Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Cleft Palate Craniofac J ; : 10556656241237605, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38483822

RESUMO

OBJECTIVE: The purpose of this study is to objectively quantify the degree of overcorrection in our current practice and to evaluate longitudinal morphological changes using CranioRateTM, a novel machine learning skull morphology assessment tool.  . DESIGN: Retrospective cohort study across multiple time points. SETTING: Tertiary care children's hospital. PATIENTS: Patients with preoperative and postoperative CT scans who underwent fronto-orbital advancement (FOA) for metopic craniosynostosis. MAIN OUTCOME MEASURES: We evaluated preoperative, postoperative, and two-year follow-up skull morphology using CranioRateTM to generate a Metopic Severity Score (MSS), a measure of degree of metopic dysmorphology, and Cranial Morphology Deviation (CMD) score, a measure of deviation from normal skull morphology. RESULTS: Fifty-five patients were included, average age at surgery was 1.3 years. Sixteen patients underwent follow-up CT imaging at an average of 3.1 years. Preoperative MSS was 6.3 ± 2.5 (CMD 199.0 ± 39.1), immediate postoperative MSS was -2.0 ± 1.9 (CMD 208.0 ± 27.1), and longitudinal MSS was 1.3 ± 1.1 (CMD 179.8 ± 28.1). MSS approached normal at two-year follow-up (defined as MSS = 0). There was a significant relationship between preoperative MSS and follow-up MSS (R2 = 0.70). CONCLUSIONS: MSS quantifies overcorrection and normalization of head shape, as patients with negative values were less "metopic" than normal postoperatively and approached 0 at 2-year follow-up. CMD worsened postoperatively due to postoperative bony changes associated with surgical displacements following FOA. All patients had similar postoperative metopic dysmorphology, with no significant association with preoperative severity. More severe patients had worse longitudinal dysmorphology, reinforcing that regression to the metopic shape is a postoperative risk which increases with preoperative severity.

2.
Mod Pathol ; 37(4): 100447, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38369187

RESUMO

Pathologists have, over several decades, developed criteria for diagnosing and grading prostate cancer. However, this knowledge has not, so far, been included in the design of convolutional neural networks (CNN) for prostate cancer detection and grading. Further, it is not known whether the features learned by machine-learning algorithms coincide with diagnostic features used by pathologists. We propose a framework that enforces algorithms to learn the cellular and subcellular differences between benign and cancerous prostate glands in digital slides from hematoxylin and eosin-stained tissue sections. After accurate gland segmentation and exclusion of the stroma, the central component of the pipeline, named HistoEM, utilizes a histogram embedding of features from the latent space of the CNN encoder. Each gland is represented by 128 feature-wise histograms that provide the input into a second network for benign vs cancer classification of the whole gland. Cancer glands are further processed by a U-Net structured network to separate low-grade from high-grade cancer. Our model demonstrates similar performance compared with other state-of-the-art prostate cancer grading models with gland-level resolution. To understand the features learned by HistoEM, we first rank features based on the distance between benign and cancer histograms and visualize the tissue origins of the 2 most important features. A heatmap of pixel activation by each feature is generated using Grad-CAM and overlaid on nuclear segmentation outlines. We conclude that HistoEM, similar to pathologists, uses nuclear features for the detection of prostate cancer. Altogether, this novel approach can be broadly deployed to visualize computer-learned features in histopathology images.


Assuntos
Patologistas , Neoplasias da Próstata , Masculino , Humanos , Fluxo de Trabalho , Redes Neurais de Computação , Algoritmos , Neoplasias da Próstata/patologia
3.
Plast Reconstr Surg ; 153(1): 112e-119e, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36943708

RESUMO

BACKGROUND: The diagnosis and management of metopic craniosynostosis involve subjective decision-making at the point of care. The purpose of this work was to describe a quantitative severity metric and point-of-care user interface to aid clinicians in the management of metopic craniosynostosis and to provide a platform for future research through deep phenotyping. METHODS: Two machine-learning algorithms were developed that quantify the severity of craniosynostosis-a supervised model specific to metopic craniosynostosis [Metopic Severity Score (MSS)] and an unsupervised model used for cranial morphology in general [Cranial Morphology Deviation (CMD)]. Computed tomographic (CT) images from multiple institutions were compiled to establish the spectrum of severity, and a point-of-care tool was developed and validated. RESULTS: Over the study period (2019 to 2021), 254 patients with metopic craniosynostosis and 92 control patients who underwent CT scanning between the ages of 6 and 18 months were included. CT scans were processed using an unsupervised machine-learning based dysmorphology quantification tool, CranioRate. The average MSS was 0.0 ± 1.0 for normal controls and 4.9 ± 2.3 ( P < 0.001) for those with metopic synostosis. The average CMD was 85.2 ± 19.2 for normal controls and 189.9 ± 43.4 ( P < 0.001) for those with metopic synostosis. A point-of-care user interface (craniorate.org) has processed 46 CT images from 10 institutions. CONCLUSIONS: The resulting quantification of severity using MSS and CMD has shown an improved capacity, relative to conventional measures, to automatically classify normal controls versus patients with metopic synostosis. The authors have mathematically described, in an objective and quantifiable manner, the distribution of phenotypes in metopic craniosynostosis.


Assuntos
Craniossinostoses , Humanos , Lactente , Craniossinostoses/diagnóstico por imagem , Craniossinostoses/genética , Crânio , Processamento de Imagem Assistida por Computador , Tomografia Computadorizada por Raios X/métodos
4.
Plast Reconstr Surg ; 151(2): 396-403, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36696326

RESUMO

BACKGROUND: Quantifying the severity of head shape deformity and establishing a threshold for operative intervention remains challenging in patients with metopic craniosynostosis (MCS). This study combines three-dimensional skull shape analysis with an unsupervised machine-learning algorithm to generate a quantitative shape severity score (cranial morphology deviation) and provide an operative threshold score. METHODS: Head computed tomography scans from subjects with MCS and normal controls (5 to 15 months of age) were used for objective three-dimensional shape analysis using ShapeWorks software and in a survey for craniofacial surgeons to rate head-shape deformity and report whether they would offer surgical correction based on head shape alone. An unsupervised machine-learning algorithm was developed to quantify the degree of shape abnormality of MCS skulls compared to controls. RESULTS: One hundred twenty-four computed tomography scans were used to develop the model; 50 (24% MCS, 76% controls) were rated by 36 craniofacial surgeons, with an average of 20.8 ratings per skull. The interrater reliability was high (intraclass correlation coefficient, 0.988). The algorithm performed accurately and correlates closely with the surgeons assigned severity ratings (Spearman correlation coefficient, r = 0.817). The median cranial morphology deviation for affected skulls was 155.0 (interquartile range, 136.4 to 194.6; maximum, 231.3). Skulls with ratings of 150.2 or higher were very likely to be offered surgery by the experts in this study. CONCLUSIONS: This study describes a novel metric to quantify the head shape deformity associated with MCS and contextualizes the results using clinical assessments of head shapes by craniofacial experts. This metric may be useful in supporting clinical decision making around operative intervention and in describing outcomes and comparing patient population across centers.


Assuntos
Craniossinostoses , Aprendizado de Máquina não Supervisionado , Humanos , Lactente , Reprodutibilidade dos Testes , Craniossinostoses/diagnóstico por imagem , Craniossinostoses/cirurgia , Crânio/diagnóstico por imagem , Crânio/cirurgia
5.
Cleft Palate Craniofac J ; 60(8): 971-979, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-35306870

RESUMO

This study aims to determine the utility of 3D photography for evaluating the severity of metopic craniosynostosis (MCS) using a validated, supervised machine learning (ML) algorithm.This single-center retrospective cohort study included patients who were evaluated at our tertiary care center for MCS from 2016 to 2020 and underwent both head CT and 3D photography within a 2-month period.The analysis method builds on our previously established ML algorithm for evaluating MCS severity using skull shape from CT scans. In this study, we regress the model to analyze 3D photographs and correlate the severity scores from both imaging modalities.14 patients met inclusion criteria, 64.3% male (n = 9). The mean age in years at 3D photography and CT imaging was 0.97 and 0.94, respectively. Ten patient images were obtained preoperatively, and 4 patients did not require surgery. The severity prediction of the ML algorithm correlates closely when comparing the 3D photographs to CT bone data (Spearman correlation coefficient [SCC] r = 0.75; Pearson correlation coefficient [PCC] r = 0.82).The results of this study show that 3D photography is a valid alternative to CT for evaluation of head shape in MCS. Its use will provide an objective, quantifiable means of assessing outcomes in a rigorous manner while decreasing radiation exposure in this patient population.


Assuntos
Craniossinostoses , Imageamento Tridimensional , Humanos , Masculino , Lactente , Feminino , Estudos Retrospectivos , Imageamento Tridimensional/métodos , Craniossinostoses/diagnóstico por imagem , Craniossinostoses/cirurgia , Fotografação
6.
J Craniofac Surg ; 34(1): 58-64, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35946829

RESUMO

BACKGROUND: There have been few longitudinal studies assessing the effect of preoperative phenotypic severity on long-term esthetic outcomes in metopic craniosynostosis. This study evaluates the relationship between metopic severity and long-term esthetic outcomes using interfrontal angle (IFA) and CranioRate, a novel metopic synostosis severity measure. METHODS: Patients with metopic craniosynostosis who underwent bifrontal orbital advancement and remodeling between 2012 and 2017 were reviewed. Preoperative computed tomography head scans were analyzed for IFA and CranioRate, a machine learning algorithm which generates quantitative severity ratings including metopic severity score (MSS) and cranial morphology deviation (CMD). Long-term esthetic outcomes were assessed by craniofacial surgeons using blinded 3-rater esthetic grading of clinical photos. Raters assessed Whitaker score and the presence of temporal hollowing, lateral orbital retrusion, frontal bone irregularities and/or "any visible irregularities." RESULTS: Preoperative scans were performed at a mean age of 7.7±3.4 months, with average MSS of 6/10, CMD of 200/300, and IFA of 116.8±13.8 degrees. Patients underwent bifrontal orbital advancement and remodeling at mean 9.9±3.1 months. The average time from operation to esthetic assessment was 5.4±1.0 years. Pearson correlation revealed a significant negative correlation between MSS and age at computed tomography ( r =-0.451, P =0.004) and IFA ( r =-0.371, P =0.034) and between IFA and age at surgery ( r =-0.383, P =0.018). In multinomial logistic regression, preoperative MSS was the only independent predictor of visible irregularities (odds ratio=2.18, B =0.780, P =0.024) and preoperative IFA alone significantly predicted Whitaker score, with more acute IFA predicting worse Whitaker score (odds ratio=0.928, B =-0.074, P =0.928). CONCLUSIONS: More severe preoperative phenotypes of metopic craniosynostosis were associated with worse esthetic dysmorphology. Objective measures of preoperative metopic severity predicted long-term esthetic outcomes.


Assuntos
Craniossinostoses , Estética Dentária , Humanos , Craniossinostoses/diagnóstico por imagem , Craniossinostoses/cirurgia , Osso Frontal , Aprendizado de Máquina , Fenótipo , Estudos Retrospectivos
7.
J Craniofac Surg ; 33(8): 2372-2378, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35864584

RESUMO

PURPOSE: A subset of patients with metopic craniosynostosis are noted to have elevated intracranial pressure (ICP). However, it is not known if the propensity for elevated ICP is influenced by the severity of metopic cranial dysmorphology. METHODS: Children with nonsyndromic single-suture metopic synostosis were prospectively enrolled and underwent optical coherence tomography to measure optic nerve head morphology. Preoperative head computed tomography scans were assessed for endocranial bifrontal angle as well as scaled metopic synostosis severity score (MSS) and cranial morphology deviation score determined by CranioRate, an automated severity classifier. RESULTS: Forty-seven subjects were enrolled between 2014 and 2019, at an average age of 8.5 months at preoperative computed tomography and 11.8 months at index procedure. Fourteen patients (29.7%) had elevated optical coherence tomography parameters suggestive of elevated ICP at the time of surgery. Ten patients (21.3%) had been diagnosed with developmental delay, eight of whom demonstrated elevated ICP. There were no significant associations between measures of metopic severity and ICP. Metopic synostosis severity score and endocranial bifrontal angle were inversely correlated, as expected ( r =-0.545, P <0.001). A negative correlation was noted between MSS and formally diagnosed developmental delay ( r =-0.387, P =0.008). Likewise, negative correlations between age at procedure and both MSS and cranial morphology deviation was observed ( r =-0.573, P <0.001 and r =-0.312, P =0.025, respectively). CONCLUSIONS: Increased metopic severity was not associated with elevated ICP at the time of surgery. Patients who underwent later surgical correction showed milder phenotypic dysmorphology with an increased incidence of developmental delay.


Assuntos
Craniossinostoses , Hipertensão Intracraniana , Criança , Humanos , Lactente , Pressão Intracraniana , Craniossinostoses/diagnóstico por imagem , Craniossinostoses/cirurgia , Crânio , Tomografia Computadorizada por Raios X , Hipertensão Intracraniana/diagnóstico por imagem
8.
J Orthop Res ; 40(9): 2113-2126, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-34812545

RESUMO

Developmental dysplasia of the hip (DDH) is commonly described as reduced femoral head coverage due to anterolateral acetabular deficiency. Although reduced coverage is the defining trait of DDH, more subtle and localized anatomic features of the joint are also thought to contribute to symptom development and degeneration. These features are challenging to identify using conventional approaches. Herein, we assessed the morphology of the full femur and hemi-pelvis using an articulated statistical shape model (SSM). The model determined the morphological and pose-based variations associated with DDH in a population of Japanese females and established which of these variations predict coverage. Computed tomography (CT) images of 83 hips from 47 patients were segmented for input into a correspondence-based SSM. The dominant modes of variation in the model initially represented scale and pose. After removal of these factors through individual bone alignment, femoral version and neck-shaft angle, pelvic curvature, and acetabular version dominated the observed variation. Femoral head oblateness and prominence of the acetabular rim and various muscle attachment sites of the femur and hemi-pelvis were found to predict 3D CT-based coverage measurements (R2 = 0.5-0.7 for the full bones, R2 = 0.9 for the joint). Statement of Clinical Significance: Currently, clinical measurements of DDH only consider the morphology of the acetabulum. However, the results of this study demonstrated that variability in femoral head shape and several muscle attachment sites were predictive of femoral head coverage. These morphological differences may provide insight into improved clinical diagnosis and surgical planning based on functional adaptations of patients with DDH.


Assuntos
Displasia do Desenvolvimento do Quadril , Luxação Congênita de Quadril , Acetábulo/cirurgia , Feminino , Cabeça do Fêmur/diagnóstico por imagem , Articulação do Quadril , Humanos , Estudos Retrospectivos
9.
J Craniofac Surg ; 31(3): 697-701, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32011542

RESUMO

The standard for diagnosing metopic craniosynostosis (CS) utilizes computed tomography (CT) imaging and physical exam, but there is no standardized method for determining disease severity. Previous studies using interfrontal angles have evaluated differences in specific skull landmarks; however, these measurements are difficult to readily ascertain in clinical practice and fail to assess the complete skull contour. This pilot project employs machine learning algorithms to combine statistical shape information with expert ratings to generate a novel objective method of measuring the severity of metopic CS.Expert ratings of normal and metopic skull CT images were collected. Skull-shape analysis was conducted using ShapeWorks software. Machine-learning was used to combine the expert ratings with our shape analysis model to predict the severity of metopic CS using CT images. Our model was then compared to the gold standard using interfrontal angles.Seventeen metopic skull CT images of patients 5 to 15 months old were assigned a severity by 18 craniofacial surgeons, and 65 nonaffected controls were included with a 0 severity. Our model accurately correlated the level of skull deformity with severity (P < 0.10) and predicted the severity of metopic CS more often than models using interfrontal angles (χ = 5.46, P = 0.019).This is the first study that combines shape information with expert ratings to generate an objective measure of severity for metopic CS. This method may help clinicians easily quantify the severity and perform robust longitudinal assessments of the condition.


Assuntos
Craniossinostoses/diagnóstico por imagem , Face/diagnóstico por imagem , Crânio/diagnóstico por imagem , Craniossinostoses/cirurgia , Face/cirurgia , Humanos , Lactente , Aprendizado de Máquina , Projetos Piloto , Crânio/cirurgia , Tomografia Computadorizada por Raios X
10.
Int J Comput Assist Radiol Surg ; 14(11): 1955-1967, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31236805

RESUMO

PURPOSE: We propose a segmentation methodology for brainstem cranial nerves using statistical shape model (SSM)-based deformable 3D contours from T2 MR images. METHODS: We create shape models for ten pairs of cranial nerves. High-resolution T2 MR images are segmented for nerve centerline using a 1-Simplex discrete deformable 3D contour model. These segmented centerlines comprise training datasets for the shape model. Point correspondence for the training dataset is performed using an entropy-based energy minimization framework applied to particles located on the centerline curve. The shape information is incorporated into the 1-Simplex model by introducing a shape-based internal force, making the deformation stable against low resolution and image artifacts. RESULTS: The proposed method is validated through extensive experiments using both synthetic and patient MRI data. The robustness and stability of the proposed method are experimented using synthetic datasets. SSMs are constructed independently for ten pairs (CNIII-CNXII) of brainstem cranial nerves using ten non-pathological image datasets of the brainstem. The constructed ten SSMs are assessed in terms of compactness, specificity and generality. In order to quantify the error distances between segmented results and ground truths, two metrics are used: mean absolute shape distance (MASD) and Hausdorff distance (HD). MASD error using the proposed shape model is 0.19 ± 0.13 (mean ± std. deviation) mm and HD is 0.21 mm which are sub-voxel accuracy given the input image resolution. CONCLUSION: This paper described a probabilistic digital atlas of the ten brainstem-attached cranial nerve pairs by incorporating a statistical shape model with the 1-Simplex deformable contour. The integration of shape information as a priori knowledge results in robust and accurate centerline segmentations from even low-resolution MRI data, which is essential in neurosurgical planning and simulations for accurate and robust 3D patient-specific models of critical tissues including cranial nerves.


Assuntos
Algoritmos , Nervos Cranianos/diagnóstico por imagem , Imageamento Tridimensional/métodos , Imageamento por Ressonância Magnética/métodos , Modelos Estatísticos , Humanos , Reprodutibilidade dos Testes
11.
Clin Orthop Relat Res ; 477(1): 242-253, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30179924

RESUMO

BACKGROUND: Many two-dimensional (2-D) radiographic views are used to help diagnose cam femoroacetabular impingement (FAI), but there is little consensus as to which view or combination of views is most effective at visualizing the magnitude and extent of the cam lesion (ie, severity). Previous studies have used a single image from a sequence of CT or MR images to serve as a reference standard with which to evaluate the ability of 2-D radiographic views and associated measurements to describe the severity of the cam lesion. However, single images from CT or MRI data may fail to capture the apex of the cam lesion. Thus, it may be more appropriate to use measurements of three-dimensional (3-D) surface reconstructions from CT or MRI data to serve as an anatomic reference standard when evaluating radiographic views and associated measurements used in the diagnosis of cam FAI. QUESTIONS/PURPOSES: The purpose of this study was to use digitally reconstructed radiographs and 3-D statistical shape modeling to (1) determine the correlation between 2-D radiographic measurements of cam FAI and 3-D metrics of proximal femoral shape; and 2) identify the combination of radiographic measurements from plain film projections that were most effective at predicting the 3-D shape of the proximal femur. METHODS: This study leveraged previously acquired CT images of the femur from a convenience sample of 37 patients (34 males; mean age, 27 years, range, 16-47 years; mean body mass index [BMI], 24.6 kg/m, range, 19.0-30.2 kg/m) diagnosed with cam FAI imaged between February 2005 and January 2016. Patients were diagnosed with cam FAI based on a culmination of clinical examinations, history of hip pain, and imaging findings. The control group consisted of 59 morphologically normal control participants (36 males; mean age, 29 years, range, 15-55 years; mean BMI, 24.4 kg/m, range, 16.3-38.6 kg/m) imaged between April 2008 and September 2014. Of these controls, 30 were cadaveric femurs and 29 were living participants. All controls were screened for evidence of femoral deformities using radiographs. In addition, living control participants had no history of hip pain or previous surgery to the hip or lower limbs. CT images were acquired for each participant and the surface of the proximal femur was segmented and reconstructed. Surfaces were input to our statistical shape modeling pipeline, which objectively calculated 3-D shape scores that described the overall shape of the entire proximal femur and of the region of the femur where the cam lesion is typically located. Digital reconstructions for eight plain film views (AP, Meyer lateral, 45° Dunn, modified 45° Dunn, frog-leg lateral, Espié frog-leg, 90° Dunn, and cross-table lateral) were generated from CT data. For each view, measurements of the α angle and head-neck offset were obtained by two researchers (intraobserver correlation coefficients of 0.80-0.94 for the α angle and 0.42-0.80 for the head-neck offset measurements). The relationships between radiographic measurements from each view and the 3-D shape scores (for the entire proximal femur and for the region specific to the cam lesion) were assessed with linear correlation. Additionally, partial least squares regression was used to determine which combination of views and measurements was the most effective at predicting 3-D shape scores. RESULTS: Three-dimensional shape scores were most strongly correlated with α angle on the cross-table view when considering the entire proximal femur (r = -0.568; p < 0.001) and on the Meyer lateral view when considering the region of the cam lesion (r = -0.669; p < 0.001). Partial least squares regression demonstrated that measurements from the Meyer lateral and 90° Dunn radiographs produced the optimized regression model for predicting shape scores for the proximal femur (R = 0.405, root mean squared error of prediction [RMSEP] = 1.549) and the region of the cam lesion (R = 0.525, RMSEP = 1.150). Interestingly, views with larger differences in the α angle and head-neck offset between control and cam FAI groups did not have the strongest correlations with 3-D shape. CONCLUSIONS: Considered together, radiographic measurements from the Meyer lateral and 90° Dunn views provided the most effective predictions of 3-D shape of the proximal femur and the region of the cam lesion as determined using shape modeling metrics. CLINICAL RELEVANCE: Our results suggest that clinicians should consider using the Meyer lateral and 90° Dunn views to evaluate patients in whom cam FAI is suspected. However, the α angle and head-neck offset measurements from these and other plain film views could describe no more than half of the overall variation in the shape of the proximal femur and cam lesion. Thus, caution should be exercised when evaluating femoral head anatomy using the α angle and head-neck offset measurements from plain film radiographs. Given these findings, we believe there is merit in pursuing research that aims to develop the framework necessary to integrate statistical shape modeling into clinical evaluation, because this could aid in the diagnosis of cam FAI.


Assuntos
Impacto Femoroacetabular/diagnóstico por imagem , Fêmur/diagnóstico por imagem , Imageamento Tridimensional/métodos , Imageamento por Ressonância Magnética/métodos , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Tomografia Computadorizada por Raios X/métodos , Adolescente , Adulto , Cadáver , Estudos de Casos e Controles , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Reprodutibilidade dos Testes , Índice de Gravidade de Doença , Adulto Jovem
12.
Clin Orthop Relat Res ; 475(8): 1977-1986, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28342138

RESUMO

BACKGROUND: Residual impingement resulting from insufficient resection of bone during the index femoroplasty is the most-common reason for revision surgery in patients with cam-type femoroacetabular impingement (FAI). Development of surgical resection guidelines therefore could reduce the number of patients with persistent pain and reduced ROM after femoroplasty. QUESTIONS/PURPOSES: We asked whether removal of subchondral cortical bone in the region of the lesion in patients with cam FAI could restore femoral anatomy to that of screened control subjects. To evaluate this, we analyzed shape models between: (1) native cam and screened control femurs to observe the location of the cam lesion and establish baseline shape differences between groups, and (2) cam femurs with simulated resections and screened control femurs to evaluate the sufficiency of subchondral cortical bone thickness to guide resection depth. METHODS: Three-dimensional (3-D) reconstructions of the inner and outer cortical bone boundaries of the proximal femur were generated by segmenting CT images from 45 control subjects (29 males; 15 living subjects, 30 cadavers) with normal radiographic findings and 28 nonconsecutive patients (26 males) with a diagnosis of cam FAI based on radiographic measurements and clinical examinations. Correspondence particles were placed on each femur and statistical shape modeling (SSM) was used to create mean shapes for each cohort. The geometric difference between the mean shape of the patients with cam FAI and that of the screened controls was used to define a consistent region representing the cam lesion. Subchondral cortical bone in this region was removed from the 3-D reconstructions of each cam femur to create a simulated resection. SSM was repeated to determine if the resection produced femoral anatomy that better resembled that of control subjects. Correspondence particle locations were used to generate mean femur shapes and evaluate shape differences using principal component analysis. RESULTS: In the region of the cam lesion, the median distance between the mean native cam and control femurs was 1.8 mm (range, 1.0-2.7 mm). This difference was reduced to 0.2 mm (range, -0.2 to 0.9 mm) after resection, with some areas of overresection anteriorly and underresection superiorly. In the region of resection for each subject, the distance from each correspondence particle to the mean control shape was greater for the cam femurs than the screened control femurs (1.8 mm, [range, 1.1-2.9 mm] and 0.0 mm [range, -0.2-0.1 mm], respectively; p < 0.031). After resection, the distance was not different between the resected cam and control femurs (0.3 mm; range, -0.2-1.0; p > 0.473). CONCLUSIONS: Removal of subchondral cortical bone in the region of resection reduced the deviation between the mean resected cam and control femurs to within a millimeter, which resulted in no difference in shape between patients with cam FAI and control subjects. Collectively, our results support the use of the subchondral cortical-cancellous bone margin as a visual intraoperative guide to limit resection depth in the correction of cam FAI. CLINICAL RELEVANCE: Use of the subchondral cortical-cancellous bone boundary may provide a method to guide the depth of resection during arthroscopic surgery, which can be observed intraoperatively without advanced tooling, or imaging.


Assuntos
Artroscopia/métodos , Osso Esponjoso/cirurgia , Osso Cortical/cirurgia , Impacto Femoroacetabular/cirurgia , Fêmur/cirurgia , Adolescente , Adulto , Pontos de Referência Anatômicos/cirurgia , Osso Esponjoso/anatomia & histologia , Estudos de Casos e Controles , Osso Cortical/anatomia & histologia , Feminino , Fêmur/anatomia & histologia , Fêmur/patologia , Humanos , Masculino , Pessoa de Meia-Idade , Resultado do Tratamento , Adulto Jovem
13.
Int J Comput Assist Radiol Surg ; 11(7): 1221-32, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26646417

RESUMO

PURPOSE: Statistical shape analysis of anatomical structures plays an important role in many medical image analysis applications such as understanding the structural changes in anatomy in various stages of growth or disease. Establishing accurate correspondence across object populations is essential for such statistical shape analysis studies. METHODS: In this paper, we present an entropy-based correspondence framework for computing point-based correspondence among populations of surfaces in a groupwise manner. This robust framework is parameterization-free and computationally efficient. We review the core principles of this method as well as various extensions to deal effectively with surfaces of complex geometry and application-driven correspondence metrics. RESULTS: We apply our method to synthetic and biological datasets to illustrate the concepts proposed and compare the performance of our framework to existing techniques. CONCLUSIONS: Through the numerous extensions and variations presented here, we create a very flexible framework that can effectively handle objects of various topologies, multi-object complexes, open surfaces, and objects of complex geometry such as high-curvature regions or extremely thin features.


Assuntos
Algoritmos , Entropia , Interpretação de Imagem Assistida por Computador/métodos , Humanos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
14.
J Neuroimaging ; 25(6): 875-82, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26259925

RESUMO

BACKGROUND AND PURPOSE: Diffusion tensor imaging (DTI) tractography reconstruction of white matter pathways can help guide brain tumor resection. However, DTI tracts are complex mathematical objects and the validity of tractography-derived information in clinical settings has yet to be fully established. To address this issue, we initiated the DTI Challenge, an international working group of clinicians and scientists whose goal was to provide standardized evaluation of tractography methods for neurosurgery. The purpose of this empirical study was to evaluate different tractography techniques in the first DTI Challenge workshop. METHODS: Eight international teams from leading institutions reconstructed the pyramidal tract in four neurosurgical cases presenting with a glioma near the motor cortex. Tractography methods included deterministic, probabilistic, filtered, and global approaches. Standardized evaluation of the tracts consisted in the qualitative review of the pyramidal pathways by a panel of neurosurgeons and DTI experts and the quantitative evaluation of the degree of agreement among methods. RESULTS: The evaluation of tractography reconstructions showed a great interalgorithm variability. Although most methods found projections of the pyramidal tract from the medial portion of the motor strip, only a few algorithms could trace the lateral projections from the hand, face, and tongue area. In addition, the structure of disagreement among methods was similar across hemispheres despite the anatomical distortions caused by pathological tissues. CONCLUSIONS: The DTI Challenge provides a benchmark for the standardized evaluation of tractography methods on neurosurgical data. This study suggests that there are still limitations to the clinical use of tractography for neurosurgical decision making.


Assuntos
Encéfalo/diagnóstico por imagem , Imagem de Tensor de Difusão/normas , Processamento de Imagem Assistida por Computador/normas , Procedimentos Neurocirúrgicos/normas , Tratos Piramidais/diagnóstico por imagem , Algoritmos , Encéfalo/patologia , Encéfalo/cirurgia , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/cirurgia , Imagem de Tensor de Difusão/métodos , Glioma/diagnóstico por imagem , Glioma/patologia , Glioma/cirurgia , Humanos , Processamento de Imagem Assistida por Computador/métodos , Procedimentos Neurocirúrgicos/métodos , Tratos Piramidais/patologia , Tratos Piramidais/cirurgia , Padrões de Referência , Substância Branca/diagnóstico por imagem , Substância Branca/patologia , Substância Branca/cirurgia
15.
ACS Nano ; 7(4): 3264-75, 2013 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-23464925

RESUMO

Monthly intraocular injections are widely used to deliver protein-based drugs that cannot cross the blood-retina barrier for the treatment of leading blinding diseases such as age-related macular degeneration (AMD). This invasive treatment carries significant risks, including bleeding, pain, infection, and retinal detachment. Further, current therapies are associated with a rate of retinal fibrosis and geographic atrophy significantly higher than that which occurs in the described natural history of AMD. A novel therapeutic strategy which improves outcomes in a less invasive manner, reduces risk, and provides long-term inhibition of angiogenesis and fibrosis is a felt medical need. Here we show that a single intravenous injection of targeted, biodegradable nanoparticles delivering a recombinant Flt23k intraceptor plasmid homes to neovascular lesions in the retina and regresses CNV in primate and murine AMD models. Moreover, this treatment suppressed subretinal fibrosis, which is currently not addressed by clinical therapies. Murine vision, as tested by OptoMotry, significantly improved with nearly 40% restoration of visual loss induced by CNV. We found no evidence of ocular or systemic toxicity from nanoparticle treatment. These findings offer a nanoparticle-based platform for targeted, vitreous-sparing, extended-release, nonviral gene therapy.


Assuntos
DNA/administração & dosagem , Terapia Genética/métodos , Degeneração Macular/terapia , Nanocápsulas/administração & dosagem , Neovascularização Patológica/terapia , Retina/patologia , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/genética , Animais , DNA/genética , Fibrose , Haplorrinos , Camundongos , Resultado do Tratamento
16.
J Orthop Res ; 31(4): 651-7, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23192691

RESUMO

Individuals with multiple osteochondromas (MO) demonstrate shortened long bones. Ext1 or Ext2 haploinsufficiency cannot recapitulate the phenotype in mice. Loss of heterozygosity for Ext1 may induce shortening by steal of longitudinal growth into osteochondromas or by a general derangement of physeal signaling. We induced osteochondromagenesis at different time points during skeletal growth in a mouse genetic model, then analyzed femora and tibiae at 12 weeks using micro-CT and a point-distribution-based shape analysis. Bone lengths and volumes were compared. Metaphyseal volume deviations from normal, as a measure of phenotypic widening, were tested for correlation with length deviations. Mice with osteochondromas had shorter femora and tibiae than controls, more consistently when osteochondromagenesis was induced earlier during skeletal growth. Volumetric metaphyseal widening did not correlate with longitudinal shortening, although some of the most severe shortening was in bones with abundant osteochondromas. Loss of heterozygosity for Ext1 was sufficient to drive bone shortening in a mouse model of MO, but shortening did not correlate with osteochondroma volumetric growth. While a steal phenomenon seems apparent in individual cases, some other mechanism must also be capable of contributing to the short bone phenotype, independent of osteochondroma formation. Clones of chondrocytes lacking functional heparan sulfate must blunt physeal signaling generally, rather than stealing growth potential focally.


Assuntos
Exostose Múltipla Hereditária/genética , Exostose Múltipla Hereditária/patologia , N-Acetilglucosaminiltransferases/genética , Animais , Modelos Animais de Doenças , Doxiciclina , Exostose Múltipla Hereditária/induzido quimicamente , Fêmur/patologia , Lâmina de Crescimento , Haploinsuficiência , Perda de Heterozigosidade , Masculino , Camundongos , Fenótipo , Tíbia/patologia
17.
J Am Med Inform Assoc ; 19(2): 176-80, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22081219

RESUMO

The National Alliance for Medical Image Computing (NA-MIC), is a multi-institutional, interdisciplinary community of researchers, who share the recognition that modern health care demands improved technologies to ease suffering and prolong productive life. Organized under the National Centers for Biomedical Computing 7 years ago, the mission of NA-MIC is to implement a robust and flexible open-source infrastructure for developing and applying advanced imaging technologies across a range of important biomedical research disciplines. A measure of its success, NA-MIC is now applying this technology to diseases that have immense impact on the duration and quality of life: cancer, heart disease, trauma, and degenerative genetic diseases. The targets of this technology range from group comparisons to subject-specific analysis.


Assuntos
Acesso à Informação , Processamento de Imagem Assistida por Computador , Disseminação de Informação , Software , Pesquisa Translacional Biomédica , Diagnóstico por Imagem , Previsões , Objetivos , Humanos , Guias de Prática Clínica como Assunto , Estados Unidos
18.
Conf Proc IEEE Eng Med Biol Soc ; 2006: 936-41, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-17946012

RESUMO

The paper presents a novel approach for dynamic magnetic resonance imaging (MRI) cardiac perfusion image reconstruction from sparse k-space data. It formulates the reconstruction problem in an inverse-methods setting. Relevant prior information is incorporated via a parametric model for the perfusion process. This wealth of prior information empowers the proposed method to give high-quality reconstructions from very sparse k-space data. The paper presents reconstruction results using both Cartesian and radial sampling strategies using data simulated from a real acquisition. The proposed method produces high-quality reconstructions using 14% of the k-space data. The model-based approach can potentially greatly benefit cardiac myocardial perfusion studies as well as other dynamic contrast-enhanced MRI applications including tumor imaging.


Assuntos
Meios de Contraste/farmacocinética , Coração/anatomia & histologia , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Modelos Cardiovasculares , Miocárdio/metabolismo , Reconhecimento Automatizado de Padrão/métodos , Algoritmos , Inteligência Artificial , Simulação por Computador , Humanos , Aumento da Imagem/métodos , Modelos Estatísticos , Perfusão/métodos , Reprodutibilidade dos Testes , Tamanho da Amostra , Sensibilidade e Especificidade
19.
Med Image Anal ; 9(6): 566-78, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15919233

RESUMO

This paper evaluates the effectiveness of an interactive, three-dimensional image segmentation technique that relies on watersheds. This paper presents two user-based case studies, which include two different groups of domain experts. Subjects manipulate a graphics-based front end to a hierarchy of segmented regions generated from a watershed segmentation algorithm, which is implemented in the Insight Toolkit. In the first study, medical students segment several different anatomical structures from the Visible Human Female head and neck color cryosection data. In the second study, radiologists use the interactive tool to produce models of brain tumors from MRI data. This paper presents a quantitative and qualitative comparison against hand contouring. To quantify accuracy, we estimate ground truth from the hand-contouring data using the Simultaneous Truth and Performance Estimation algorithm. We also apply metrics from the literature to estimate precision and efficiency. The watershed segmentation technique showed improved subject interaction times and increased inter-subject precision over hand contouring, with quality that is visually and statistically comparable. The analysis also identifies some failures in the watershed technique, where edges were poorly defined in the data, and note a trend in the hand-contouring results toward systematically larger segmentations, which raises questions about the wisdom of using expert segmentations to define ground truth.


Assuntos
Algoritmos , Neoplasias Encefálicas/patologia , Interpretação de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Reconhecimento Automatizado de Padrão/métodos , Validação de Programas de Computador , Interface Usuário-Computador , Inteligência Artificial , Feminino , Humanos , Aumento da Imagem/métodos , Imageamento por Ressonância Magnética/métodos , Masculino , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
20.
Med Image Anal ; 8(3): 217-31, 2004 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15450217

RESUMO

While level sets have demonstrated a great potential for 3D medical image segmentation, their usefulness has been limited by two problems. First, 3D level sets are relatively slow to compute. Second, their formulation usually entails several free parameters which can be very difficult to correctly tune for specific applications. The second problem is compounded by the first. This paper describes a new tool for 3D segmentation that addresses these problems by computing level-set surface models at interactive rates. This tool employs two important, novel technologies. First is the mapping of a 3D level-set solver onto a commodity graphics card (GPU). This mapping relies on a novel mechanism for GPU memory management. The interactive rates level-set PDE solver give the user immediate feedback on the parameter settings, and thus users can tune free parameters and control the shape of the model in real time. The second technology is the use of intensity-based speed functions, which allow a user to quickly and intuitively specify the behavior of the deformable model. We have found that the combination of these interactive tools enables users to produce good, reliable segmentations. To support this observation, this paper presents qualitative results from several different datasets as well as a quantitative evaluation from a study of brain tumor segmentations.


Assuntos
Neoplasias Encefálicas/patologia , Gráficos por Computador , Processamento de Imagem Assistida por Computador/métodos , Imageamento Tridimensional , Imageamento por Ressonância Magnética , Interface Usuário-Computador , Algoritmos , Humanos , Reprodutibilidade dos Testes , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA