hypoplasia and hepatic insufficiency. Surgical CPSS attenuation results in liver growth associated with clinical improvement. The mechanism of this hepatic response is unknown, although liver regeneration is suspected. This study investigated whether markers of liver regeneration were associated with CPSS attenuation. Dogs treated with CPSS attenuation were prospectively recruited. Residual liver tissue was collected for gene expression analysis (seven genes) from 24 CPSS dogs that tolerated complete attenuation, 25 dogs that tolerated partial attenuation and seven control dogs. Relative gene expression was measured using quantitative polymerase chain reaction (qPCR). Blood samples were collected before, 24 h and 48 h post-surgery from 36 CPSS dogs and from 10 control dogs. Serum hepatocyte growth factor (HGF) concentration was measured using a canine specific enzyme-linked immunosorbent assay (ELISA). HGF mRNA expression was significantly decreased in CPSS compared with control dogs (P = 0.046). There were significant increases in HGF (P = 0.050) and methionine adenosyltransferase 2 A (MAT2A; P = 0.002) mRNA expression following partial CPSS attenuation. Dogs with complete attenuation had significantly greater MAT2A (P = 0.024) mRNA expression compared with dogs with partial attenuation. Serum HGF concentration significantly increased 24 h following CPSS attenuation (P < 0.001). Hepatic mRNA expression of two markers of hepatocyte proliferation (HGF and MAT2A) was associated with the response to surgery in dogs with CPSS, and serum HGF significantly increased following surgery, suggesting hepatocyte proliferation. These findings support the concept that hepatic regeneration is important in the hepatic response to CPSS surgery.


Assuntos
Doenças do Cão/congênito , Fator de Crescimento de Hepatócito/genética , Fígado/fisiologia , Fígado/cirurgia , Sistema Porta/cirurgia , Regeneração , Animais , Biomarcadores/sangue , Doenças do Cão/metabolismo , Doenças do Cão/cirurgia , Cães , Expressão Gênica , Fator de Crescimento de Hepatócito/sangue , Fígado/anormalidades , Fígado/crescimento & desenvolvimento , Sistema Porta/anormalidades , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
15.
Cell Tissue Res ; 355(2): 425-36, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24352806

RESUMO

The guanylyl cyclases, GC-A and GC-B, are selective receptors for atrial and C-type natriuretic peptides (ANP and CNP, respectively). In the anterior pituitary, CNP and GC-B are major regulators of cGMP production in gonadotropes and yet mouse models of disrupted CNP and GC-B indicate a potential role in growth hormone secretion. In the current study, we investigate the molecular and pharmacological properties of the CNP/GC-B system in somatotrope lineage cells. Primary rat pituitary and GH3 somatolactotropes expressed functional GC-A and GC-B receptors that had similar EC50 properties in terms of cGMP production. Interestingly, GC-B signaling underwent rapid homologous desensitization in a protein phosphatase 2A (PP2A)-dependent manner. Chronic exposure to either CNP or ANP caused a significant down-regulation of both GC-A- and GC-B-dependent cGMP accumulation in a ligand-specific manner. However, this down-regulation was not accompanied by alterations in the sub-cellular localization of these receptors. Heterologous desensitization of GC-B signaling occurred in GH3 cells following exposure to either sphingosine-1-phosphate or thyrotrophin-releasing hormone (TRH). This heterologous desensitization was protein kinase C (PKC)-dependent, as pre-treatment with GF109203X prevented the effect of TRH on CNP/GC-B signaling. Collectively, these data indicate common and distinct properties of particulate guanylyl cyclase receptors in somatotropes and reveal that independent mechanisms of homologous and heterologous desensitization occur involving either PP2A or PKC. Guanylyl cyclase receptors thus represent potential novel therapeutic targets for treating growth-hormone-associated disorders.


Assuntos
Lactotrofos/enzimologia , Receptores do Fator Natriurético Atrial/metabolismo , Transdução de Sinais , Animais , Fator Natriurético Atrial/farmacologia , Sinalização do Cálcio/efeitos dos fármacos , Linhagem Celular , AMP Cíclico/metabolismo , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/genética , Endocitose/efeitos dos fármacos , Lactotrofos/efeitos dos fármacos , Ligantes , Camundongos , Peptídeo Natriurético Tipo C/farmacologia , Proteína Quinase C/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Transdução de Sinais/efeitos dos fármacos , Esfingolipídeos/metabolismo , Hormônio Liberador de Tireotropina/metabolismo
16.
Prog Lipid Res ; 52(4): 446-64, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23774609

RESUMO

Blood levels of triglyceride-rich lipoproteins (TRL) increase postprandially, and a delay in their clearance results in postprandial hyperlipidemia, an important risk factor in atherosclerosis development. Atherosclerosis is a multifactorial inflammatory disease, and its initiation involves endothelial dysfunction, invasion of the artery wall by leukocytes and subsequent formation of foam cells. TRL are implicated in several of these inflammatory processes, including the formation of damaging free radicals, leukocyte activation, endothelial dysfunction and foam cell formation. Recent studies have provided insights into the mechanisms of uptake and the signal transduction pathways mediating the interactions of TRL with leukocytes and vascular cells, and how they are modified by dietary lipids. Multiple receptor and non-receptor mediated pathways function in macrophage uptake of TRL. TRL also induce expression of adhesion molecules, cyclooxygenase-2 and heme-oxygenase-1 in endothelial cells, and activate intracellular signaling pathways involving mitogen-activated protein kinases, NF-κB and Nrf2. Many of these effects are strongly influenced by dietary components carried in TRL. There is extensive evidence indicating that raised postprandial TRL levels are a risk factor for atherosclerosis, but the molecular mechanisms involved are only now becoming appreciated. Here, we review current understanding of the mechanisms by which TRL influence vascular cell function.


Assuntos
Lipoproteínas/sangue , Músculo Liso Vascular/metabolismo , Triglicerídeos/sangue , Aterosclerose/etiologia , Aterosclerose/metabolismo , Células Espumosas/citologia , Células Espumosas/metabolismo , Humanos , Macrófagos/imunologia , Macrófagos/metabolismo , Monócitos/metabolismo , Músculo Liso Vascular/citologia
17.
Stem Cells ; 31(3): 547-59, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23255220

RESUMO

Following islet transplantation, islet graft revascularization is compromised due to loss of endothelial cells (ECs) during islet culture. TGF-ß signaling pathways are essential for vascular homeostasis but their importance for islet EC function is unclear. We have identified a population of multipotent mesenchymal stromal cells (MSCs) within islets and investigated how modulation of TGF-ß signaling by these cells influences islet EC viability. Cultured islets exhibited reduced expression of EC markers (VEGFR2, VE-cadherin and CD31), which was associated with diminished but sustained expression of endoglin a marker of both ECs and MSCs. Double fluorescent labeling of islets in situ with the EC marker CD31 disclosed a population of CD31-negative cells which were positive for endoglin. In vitro coculture of microvascular ECs with endoglin-positive, CD31-negative islet MSCs reduced VEGFR2 protein expression, disrupted EC angiogenic behavior, and increased EC detachment. Medium conditioned by islet MSCs significantly decreased EC viability and increased EC caspase 3/7 activity. EC:MSC cocultures showed enhanced Smad2 phosphorylation consistent with altered ALK5 signaling. Pharmacological inhibition of ALK5 activity with SB431542 (SB) improved EC survival upon contact with MSCs, and SB-treated cultured islets retained EC marker expression and sensitivity to exogenous VEGF164 . Thus, endoglin-expressing islet MSCs influence EC ALK5 signaling in vitro, which decreases EC viability, and changes in ALK5 activity in whole cultured islets contribute to islet EC loss. Modifying TGF-ß signaling may enable maintenance of islet ECs during islet isolation and thus improve islet graft revascularization post-transplantation.


Assuntos
Células Endoteliais/efeitos dos fármacos , Transplante das Ilhotas Pancreáticas/métodos , Ilhotas Pancreáticas/efeitos dos fármacos , Células-Tronco Mesenquimais/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Receptores de Fatores de Crescimento Transformadores beta/antagonistas & inibidores , Animais , Antígenos CD/biossíntese , Benzamidas/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Técnicas de Cocultura , Dioxóis/farmacologia , Endoglina , Células Endoteliais/citologia , Células Endoteliais/enzimologia , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/biossíntese , Ilhotas Pancreáticas/irrigação sanguínea , Ilhotas Pancreáticas/citologia , Ilhotas Pancreáticas/metabolismo , Masculino , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/enzimologia , Camundongos , Camundongos Endogâmicos ICR , Neovascularização Fisiológica/efeitos dos fármacos , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Receptor do Fator de Crescimento Transformador beta Tipo I , Receptores de Superfície Celular/biossíntese , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Transdução de Sinais , Fator de Crescimento Transformador beta1/farmacologia
18.
Endocr Relat Cancer ; 19(4): 497-508, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22645228

RESUMO

C-type natriuretic peptide (CNP/Nppc) is expressed at high levels in the anterior pituitary of rats and mice and activates guanylyl cyclase B receptors (GC-B/Npr2) to regulate hormone secretion. Mutations in NPR2/Npr2 can cause achondroplasia, GH deficiency, and female infertility, yet the normal expression profile within the anterior pituitary remains to be established in humans. The current study examined the expression profile and transcriptional regulation of NPR2 and GC-B protein in normal human fetal pituitaries, normal adult pituitaries, and human pituitary adenomas using RT-PCR and immunohistochemistry. Transcriptional regulation of human NPR2 promoter constructs was characterized in anterior pituitary cell lines of gonadotroph, somatolactotroph, and corticotroph origin. NPR2 was detected in all human fetal and adult pituitary samples regardless of age or sex, as well as in all adenoma samples examined regardless of tumor origin. GC-B immunoreactivity was variable in normal pituitary, gonadotrophinomas, and somatotrophinomas. Maximal transcriptional regulation of the NPR2 promoter mapped to a region within -214 bp upstream of the start site in all anterior pituitary cell lines examined. Electrophoretic mobility shift assays revealed that this region contains Sp1/Sp3 response elements. These data are the first to show NPR2 expression in normal human fetal and adult pituitaries and adenomatous pituitary tissue and suggest a role for these receptors in both pituitary development and oncogenesis, introducing a new target to manipulate these processes in pituitary adenomas.


Assuntos
Adenoma/genética , Feto/metabolismo , Peptídeo Natriurético Tipo C/fisiologia , Hipófise/metabolismo , Neoplasias Hipofisárias/genética , Receptores do Fator Natriurético Atrial/genética , Adenoma/metabolismo , Adulto , Idoso , Animais , Células Cultivadas , Feminino , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Peptídeo Natriurético Tipo C/genética , Peptídeo Natriurético Tipo C/metabolismo , Hipófise/embriologia , Hipófise/patologia , Neoplasias Hipofisárias/metabolismo , Gravidez , Ratos , Receptores do Fator Natriurético Atrial/metabolismo
19.
Biochim Biophys Acta ; 1811(3): 209-20, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21145417

RESUMO

Secretion of pro-inflammatory chemokines and cytokines by macrophages is a contributory factor in the pathogenesis of atherosclerosis. In this study, the effects of chylomicron remnants (CMR), the lipoproteins which transport dietary fat in the blood, on the production of pro-inflammatory chemokine and cytokine secretion by macrophages was investigated using CMR-like particles (CRLPs) together with THP-1 macrophages or primary human macrophages (HMDM). Incubation of CRLPs or oxidized CRLPs (oxCRLPs) with HMDM or THP-1 macrophages for up to 24h led to a marked decrease in the secretion of the pro-inflammatory chemokine monocyte chemoattractant protein-1 (MCP-1) and the pro-inflammatory cytokines tumour necrosis factor-α (TNF-α), interleukin (IL)-6 and IL-1ß (-50-90%), but these effects were reduced or abolished when CRLPs protected from oxidation by incorporation of the antioxidant drug, probucol, (pCRLPs) were used. In macrophages transfected with siRNA targeted to the low density lipoprotein receptor (LDLr), neither CRLPs nor pCRLPs had any significant effect on chemokine/cytokine secretion, but in cells transfected with siRNA targeted to the LDLr-related protein 1 (LRP1) both types of particles inhibited secretion to a similar extent to that observed with CRLPs in mock transfected cells. These findings demonstrate that macrophage pro-inflammatory chemokine/cytokine secretion is down-regulated by CMR, and that these effects are positively related to the lipoprotein oxidative state. Furthermore, uptake via the LDLr is required for the down-regulation, while uptake via LRP1 does not bring about this effect. Thus, the receptor-mediated route of uptake of CMR plays a crucial role in modulating their effects on inflammatory processes in macrophages.


Assuntos
Remanescentes de Quilomícrons/metabolismo , Citocinas/metabolismo , Mediadores da Inflamação/metabolismo , Macrófagos/metabolismo , Receptores de LDL/metabolismo , Antígenos CD/metabolismo , Antioxidantes/farmacologia , Linhagem Celular , Remanescentes de Quilomícrons/farmacologia , Humanos , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Probucol/farmacologia
20.
Arterioscler Thromb Vasc Biol ; 30(12): 2631-8, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20884872

RESUMO

OBJECTIVE: Micromolar concentrations of the proangiogenic metabolite deoxyribose-1-phosphate (dRP) were detected in platelet supernatants by mass spectrometry. In this study, we assessed whether the release of dRP by platelets stimulates endothelial cell migration and angiogenesis. METHODS AND RESULTS: Protein-free supernatants from thrombin-stimulated platelets increased human umbilical vein endothelial cell migratory activity in transmigration and monolayer repair assays. This phenomenon was ablated by genetic silencing of dRP-generating uridine phosphorylase (UP) and thymidine phosphorylase (TP) or pharmacological inhibition of UP and restored by exogenous dRP. The stimulation of endothelial cell migration by platelet-derived dRP correlated with upregulation of integrin ß(3), which was induced in a reactive oxygen species-dependent manner, and was mediated by the activity of the integrin heterodimer α(v)ß(3). The physiological relevance of dRP release by platelets was confirmed in a chick chorioallantoic membrane assay, where the presence of this metabolite in platelet supernatants strongly induced capillary formation. CONCLUSIONS: Platelet-derived dRP stimulates endothelial cell migration by upregulating integrin ß(3) in a reactive oxygen species-dependent manner. As demonstrated by our in vivo experiments, this novel paracrine regulatory pathway is likely to play an important role in the stimulation of angiogenesis by platelets.


Assuntos
Plaquetas/metabolismo , Movimento Celular , Membrana Corioalantoide/irrigação sanguínea , Células Endoteliais/metabolismo , Neovascularização Fisiológica , Comunicação Parácrina , Ribosemonofosfatos/metabolismo , Animais , Plaquetas/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Células Cultivadas , Embrião de Galinha , Células Endoteliais/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Cromatografia Gasosa-Espectrometria de Massas , Inativação Gênica , Humanos , Integrina alfaV/metabolismo , Integrina alfaVbeta3/metabolismo , Integrina beta3/metabolismo , Neovascularização Fisiológica/efeitos dos fármacos , Comunicação Parácrina/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Trombina/metabolismo , Timidina Fosforilase/antagonistas & inibidores , Timidina Fosforilase/genética , Timidina Fosforilase/metabolismo , Fatores de Tempo , Uridina Fosforilase/antagonistas & inibidores , Uridina Fosforilase/genética , Uridina Fosforilase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA