Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 12(1): 979, 2021 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-33579912

RESUMO

Glioblastoma (GBM) is a deadly cancer in which cancer stem cells (CSCs) sustain tumor growth and contribute to therapeutic resistance. Protein arginine methyltransferase 5 (PRMT5) has recently emerged as a promising target in GBM. Using two orthogonal-acting inhibitors of PRMT5 (GSK591 or LLY-283), we show that pharmacological inhibition of PRMT5 suppresses the growth of a cohort of 46 patient-derived GBM stem cell cultures, with the proneural subtype showing greater sensitivity. We show that PRMT5 inhibition causes widespread disruption of splicing across the transcriptome, particularly affecting cell cycle gene products. We identify a GBM splicing signature that correlates with the degree of response to PRMT5 inhibition. Importantly, we demonstrate that LLY-283 is brain-penetrant and significantly prolongs the survival of mice with orthotopic patient-derived xenografts. Collectively, our findings provide a rationale for the clinical development of brain penetrant PRMT5 inhibitors as treatment for GBM.


Assuntos
Antineoplásicos/farmacologia , Neoplasias Encefálicas/metabolismo , Glioblastoma/metabolismo , Proteína-Arginina N-Metiltransferases/metabolismo , Animais , Apoptose , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Ciclo Celular , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Descoberta de Drogas , Epigenômica , Feminino , Regulação Neoplásica da Expressão Gênica , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Glioblastoma/patologia , Humanos , Camundongos , Células-Tronco Neoplásicas/metabolismo , Proteína-Arginina N-Metiltransferases/efeitos dos fármacos , Proteína-Arginina N-Metiltransferases/genética , Splicing de RNA , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Elife ; 102021 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-33427645

RESUMO

Chromatin accessibility discriminates stem from mature cell populations, enabling the identification of primitive stem-like cells in primary tumors, such as glioblastoma (GBM) where self-renewing cells driving cancer progression and recurrence are prime targets for therapeutic intervention. We show, using single-cell chromatin accessibility, that primary human GBMs harbor a heterogeneous self-renewing population whose diversity is captured in patient-derived glioblastoma stem cells (GSCs). In-depth characterization of chromatin accessibility in GSCs identifies three GSC states: Reactive, Constructive, and Invasive, each governed by uniquely essential transcription factors and present within GBMs in varying proportions. Orthotopic xenografts reveal that GSC states associate with survival, and identify an invasive GSC signature predictive of low patient survival, in line with the higher invasive properties of Invasive state GSCs compared to Reactive and Constructive GSCs as shown by in vitro and in vivo assays. Our chromatin-driven characterization of GSC states improves prognostic precision and identifies dependencies to guide combination therapies.


Assuntos
Autorrenovação Celular , Cromatina/metabolismo , Glioblastoma/secundário , Células-Tronco Neoplásicas/fisiologia , Linhagem Celular Tumoral , Feminino , Humanos , Masculino , Análise de Célula Única
3.
Cell Rep ; 31(2): 107511, 2020 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-32294450

RESUMO

Medulloblastoma (MB) is a neoplasm linked to dysregulated cerebellar development. Previously, we demonstrated that the Sonic Hedgehog (SHH) subgroup grows hierarchically, with Sox2+ cells at the apex of tumor progression and relapse. To test whether this mechanism is rooted in a normal developmental process, we studied the role of Sox2 in cerebellar development. We find that the external germinal layer (EGL) is derived from embryonic Sox2+ precursors and that the EGL maintains a rare fraction of Sox2+ cells during the first postnatal week. Through lineage tracing and single-cell analysis, we demonstrate that these Sox2+ cells are within the Atoh1+ lineage, contribute extensively to adult granule neurons, and resemble Sox2+ tumor cells. Critically, constitutive activation of the SHH pathway leads to their aberrant persistence in the EGL and rapid tumor onset. We propose that failure to eliminate this rare but potent developmental population is the tumor initiation mechanism in SHH-subgroup MB.


Assuntos
Meduloblastoma/etiologia , Meduloblastoma/metabolismo , Fatores de Transcrição SOXB1/metabolismo , Animais , Linhagem da Célula/genética , Células Cultivadas , Neoplasias Cerebelares/patologia , Cerebelo/embriologia , Feminino , Proteínas Hedgehog/metabolismo , Humanos , Masculino , Camundongos Knockout , Camundongos Transgênicos , Recidiva Local de Neoplasia/patologia , Células-Tronco Neurais/metabolismo , Neurogênese , Neurônios/metabolismo , Fatores de Transcrição SOXB1/fisiologia , Transdução de Sinais/fisiologia , Análise de Célula Única/métodos
4.
Nat Commun ; 9(1): 5191, 2018 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-30518764

RESUMO

The pace of repair declines with age and, while exposure to a young circulation can rejuvenate fracture repair, the cell types and factors responsible for rejuvenation are unknown. Here we report that young macrophage cells produce factors that promote osteoblast differentiation of old bone marrow stromal cells. Heterochronic parabiosis exploiting young mice in which macrophages can be depleted and fractionated bone marrow transplantation experiments show that young macrophages rejuvenate fracture repair, and old macrophage cells slow healing in young mice. Proteomic analysis of the secretomes identify differential proteins secreted between old and young macrophages, such as low-density lipoprotein receptor-related protein 1 (Lrp1). Lrp1 is produced by young cells, and depleting Lrp1 abrogates the ability to rejuvenate fracture repair, while treating old mice with recombinant Lrp1 improves fracture healing. Macrophages and proteins they secrete orchestrate the fracture repair process, and young cells produce proteins that rejuvenate fracture repair in mice.


Assuntos
Consolidação da Fratura , Fraturas Ósseas/fisiopatologia , Macrófagos/metabolismo , Receptores de LDL/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Células da Medula Óssea/citologia , Células da Medula Óssea/metabolismo , Transplante de Medula Óssea , Feminino , Fraturas Ósseas/genética , Fraturas Ósseas/metabolismo , Fraturas Ósseas/terapia , Humanos , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Osteoblastos/citologia , Osteoblastos/metabolismo , Osteogênese , Receptores de LDL/genética , Rejuvenescimento , Células Estromais/citologia , Células Estromais/metabolismo , Células Estromais/transplante , Proteínas Supressoras de Tumor/genética
5.
Neuron ; 100(4): 799-815.e7, 2018 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-30344046

RESUMO

Alteration of tissue mechanical properties is a physical hallmark of solid tumors including gliomas. How tumor cells sense and regulate tissue mechanics is largely unknown. Here, we show that mechanosensitive ion channel Piezo regulates mitosis and tissue stiffness of Drosophila gliomas, but not non-transformed brains. PIEZO1 is overexpressed in aggressive human gliomas and its expression inversely correlates with patient survival. Deleting PIEZO1 suppresses the growth of glioblastoma stem cells, inhibits tumor development, and prolongs mouse survival. Focal mechanical force activates prominent PIEZO1-dependent currents from glioma cell processes, but not soma. PIEZO1 localizes at focal adhesions to activate integrin-FAK signaling, regulate extracellular matrix, and reinforce tissue stiffening. In turn, a stiffer mechanical microenvironment elevates PIEZO1 expression to promote glioma aggression. Therefore, glioma cells are mechanosensory in a PIEZO1-dependent manner, and targeting PIEZO1 represents a strategy to break the reciprocal, disease-aggravating feedforward circuit between tumor cell mechanotransduction and the aberrant tissue mechanics. VIDEO ABSTRACT.


Assuntos
Neoplasias Encefálicas/metabolismo , Glioma/metabolismo , Canais Iônicos/biossíntese , Mecanotransdução Celular/fisiologia , Adulto , Idoso , Animais , Animais Geneticamente Modificados , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Drosophila melanogaster , Feminino , Glioma/genética , Glioma/patologia , Humanos , Canais Iônicos/genética , Masculino , Camundongos Endogâmicos NOD , Camundongos SCID , Pessoa de Meia-Idade , Invasividade Neoplásica/genética , Invasividade Neoplásica/patologia , Microambiente Tumoral/fisiologia , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
7.
Nature ; 549(7671): 227-232, 2017 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-28854171

RESUMO

Human glioblastomas harbour a subpopulation of glioblastoma stem cells that drive tumorigenesis. However, the origin of intratumoural functional heterogeneity between glioblastoma cells remains poorly understood. Here we study the clonal evolution of barcoded glioblastoma cells in an unbiased way following serial xenotransplantation to define their individual fate behaviours. Independent of an evolving mutational signature, we show that the growth of glioblastoma clones in vivo is consistent with a remarkably neutral process involving a conserved proliferative hierarchy rooted in glioblastoma stem cells. In this model, slow-cycling stem-like cells give rise to a more rapidly cycling progenitor population with extensive self-maintenance capacity, which in turn generates non-proliferative cells. We also identify rare 'outlier' clones that deviate from these dynamics, and further show that chemotherapy facilitates the expansion of pre-existing drug-resistant glioblastoma stem cells. Finally, we show that functionally distinct glioblastoma stem cells can be separately targeted using epigenetic compounds, suggesting new avenues for glioblastoma-targeted therapy.


Assuntos
Diferenciação Celular , Linhagem da Célula , Rastreamento de Células , Glioblastoma/patologia , Células-Tronco Neoplásicas/patologia , Animais , Diferenciação Celular/efeitos dos fármacos , Linhagem da Célula/efeitos dos fármacos , Proliferação de Células , Células Clonais/efeitos dos fármacos , Células Clonais/patologia , Epigênese Genética , Feminino , Glioblastoma/tratamento farmacológico , Xenoenxertos , Humanos , Camundongos , Invasividade Neoplásica , Transplante de Neoplasias , Células-Tronco Neoplásicas/efeitos dos fármacos , Fenótipo , Processos Estocásticos
8.
Cell Stem Cell ; 21(2): 209-224.e7, 2017 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-28712938

RESUMO

Glioblastomas exhibit a hierarchical cellular organization, suggesting that they are driven by neoplastic stem cells that retain partial yet abnormal differentiation potential. Here, we show that a large subset of patient-derived glioblastoma stem cells (GSCs) express high levels of Achaete-scute homolog 1 (ASCL1), a proneural transcription factor involved in normal neurogenesis. ASCL1hi GSCs exhibit a latent capacity for terminal neuronal differentiation in response to inhibition of Notch signaling, whereas ASCL1lo GSCs do not. Increasing ASCL1 levels in ASCL1lo GSCs restores neuronal lineage potential, promotes terminal differentiation, and attenuates tumorigenicity. ASCL1 mediates these effects by functioning as a pioneer factor at closed chromatin, opening new sites to activate a neurogenic gene expression program. Directing GSCs toward terminal differentiation may provide therapeutic applications for a subset of GBM patients and strongly supports efforts to restore differentiation potential in GBM and other cancers.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Neoplasias Encefálicas/patologia , Carcinogênese/patologia , Linhagem da Célula , Cromatina/metabolismo , Glioblastoma/patologia , Neurônios/patologia , Sequência de Bases , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Neoplasias Encefálicas/genética , Carcinogênese/genética , Diferenciação Celular/genética , Progressão da Doença , Elementos Facilitadores Genéticos/genética , Regulação Neoplásica da Expressão Gênica , Glioblastoma/genética , Humanos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Neurônios/metabolismo , Regiões Promotoras Genéticas/genética , Ligação Proteica , Análise de Sequência de RNA , Regulação para Cima/genética
9.
Cell Rep ; 16(4): 917-927, 2016 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-27425618

RESUMO

The cell of origin for most mesenchymal tumors is unclear. One cell type that contributes to this lineages is the pericyte, a cell expressing Ng2/Cspg4. Using lineage tracing, we demonstrated that bone and soft tissue sarcomas driven by the deletion of the Trp53 tumor suppressor, or desmoid tumors driven by a mutation in Apc, can derive from cells expressing Ng2/Cspg4. Deletion of the Trp53 tumor suppressor gene in these cells resulted in the bone and soft tissue sarcomas that closely resemble human sarcomas, while stabilizing ß-catenin in this same cell type caused desmoid tumors. Comparing expression between Ng2/Cspg4-expressing pericytes lacking Trp53 and sarcomas that arose from deletion of Trp53 showed inhibition of ß-catenin signaling in the sarcomas. Activation of ß-catenin inhibited the formation and growth of sarcomas. Thus, pericytes can be a cell of origin for mesenchymal tumors, and ß-catenin dysregulation plays an important role in the neoplastic phenotype.


Assuntos
Antígenos/metabolismo , Proteoglicanas de Sulfatos de Condroitina/metabolismo , Mesoderma/metabolismo , Neoplasias/metabolismo , Pericitos/metabolismo , Proteoglicanas/metabolismo , beta Catenina/metabolismo , Animais , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/patologia , Linhagem Celular Tumoral , Linhagem da Célula/fisiologia , Feminino , Regulação Neoplásica da Expressão Gênica/fisiologia , Humanos , Masculino , Mesoderma/patologia , Camundongos , Camundongos Knockout , Mutação/fisiologia , Neoplasias/patologia , Fenótipo , Sarcoma/metabolismo , Sarcoma/patologia , Transdução de Sinais/fisiologia , Proteína Supressora de Tumor p53/metabolismo
10.
Cancer Cell ; 29(6): 859-873, 2016 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-27300435

RESUMO

Glioblastomas (GBM) grow in a rich neurochemical milieu, but the impact of neurochemicals on GBM growth is largely unexplored. We interrogated 680 neurochemical compounds in patient-derived GBM neural stem cells (GNS) to determine the effects on proliferation and survival. Compounds that modulate dopaminergic, serotonergic, and cholinergic signaling pathways selectively affected GNS growth. In particular, dopamine receptor D4 (DRD4) antagonists selectively inhibited GNS growth and promoted differentiation of normal neural stem cells. DRD4 antagonists inhibited the downstream effectors PDGFRß, ERK1/2, and mTOR and disrupted the autophagy-lysosomal pathway, leading to accumulation of autophagic vacuoles followed by G0/G1 arrest and apoptosis. These results demonstrate a role for neurochemical pathways in governing GBM stem cell proliferation and suggest therapeutic approaches for GBM.


Assuntos
Neoplasias Encefálicas/tratamento farmacológico , Glioblastoma/tratamento farmacológico , Células-Tronco Neurais/efeitos dos fármacos , Receptores de Dopamina D4/metabolismo , Bibliotecas de Moléculas Pequenas/administração & dosagem , Animais , Autofagia , Neoplasias Encefálicas/metabolismo , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glioblastoma/metabolismo , Humanos , Camundongos , Células-Tronco Neoplásicas/citologia , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neurais/citologia , Células-Tronco Neurais/patologia , Receptores de Dopamina D4/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia , Análise de Sobrevida , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
11.
FASEB J ; 30(9): 3227-37, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27306335

RESUMO

Tibial pseudarthrosis causes substantial morbidity in patients with neurofibromatosis type 1 (NF1). We studied tibial pseudarthrosis tissue from patients with NF1 and found elevated levels of ß-catenin compared to unaffected bone. To elucidate the role of ß-catenin in fracture healing, we used a surgically induced tibial fracture model in conditional knockout (KO) Nfl (Nf1(flox/flox)) mice. When treated with a Cre-expressing adenovirus (Ad-Cre), there was a localized knockdown of Nf1 in the healing fracture and a subsequent development of a fibrous pseudarthrosis. Consistent with human data, elevated ß-catenin levels were found in the murine fracture sites. The increased fibrous tissue at the fracture site was rescued by local treatment with a Wingless-type MMTV integration site (Wnt) antagonist, Dickkopf-1 (Dkk1). The murine pseudarthrosis phenotype was also rescued by conditional ß-catenin gene inactivation. The number of colony-forming unit osteoblasts (CFU-Os), a surrogate marker of undifferentiated mesenchymal cells able to differentiate to osteoblasts, correlated with the capacity to form bone at the fracture site. Our findings indicate that the protein level of ß-catenin must be precisely regulated for normal osteoblast differentiation. An up-regulation of ß-catenin in NF1 causes a shift away from osteoblastic differentiation resulting in a pseudarthrosis in vivo These results support the notion that pharmacological modulation of ß-catenin can be used to treat pseudarthrosis in patients with NF1.-Ghadakzadeh, S., Kannu, P., Whetstone, H., Howard A., Alman, B. A. ß-catenin modulation in neurofibromatosis type 1 bone repair: therapeutic implications.


Assuntos
Neurofibromatose 1/metabolismo , beta Catenina/metabolismo , Animais , Fenômenos Biomecânicos , Consolidação da Fratura/fisiologia , Fraturas Ósseas/metabolismo , Regulação da Expressão Gênica/fisiologia , Camundongos , Camundongos Knockout , Neurofibromatose 1/complicações , Neurofibromatose 1/genética , Osteoclastos , Pseudoartrose/metabolismo , Pseudoartrose/terapia , Transdução de Sinais , beta Catenina/genética
12.
Am J Hum Genet ; 97(6): 837-47, 2015 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-26637977

RESUMO

The periosteum contributes to bone repair and maintenance of cortical bone mass. In contrast to the understanding of bone development within the epiphyseal growth plate, factors that regulate periosteal osteogenesis have not been studied as intensively. Osteofibrous dysplasia (OFD) is a congenital disorder of osteogenesis and is typically sporadic and characterized by radiolucent lesions affecting the cortical bone immediately under the periosteum of the tibia and fibula. We identified germline mutations in MET, encoding a receptor tyrosine kinase, that segregate with an autosomal-dominant form of OFD in three families and a mutation in a fourth affected subject from a simplex family and with bilateral disease. Mutations identified in all families with dominant inheritance and in the one simplex subject with bilateral disease abolished the splice inclusion of exon 14 in MET transcripts, which resulted in a MET receptor (MET(Δ14)) lacking a cytoplasmic juxtamembrane domain. Splice exclusion of this domain occurs during normal embryonic development, and forced induction of this exon-exclusion event retarded osteoblastic differentiation in vitro and inhibited bone-matrix mineralization. In an additional subject with unilateral OFD, we identified a somatic MET mutation, also affecting exon 14, that substituted a tyrosine residue critical for MET receptor turnover and, as in the case of the MET(Δ14) mutations, had a stabilizing effect on the mature protein. Taken together, these data show that aberrant MET regulation via the juxtamembrane domain subverts core MET receptor functions that regulate osteogenesis within cortical diaphyseal bone.


Assuntos
Doenças do Desenvolvimento Ósseo/genética , Éxons , Mutação em Linhagem Germinativa , Osteogênese/genética , Periósteo/metabolismo , Proteínas Proto-Oncogênicas c-met/genética , Adulto , Sequência de Bases , Doenças do Desenvolvimento Ósseo/metabolismo , Doenças do Desenvolvimento Ósseo/patologia , Diferenciação Celular , Criança , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Genes Dominantes , Humanos , Masculino , Pessoa de Meia-Idade , Dados de Sequência Molecular , Osteoblastos/metabolismo , Osteoblastos/patologia , Linhagem , Periósteo/crescimento & desenvolvimento , Periósteo/patologia , Cultura Primária de Células , Estrutura Terciária de Proteína , Proteínas Proto-Oncogênicas c-met/metabolismo , Splicing de RNA
13.
Oncotarget ; 6(37): 40283-94, 2015 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-26517673

RESUMO

Tumor-propagating cells (TPCs) are believed to drive cancer initiation, progression and recurrence. These cells are characterized by enhanced tumorigenicity and self-renewal. The ability to identify such cells in primary human sarcomas relies on the dye exclusion ability of tumor side population (SP) cells. Here, we performed a high-throughput cell surface antigen screen and found that CD146 is enriched in the SP population. In vivo serial transplantation assays showed that CD146+ cells are highly tumorigenic, capable of self-renewal and thus enriches for the TPC population. In addition, depletion of SP cells from the CD146+ population show that CD146+ cells and SP cells are a distinct and overlapping TPC populations. Gene expression profiling of CD146+ and SP cells revealed multiple pathways commonly upregulated in both of these populations. Inhibition of one of these upregulated pathways, Notch signaling, significantly reduced tumor growth and self-renewal. Our data demonstrate that CD146 is an effective cell surface marker for enriching TPCs in primary human sarcomas. Targeting differentially activated pathways in TPCs may provide new therapeutic strategies for treating sarcoma.


Assuntos
Biomarcadores Tumorais/genética , Antígeno CD146/genética , Células-Tronco Neoplásicas/metabolismo , Células da Side Population/metabolismo , Transdução de Sinais/genética , Animais , Biomarcadores Tumorais/metabolismo , Antígeno CD146/metabolismo , Dipeptídeos/farmacologia , Citometria de Fluxo , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Osteossarcoma/genética , Osteossarcoma/patologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sarcoma/genética , Sarcoma/patologia , Transdução de Sinais/efeitos dos fármacos , Transplante Heterólogo , Células Tumorais Cultivadas
14.
Nat Commun ; 6: 7131, 2015 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-25988592

RESUMO

The capacity for tissues to repair and regenerate diminishes with age. We sought to determine the age-dependent contribution of native mesenchymal cells and circulating factors on in vivo bone repair. Here we show that exposure to youthful circulation by heterochronic parabiosis reverses the aged fracture repair phenotype and the diminished osteoblastic differentiation capacity of old animals. This rejuvenation effect is recapitulated by engraftment of young haematopoietic cells into old animals. During rejuvenation, ß-catenin signalling, a pathway important in osteoblast differentiation, is modulated in the early repair process and required for rejuvenation of the aged phenotype. Temporal reduction of ß-catenin signalling during early fracture repair improves bone healing in old mice. Our data indicate that young haematopoietic cells have the capacity to rejuvenate bone repair and this is mediated at least in part through ß-catenin, raising the possibility that agents that modulate ß-catenin can improve the pace or quality of fracture repair in the ageing population.


Assuntos
Consolidação da Fratura , Regeneração , beta Catenina/metabolismo , Alelos , Animais , Sítios de Ligação , Medula Óssea/patologia , Osso e Ossos/patologia , Diferenciação Celular , Meios de Cultivo Condicionados , Feminino , Fluoresceínas/química , Fraturas Ósseas/patologia , Células-Tronco Hematopoéticas/citologia , Células-Tronco Mesenquimais/citologia , Camundongos , Camundongos Transgênicos , Osteoblastos/citologia , Osteoblastos/metabolismo , Osteogênese , Parabiose , Fenótipo , Transdução de Sinais , Tíbia/patologia , Fatores de Tempo , Proteínas Wnt/metabolismo
15.
Proc Natl Acad Sci U S A ; 112(9): 2829-34, 2015 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-25730874

RESUMO

Enchondromas are benign cartilage tumors and precursors to malignant chondrosarcomas. Somatic mutations in the isocitrate dehydrogenase genes (IDH1 and IDH2) are present in the majority of these tumor types. How these mutations cause enchondromas is unclear. Here, we identified the spectrum of IDH mutations in human enchondromas and chondrosarcomas and studied their effects in mice. A broad range of mutations was identified, including the previously unreported IDH1-R132Q mutation. These mutations harbored enzymatic activity to catalyze α-ketoglutarate to d-2-hydroxyglutarate (d-2HG). Mice expressing Idh1-R132Q in one allele in cells expressing type 2 collagen showed a disordered growth plate, with persistence of type X-expressing chondrocytes. Chondrocyte cell cultures from these animals or controls showed that there was an increase in proliferation and expression of genes characteristic of hypertrophic chondrocytes with expression of Idh1-R132Q or 2HG treatment. Col2a1-Cre;Idh1-R132Q mutant knock-in mice (mutant allele expressed in chondrocytes) did not survive after the neonatal stage. Col2a1-Cre/ERT2;Idh1-R132 mutant conditional knock-in mice, in which Cre was induced by tamoxifen after weaning, developed multiple enchondroma-like lesions. Taken together, these data show that mutant IDH or d-2HG causes persistence of chondrocytes, giving rise to rests of growth-plate cells that persist in the bone as enchondromas.


Assuntos
Condrócitos , Encondromatose , Regulação Enzimológica da Expressão Gênica , Isocitrato Desidrogenase , Mutação de Sentido Incorreto , Substituição de Aminoácidos , Animais , Condrócitos/enzimologia , Condrócitos/patologia , Colágeno Tipo II/biossíntese , Colágeno Tipo II/genética , Encondromatose/enzimologia , Encondromatose/genética , Encondromatose/patologia , Glutaratos/efeitos adversos , Glutaratos/farmacologia , Humanos , Isocitrato Desidrogenase/biossíntese , Isocitrato Desidrogenase/genética , Camundongos , Camundongos Mutantes
16.
J Bone Miner Res ; 30(6): 1090-102, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25487241

RESUMO

Macrophages are activated in inflammation and during early phases of repair processes. Interestingly, they are also present in bone during development, but their function during this process is unclear. Here, we explore the function of macrophages in bone development, growth, and repair using transgenic mice to constitutively or conditionally deplete macrophages. Depletion of macrophages led to early skeletal growth retardation and progressive osteoporosis. By 3 months of age, macrophage-deficient mice displayed a 25% reduction in bone mineral density and a 70% reduction in the number of trabecular bone compared to control littermates. Despite depletion of macrophages, functional osteoclasts were still present in bones, lining trabecular bone and the endosteal surface of the cortical bone. Furthermore, ablation of macrophages led to a 60% reduction in the number of bone marrow mesenchymal progenitor cells and a decrease in the ability of these cells to differentiate to osteoblasts. When macrophages were depleted during fracture repair, bone union was impaired. Calluses from macrophage-deficient animals were smaller, and contained less bone and more fibrotic tissue deposition. Taken together, this shows that macrophages are crucial for maintaining bone homeostasis and promoting fracture repair by enhancing the differentiation of mesenchymal progenitors.


Assuntos
Células da Medula Óssea/metabolismo , Diferenciação Celular/fisiologia , Consolidação da Fratura/fisiologia , Homeostase/fisiologia , Macrófagos/metabolismo , Osteoblastos/metabolismo , Animais , Densidade Óssea/fisiologia , Células da Medula Óssea/citologia , Macrófagos/citologia , Camundongos , Camundongos Transgênicos , Osteoblastos/citologia
17.
J Clin Invest ; 124(6): 2599-610, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24837430

RESUMO

A ß-catenin/T cell factor-dependent transcriptional program is critical during cutaneous wound repair for the regulation of scar size; however, the relative contribution of ß-catenin activity and function in specific cell types in the granulation tissue during the healing process is unknown. Here, cell lineage tracing revealed that cells in which ß-catenin is transcriptionally active express a gene profile that is characteristic of the myeloid lineage. Mice harboring a macrophage-specific deletion of the gene encoding ß-catenin exhibited insufficient skin wound healing due to macrophage-specific defects in migration, adhesion to fibroblasts, and ability to produce TGF-ß1. In irradiated mice, only macrophages expressing ß-catenin were able to rescue wound-healing deficiency. Evaluation of scar tissue collected from patients with hypertrophic and normal scars revealed a correlation between the number of macrophages within the wound, ß-catenin levels, and cellularity. Our data indicate that ß-catenin regulates myeloid cell motility and adhesion and that ß-catenin-mediated macrophage motility contributes to the number of mesenchymal cells and ultimate scar size following cutaneous injury.


Assuntos
Células Mieloides/fisiologia , Cicatrização/fisiologia , beta Catenina/fisiologia , Animais , Adesão Celular/genética , Adesão Celular/fisiologia , Linhagem da Célula/genética , Linhagem da Célula/fisiologia , Movimento Celular/genética , Movimento Celular/fisiologia , Cicatriz/metabolismo , Cicatriz/patologia , Cicatriz Hipertrófica/metabolismo , Cicatriz Hipertrófica/patologia , Humanos , Macrófagos/citologia , Macrófagos/fisiologia , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Células Mieloides/citologia , Pele/lesões , Pele/patologia , Pele/fisiopatologia , Fatores de Transcrição TCF/genética , Fatores de Transcrição TCF/fisiologia , Transcriptoma , Fator de Crescimento Transformador beta1/biossíntese , Cicatrização/genética , beta Catenina/deficiência , beta Catenina/genética
18.
Mol Cancer Ther ; 13(5): 1259-69, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24634412

RESUMO

Hedgehog (Hh) pathway inhibition in cancer has been evaluated in both the ligand-independent and ligand-dependent settings, where Hh signaling occurs either directly within the cancer cells or within the nonmalignant cells of the tumor microenvironment. Chondrosarcoma is a malignant tumor of cartilage in which there is ligand-dependent activation of Hh signaling. IPI-926 is a potent, orally delivered small molecule that inhibits Hh pathway signaling by binding to Smoothened (SMO). Here, the impact of Hh pathway inhibition on primary chondrosarcoma xenografts was assessed. Mice bearing primary human chondrosarcoma xenografts were treated with IPI-926. The expression levels of known Hh pathway genes, in both the tumor and stroma, and endpoint tumor volumes were measured. Gene expression profiling of tumors from IPI-926-treated mice was conducted to identify potential novel Hh target genes. Hh target genes were studied to determine their contribution to the chondrosarcoma neoplastic phenotype. IPI-926 administration results in downmodulation of the Hh pathway in primary chondrosarcoma xenografts, as demonstrated by evaluation of the Hh target genes GLI1 and PTCH1, as well as inhibition of tumor growth. Chondrosarcomas exhibited autocrine and paracrine Hh signaling, and both were affected by IPI-926. Decreased tumor growth is accompanied by histopathologic changes, including calcification and loss of tumor cells. Gene profiling studies identified genes differentially expressed in chondrosarcomas following IPI-926 treatment, one of which, ADAMTSL1, regulates chondrosarcoma cell proliferation. These studies provide further insight into the role of the Hh pathway in chondrosarcoma and provide a scientific rationale for targeting the Hh pathway in chondrosarcoma.


Assuntos
Condrossarcoma/metabolismo , Proteínas Hedgehog/metabolismo , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Alcaloides de Veratrum/farmacologia , Proteínas ADAMTS , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/farmacologia , Calcinose/tratamento farmacológico , Calcinose/genética , Calcinose/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Condrossarcoma/genética , Condrossarcoma/patologia , Modelos Animais de Doenças , Proteínas da Matriz Extracelular/genética , Humanos , Camundongos , Receptor Smoothened , Carga Tumoral/efeitos dos fármacos , Alcaloides de Veratrum/administração & dosagem , Ensaios Antitumorais Modelo de Xenoenxerto
19.
J Orthop Res ; 32(4): 581-6, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24347536

RESUMO

Fracture repair is a well orchestrated process involving various cell types and signaling molecules. The hedgehog signaling pathway is activated in chondrocytes during fracture repair and is known to regulate chondrogenesis however, its role in osteoblasts during injury is yet unknown. In this study we observed tibial fracture repair in mice in which hedgehog signaling was modulated through genetic alterations of the pathway activator, smoothened. Levels of the hedgehog target genes Gli1 and Ptch1 in wildtype mice were upregulated in fracture calluses throughout the repair process. Forced activation of the hedgehog pathway in ubiquitous fashion resulted in increased matrix deposition in the fracture callus. Interestingly, inhibition in chondrocytes did not alter the fracture repair phenotype, while activation of hedgehog in osteoblasts was a requirement for normal fracture repair. In vitro, transcript levels of Gli1 and Ptch1 were elevated during osteoblastogenesis. Activation of hedgehog signaling positively affected osteoblastic differentiation and mineralization as detected using alkaline phosphatase and Von Kossa staining and Alp and Col1 expression. Here we show that the hedgehog signaling pathway plays a critical role in osteoblasts during fracture repair: inhibition of the pathway in osteoblasts leads to decreased matrix at the fracture site while activation increased matrix deposition.


Assuntos
Condrócitos/metabolismo , Consolidação da Fratura , Proteínas Hedgehog/fisiologia , Osteoblastos/metabolismo , Animais , Células Cultivadas , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Transgênicos , Transdução de Sinais/fisiologia
20.
Cancer Res ; 72(4): 1013-22, 2012 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-22232736

RESUMO

Like many solid tumors, sarcomas are heterogeneous and include a small fraction of the so-called side population (SP) cells with stem-like tumor-initiating potential. Here, we report that SP cells from a soft tissue tumor of enigmatic origin termed undifferentiated pleomorphic sarcoma (also known as malignant fibrous histiocytoma or MFH sarcoma) display activation of both the Hedgehog and Notch pathways. Blockade to these pathways in murine xenograft models, this human cancer decreased the proportion of SP cells present and suppressed tumor self-renewal, as illustrated by the striking inability of xenograft tumors subjected to pathway blockade to be serially transplanted to new hosts. In contrast, conventional chemotherapies increased the proportion of SP cells present in tumor xenografts and did not affect their ability to be serially transplanted. SP cells from these tumors displayed an unexpectedly high proliferation rate which was selectively inhibited by Hedgehog and Notch blockade compared with conventional chemotherapies. Together, our findings deepen the concept that Hedgehog and Notch signaling are fundamental drivers of tumor self-renewal, acting in a small population of tumor-initiating cells present in tumors. Furthermore, our results suggest not only novel treatment strategies for deadly recurrent unresectable forms of this soft tumor subtype, but also potential insights into its etiology which has been historically controversial.


Assuntos
Proteínas Hedgehog/metabolismo , Histiocitoma Fibroso Maligno/metabolismo , Histiocitoma Fibroso Maligno/patologia , Receptores Notch/metabolismo , Animais , Proliferação de Células , Transformação Celular Neoplásica , Perfilação da Expressão Gênica , Proteínas Hedgehog/antagonistas & inibidores , Humanos , Camundongos , Camundongos SCID , Transplante de Neoplasias , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Receptores Notch/antagonistas & inibidores , Transdução de Sinais/fisiologia , Triparanol/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA