Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Horm Behav ; 154: 105389, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37327549

RESUMO

Seasonal timing of breeding is usually considered to be triggered by endogenous responses linked to predictive cues (e.g., photoperiod) and supplementary cues that vary annually (e.g., food supply), but social cues are also important. Females may be more sensitive to supplementary cues because of their greater role in reproductive timing decisions, while males may only require predictive cues. We tested this hypothesis by food-supplementing female and male colonial seabirds (black-legged kittiwakes, Rissa tridactyla) during the pre-breeding season. We measured colony attendance via GPS devices, quantified pituitary and gonadal responses to gonadotropin releasing hormone (GnRH) challenge, and observed subsequent laying phenology. Food supplementation advanced laying phenology and increased colony attendance. While female pituitary responses to GnRH were consistent across the pre-breeding season, males showed a peak in pituitary sensitivity at approximately the same time that most females were initiating follicle development. The late peak in male pituitary response to GnRH questions a common assumption that males primarily rely on predictive cues (e.g., photoperiod) while females also rely on supplementary cues (e.g., food availability). Instead, male kittiwakes may integrate synchronising cues from their social environment to adjust their reproductive timing to coincide with female timing.


Assuntos
Charadriiformes , Hormônio Liberador de Gonadotropina , Animais , Feminino , Masculino , Hormônio Liberador de Gonadotropina/farmacologia , Hormônio Liberador de Gonadotropina/metabolismo , Reprodução/fisiologia , Hipófise/metabolismo , Fotoperíodo
2.
Horm Behav ; 127: 104874, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33191199

RESUMO

Current food supply is a major driver of timing of breeding in income-breeding animals, likely because increased net energy balance directly increases reproductive hormones and advances breeding. In capital breeders, increased net energy balance increases energy reserves, which eventually leads to improved reproductive readiness and earlier breeding. To test the hypothesis that phenology of income-breeding birds is independent of energy reserves, we conducted an experiment on food-supplemented ("fed") and control female black-legged kittiwakes (Rissa tridactyla). We temporarily increased energy costs (via weight handicap) in a 2 × 2 design (fed/unfed; handicapped/unhandicapped) during the pre-laying period and observed movement via GPS-accelerometry. We measured body mass, baseline hormones (corticosterone; luteinising hormone) before and after handicap manipulation, and conducted a gonadotropin-releasing hormone challenge. Females from all treatment groups foraged in similar areas, implying that individuals could adjust time spent foraging, but had low flexibility to adjust foraging distance. Consistent with the idea that income breeders do not accumulate reserves in response to increased food supply, fed birds remained within an energy ceiling by reducing time foraging instead of increasing energy reserves. Moreover, body mass remained constant until the onset of follicle development 20 days prior to laying regardless of feeding or handicap, implying that females were using a 'lean and fit' approach to body mass rather than accumulating lipid reserves for breeding. Increased food supply advanced endocrine and laying phenology and altered interactions between the hypothalamic-pituitary-adrenal axis and the hypothalamic-pituitary-gonadal axis, but higher energy costs (handicap) had little effect. Consistent with our hypothesis, increased food supply (but not net energy balance) advanced endocrine and laying phenology in income-breeding birds without any impact on energy reserves.


Assuntos
Charadriiformes/fisiologia , Abastecimento de Alimentos , Hormônios Gonadais/metabolismo , Comportamento Sexual Animal/fisiologia , Animais , Aves/fisiologia , Composição Corporal , Corticosterona/metabolismo , Metabolismo Energético/fisiologia , Comportamento Exploratório/fisiologia , Comportamento Alimentar/fisiologia , Feminino , Alimentos , Hormônio Liberador de Gonadotropina/metabolismo , Sistema Hipotálamo-Hipofisário/metabolismo , Hormônio Luteinizante/metabolismo , Masculino , Sistema Hipófise-Suprarrenal/metabolismo , Reprodução/fisiologia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA