Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Transl Vis Sci Technol ; 11(9): 19, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-36149648

RESUMO

Purpose: There remains a high unmet need for therapies with new mechanisms of action to achieve reperfusion of ischemic retina in diabetic retinopathy. We examined whether a novel frizzled class receptor 4 (FZD4) agonist could promote regeneration of functional blood vessels in animal models of retinopathy. Methods: We developed a novel Norrin mimetic (SZN-413-p) targeting FZD4 and low-density lipoprotein receptor-related protein 5 (LRP5) and examined its effect on retinal and brain endothelial cells in vitro. SZN-413-p was subsequently humanized, resulting in the therapeutic candidate SZN-413, and was examined in animal models of retinopathy. In an oxygen-induced retinopathy mouse model, avascular and neovascularization areas were measured. Furthermore, in a vascular endothelial growth factor (VEGF)-induced retinal vascular leakage rabbit model, the impact on vascular leakage by SZN-413 was examined by measuring fluorescein leakage. Results: SZN-413-p induced Wnt/ß-catenin signaling and upregulated blood-brain barrier/blood-retina barrier gene expressions in endothelial cells. In the oxygen-induced retinopathy mouse model, SZN-413-p and SZN-413 significantly reduced the neovascularization area size (P < 0.001) to a level comparable to, or better than the positive control aflibercept. Both agonists also showed a reduction in avascular area size compared to vehicle (P < 0.001) and aflibercept groups (P < 0.05 and P < 0.01 for SZN-413-p and SZN-413, respectively). In the VEGF-induced retinal vascular leakage rabbit model, SZN-413 reduced retinal vascular leakage by ∼80%, compared to the vehicle-treated group (P < 0.01). Conclusions: Reduction of neovascular tufts and avascular areas and of VEGF-driven retinal vascular leakage suggests that SZN-413 can simultaneously address retinal non-perfusion and vascular leakage. Translational Relevance: FZD4 signaling modulation by SZN-413 is a novel mechanism of action that can offer a new therapeutic strategy for diabetic retinopathy.


Assuntos
Diabetes Mellitus , Retinopatia Diabética , Animais , Retinopatia Diabética/tratamento farmacológico , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Fluoresceínas/uso terapêutico , Proteína-5 Relacionada a Receptor de Lipoproteína de Baixa Densidade , Camundongos , Neovascularização Patológica , Oxigênio/uso terapêutico , Coelhos , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/uso terapêutico , beta Catenina/metabolismo , beta Catenina/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA