Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Hyg Environ Health ; 241: 113945, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35182850

RESUMO

The spread of opportunistic pathogens via building water supply and plumbing is of public health concern. This study was conducted to better understand microbial water quality changes in a LEED-certified school building during low water use (Summer) and normal water use (Autumn). The copper plumbed building contained water saving devices, a hot water recirculation system, and received chloraminated drinking water from a public water system. Three separate sampling events were conducted during the summer break inside the building and another three sampling events were conducted after the school returned to session. Using quantitative PCR, Legionella spp. were detected in all water samples, followed by Mycobacterium spp. (99%). Mycobacterium avium (75%) and Acanthamoeba spp. (17.5%) throughout the building water system. Legionella pneumophila and Naegleria fowleri were not detected in any of the samples. The mean concentrations of Legionella spp., Mycobacterium spp., Mycobacterium avium, and Acanthamoeba spp. detected in water samples were 3.9, 5.7, 4.7, and 2.8 log10 gene copies per 100 ml, respectively. There was a statistically significantly difference in the mean concentrations of Legionella spp., Mycobacterium spp. and M. avium gene markers in water samples between school breaks and when school was in session. Cultivable Legionella were also detected in water samples collected during periods of low water use. This study highlights the need for routine proactive water quality testing in school buildings to determine the extent of drinking water quality problems associated with plumbing and direct action to remediate microbial colonization.


Assuntos
Água Potável , Legionella , Legionella/genética , Prevalência , Engenharia Sanitária , Microbiologia da Água , Qualidade da Água , Abastecimento de Água
2.
Inhal Toxicol ; 31(4): 131-146, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-31187656

RESUMO

Objectives: US water infrastructure is in need of widespread repair due to age-related deterioration. Currently, the cured-in-place (CIPP) procedure is the most common method for water pipe repair. This method involves the on-site manufacture of a new polymer composite plastic liner within the damaged pipe. The CIPP process can release materials resulting in occupational and public health concerns. To understand hazards associated with CIPP-related emission exposures, an in vitro toxicity assessment was performed. Materials and Methods: Mouse alveolar epithelial and alveolar macrophage cell lines and condensates collected at 3 worksites utilizing styrene-based resins were utilized for evaluations. All condensate samples were normalized based on the major emission component, styrene. Further, a styrene-only exposure group was used as a control to determine mixture related toxicity. Results: Cytotoxicity differences were observed between worksite samples, with the CIPP worksite 4 sample inducing the most cell death. A proteomic evaluation was performed, which demonstrated styrene-, worksite-, and cell-specific alterations. This examination of protein expression changes determined potential biomarkers of exposure including transglutaminase 2, advillin, collagen type 1, perilipin-2, and others. Pathway analysis of exposure-induced proteomic alterations identified MYC and p53 to be regulators of cellular responses. Protein changes were also related to pathways involved in cell damage, immune response, and cancer. Conclusions: Together these findings demonstrate potential risks associated with the CIPP procedure as well as variations between worksites regarding emissions and toxicity. Our evaluation identified biological pathways that require a future evaluation and also demonstrates that exposure assessment of CIPP worksites should examine multiple chemical components beyond styrene, as many cellular responses were styrene-independent.


Assuntos
Poluentes Ocupacionais do Ar/toxicidade , Monitoramento Ambiental/métodos , Células Epiteliais/efeitos dos fármacos , Macrófagos Alveolares/efeitos dos fármacos , Manufaturas/toxicidade , Estireno/toxicidade , Animais , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Células Epiteliais/imunologia , Células Epiteliais/metabolismo , Expressão Gênica/efeitos dos fármacos , Macrófagos Alveolares/imunologia , Macrófagos Alveolares/metabolismo , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Proteoma/genética , Proteoma/metabolismo , Células RAW 264.7 , Local de Trabalho
3.
J Hazard Mater ; 371: 540-549, 2019 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-30877867

RESUMO

Cured-in-place-pipes (CIPP) are plastic liners chemically manufactured inside existing damaged sewer pipes. They are gaining popularity in North America, Africa, Asia, Europe, and Oceania. Volatile and semi-volatile organic compound (VOC/SVOC) emissions from storm sewer CIPP installations were investigated at a dedicated outdoor research site. Tedlar bag, sorbent tube, and photoionization detector (PID) air sampling was conducted for five steam-CIPP installations and was coupled with composite characterizations. New CIPPs contained up to 2.21 wt% volatile material and only 6-31% chemical mass extracted per CIPP was identified. Each 6.1 m [20 ft] liner contained an estimated 5-10 kg [11-22 lbs] of residual chemical. Extracted chemicals included hazardous air pollutants and suspected and known carcinogens that were not reported by others. These included monomers, monomer oxidation products, antioxidants, initiator degradation products, and a plasticizer. PID signals did not accurately represent styrene air concentration differing sometimes by 10s- to 1000s-fold. Multiple VOCs found in air samples likely affected PID responses. Styrene (>86.4 ppmv) and methylene chloride (>1.56 ppmv) air concentrations were likely greater onsite and phenol was also detected. Additional studies are needed to examine pollutant emissions so process monitoring can be improved, and environment impacts and associated human exposures can be minimized.

4.
Environ Pollut ; 245: 1031-1040, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30682737

RESUMO

Storm water culverts are integral for U.S. public safety and welfare, and their mechanical failure can cause roadways to collapse. To repair these buried assets, ultraviolet (UV) light cured-in-place-pipes (CIPP) are being installed. Chemical emission and residual material left behind from the installation process was investigated in New York and Virginia, USA. Samples of an uncured resin tube and field-cured styrene-based resin CIPPs were collected and analyzed. Also collected were air and water samples before, during, and after installations. Chemicals were emitted into air because of the installation and curing processes. Particulates emitted into the air, water, and soil contained fiberglass, polymer, and contaminants, some of which are regulated by state-level water quality standards. The uncured resin tube contained more than 70 chemical compounds, and 19 were confirmed with analytical standards. Compounds included known and suspected carcinogens, endocrine disrupting compounds, hazardous air pollutants, and other compounds with little aquatic toxicity data available. Compounds (14 of 19 confirmed) were extracted from the newly installed CIPPs, and 11 were found in water samples. Aqueous styrene (2.31 mg/L), dibutyl phthalate (12.5 µg/L), and phenol (16.7 µg/L) levels exceeded the most stringent state water quality standards chosen in this study. Styrene was the only compound that was found to have exceed a 48 h aquatic toxicity threshold. Newly installed CIPPs contained a significant amount volatile material (1.0 to > 9.0 wt%). Recommendations provided can reduce chemical emission, as well as improve worksite and environmental protection practices. Recommended future research is also described.


Assuntos
Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Plásticos/química , Raios Ultravioleta , Poluentes Químicos da Água/análise , Água/química , Vidro/química , Vidro/efeitos da radiação , New York , Plásticos/efeitos da radiação , Estireno/química , Estireno/efeitos da radiação , Virginia
5.
J Hazard Mater ; 339: 385-394, 2017 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-28668756

RESUMO

This study was conducted to determine the susceptibility of plastic (i.e., PEX, HDPE and CPVC) and copper pipes to short-term contamination by crude oil. Pipes were exposed to highly and slightly contaminated drinking water for the typical duration of Do Not Use drinking water orders. PEX pipes sorbed and desorbed the greatest amount of monoaromatic hydrocarbons (MAHs), whereas copper pipes were less susceptible to contamination. For benzene, toluene, ethylbenzene, and xylenes (BTEX) quantified in water, only benzene exceeded its health based maximum contaminant level (MCL). The MCL was exceeded for copper pipe on day 3, for CPVC pipe through day 9, and PEX and HDPE pipes through day 15. The BTEX compound concentration in water after the pipes were returned to service depended on the initial crude oil concentration, material type, and exposure duration. Total organic carbon (TOC) measurement was not helpful in detecting oil contaminated water. Except BTEX, trimethylbenzene isomers and a couple of polycyclic aromatic hydrocarbons (PAHs) with and without MCLs were also detected desorbing from PEX-A pipe. Oil contaminated water must be thoroughly characterized and pipe type will influence the ability of drinking water levels to return to safe limits.

6.
Environ Sci Technol ; 48(18): 10938-47, 2014 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-25127182

RESUMO

Cured-in-place pipe (CIPP) is becoming a popular U.S. stormwater culvert rehabilitation method. Several State transportation agencies have reported that CIPP activities can release styrene into stormwater, but no other contaminants have been monitored. CIPP's stormwater contamination potential and that of its condensate waste was characterized. Condensate completely dissolved Daphnia magna within 24 h. Condensate pH was 6.2 and its chemical oxygen demand (COD) level was 36,000 ppm. D. magna mortality (100%) occurred in 48 h, even when condensate was diluted by a factor of 10,000 and styrene was present at a magnitude less than its LC50. Condensate and stormwater contained numerous carcinogenic solvents used in resin synthesis, endocrine disrupting contaminants such as plasticizers, and initiator degradation products. For 35 days, COD levels at the culvert outlets and downstream ranged from 100 to 375 ppm and styrene was 0.01 to 7.4 ppm. Although contaminant levels generally reduced with time, styrene levels were greatest 50 ft downstream, not at the culvert outlet. Cured CIPP extraction tests confirmed that numerous contaminants other than styrene were released into the environment and their persistence and toxicity should be investigated. More effective contaminant containment and cleaner installation processes must be developed to protect the environment.


Assuntos
Tempestades Ciclônicas , Monitoramento Ambiental/métodos , Poluentes Químicos da Água/análise , Alabama , Animais , Análise da Demanda Biológica de Oxigênio , Carbono/análise , Daphnia/efeitos dos fármacos , Metais Pesados/análise , Metais Pesados/toxicidade , Estireno/análise , Estireno/toxicidade , Testes de Toxicidade , Compostos Orgânicos Voláteis/análise , Poluentes Químicos da Água/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA