Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
New Phytol ; 236(3): 1089-1107, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35916073

RESUMO

Flavor is essential to consumer preference of foods and is an increasing focus of plant breeding programs. In fruit crops, identifying genes underlying volatile organic compounds has great promise to accelerate flavor improvement, but polyploidy and heterozygosity in many species have slowed progress. Here we use octoploid cultivated strawberry to demonstrate how genomic heterozygosity, transcriptomic intricacy and fruit metabolomic diversity can be treated as strengths and leveraged to uncover fruit flavor genes and their regulatory elements. Multi-omics datasets were generated including an expression quantitative trait loci map with 196 diverse breeding lines, haplotype-phased genomes of a highly-flavored breeding selection, a genome-wide structural variant map using five haplotypes, and volatile genome-wide association study (GWAS) with > 300 individuals. Overlaying regulatory elements, structural variants and GWAS-linked allele-specific expression of numerous genes to variation in volatile compounds important to flavor. In one example, the functional role of anthranilate synthase alpha subunit 1 in methyl anthranilate biosynthesis was supported via fruit transient gene expression assays. These results demonstrate a framework for flavor gene discovery in fruit crops and a pathway to molecular breeding of cultivars with complex and desirable flavor.


Assuntos
Fragaria , Compostos Orgânicos Voláteis , Antranilato Sintase/metabolismo , Fragaria/genética , Frutas/genética , Estudo de Associação Genômica Ampla , Melhoramento Vegetal , Compostos Orgânicos Voláteis/metabolismo
2.
Mol Biol Evol ; 38(6): 2285-2305, 2021 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-33507311

RESUMO

Cultivated strawberry (Fragaria × ananassa) is one of our youngest domesticates, originating in early eighteenth-century Europe from spontaneous hybrids between wild allo-octoploid species (Fragaria chiloensis and Fragaria virginiana). The improvement of horticultural traits by 300 years of breeding has enabled the global expansion of strawberry production. Here, we describe the genomic history of strawberry domestication from the earliest hybrids to modern cultivars. We observed a significant increase in heterozygosity among interspecific hybrids and a decrease in heterozygosity among domesticated descendants of those hybrids. Selective sweeps were found across the genome in early and modern phases of domestication-59-76% of the selectively swept genes originated in the three less dominant ancestral subgenomes. Contrary to the tenet that genetic diversity is limited in cultivated strawberry, we found that the octoploid species harbor massive allelic diversity and that F. × ananassa harbors as much allelic diversity as either wild founder. We identified 41.8 M subgenome-specific DNA variants among resequenced wild and domesticated individuals. Strikingly, 98% of common alleles and 73% of total alleles were shared between wild and domesticated populations. Moreover, genome-wide estimates of nucleotide diversity were virtually identical in F. chiloensis,F. virginiana, and F. × ananassa (π = 0.0059-0.0060). We found, however, that nucleotide diversity and heterozygosity were significantly lower in modern F. × ananassa populations that have experienced significant genetic gains and have produced numerous agriculturally important cultivars.


Assuntos
Domesticação , Fragaria/genética , Variação Genética , Genoma de Planta , Hibridização Genética , Cromossomos de Plantas , Desequilíbrio de Ligação , Poliploidia , Seleção Genética
3.
Plant Cell ; 32(12): 3723-3749, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33004617

RESUMO

The fruits of diploid and octoploid strawberry (Fragaria spp) show substantial natural variation in color due to distinct anthocyanin accumulation and distribution patterns. Anthocyanin biosynthesis is controlled by a clade of R2R3 MYB transcription factors, among which MYB10 is the main activator in strawberry fruit. Here, we show that mutations in MYB10 cause most of the variation in anthocyanin accumulation and distribution observed in diploid woodland strawberry (F. vesca) and octoploid cultivated strawberry (F ×ananassa). Using a mapping-by-sequencing approach, we identified a gypsy-transposon in MYB10 that truncates the protein and knocks out anthocyanin biosynthesis in a white-fruited F. vesca ecotype. Two additional loss-of-function mutations in MYB10 were identified among geographically diverse white-fruited F. vesca ecotypes. Genetic and transcriptomic analyses of octoploid Fragaria spp revealed that FaMYB10-2, one of three MYB10 homoeologs identified, regulates anthocyanin biosynthesis in developing fruit. Furthermore, independent mutations in MYB10-2 are the underlying cause of natural variation in fruit skin and flesh color in octoploid strawberry. We identified a CACTA-like transposon (FaEnSpm-2) insertion in the MYB10-2 promoter of red-fleshed accessions that was associated with enhanced expression. Our findings suggest that cis-regulatory elements in FaEnSpm-2 are responsible for enhanced MYB10-2 expression and anthocyanin biosynthesis in strawberry fruit flesh.


Assuntos
Antocianinas/metabolismo , Fragaria/genética , Variação Genética , Proteínas de Plantas/metabolismo , Alelos , Diploide , Fragaria/metabolismo , Frutas/genética , Frutas/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Poliploidia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
4.
Front Plant Sci ; 11: 25, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32117371

RESUMO

Genomic prediction (GP) is the procedure whereby the genetic merits of untested candidates are predicted using genome wide marker information. Although numerous examples of GP exist in plants and animals, applications to polyploid organisms are still scarce, partly due to limited genome resources and the complexity of this system. Deep learning (DL) techniques comprise a heterogeneous collection of machine learning algorithms that have excelled at many prediction tasks. A potential advantage of DL for GP over standard linear model methods is that DL can potentially take into account all genetic interactions, including dominance and epistasis, which are expected to be of special relevance in most polyploids. In this study, we evaluated the predictive accuracy of linear and DL techniques in two important small fruits or berries: strawberry and blueberry. The two datasets contained a total of 1,358 allopolyploid strawberry (2n=8x=112) and 1,802 autopolyploid blueberry (2n=4x=48) individuals, genotyped for 9,908 and 73,045 single nucleotide polymorphism (SNP) markers, respectively, and phenotyped for five agronomic traits each. DL depends on numerous parameters that influence performance and optimizing hyperparameter values can be a critical step. Here we show that interactions between hyperparameter combinations should be expected and that the number of convolutional filters and regularization in the first layers can have an important effect on model performance. In terms of genomic prediction, we did not find an advantage of DL over linear model methods, except when the epistasis component was important. Linear Bayesian models were better than convolutional neural networks for the full additive architecture, whereas the opposite was observed under strong epistasis. However, by using a parameterization capable of taking into account these non-linear effects, Bayesian linear models can match or exceed the predictive accuracy of DL. A semiautomatic implementation of the DL pipeline is available at https://github.com/lauzingaretti/deepGP/.

5.
G3 (Bethesda) ; 9(10): 3315-3332, 2019 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-31420323

RESUMO

Octoploid strawberry (Fragaria ×ananassa) is a valuable specialty crop, but profitable production and availability are threatened by many pathogens. Efforts to identify and introgress useful disease resistance genes (R-genes) in breeding programs are complicated by strawberry's complex octoploid genome. Recently-developed resources in strawberry, including a complete octoploid reference genome and high-resolution octoploid genotyping, enable new analyses in strawberry disease resistance genetics. This study characterizes the complete R-gene collection in the genomes of commercial octoploid strawberry and two diploid ancestral relatives, and introduces several new technological and data resources for strawberry disease resistance research. These include octoploid R-gene transcription profiling, dN/dS analysis, expression quantitative trait loci (eQTL) analysis and RenSeq analysis in cultivars. Octoploid fruit eQTL were identified for 76 putative R-genes. R-genes from the ancestral diploids Fragaria vesca and Fragaria iinumae were compared, revealing differential inheritance and retention of various octoploid R-gene subtypes. The mode and magnitude of natural selection of individual F. ×ananassa R-genes was also determined via dN/dS analysis. R-gene sequencing using enriched libraries (RenSeq) has been used recently for R-gene discovery in many crops, however this technique somewhat relies upon a priori knowledge of desired sequences. An octoploid strawberry capture-probe panel, derived from the results of this study, is validated in a RenSeq experiment and is presented for community use. These results give unprecedented insight into crop disease resistance genetics, and represent an advance toward exploiting variation for strawberry cultivar improvement.


Assuntos
Resistência à Doença/genética , Fragaria/classificação , Fragaria/genética , Genoma de Planta , Genômica , Doenças das Plantas/genética , Poliploidia , Evolução Molecular , Perfilação da Expressão Gênica , Genes de Plantas , Genômica/métodos , Locos de Características Quantitativas , Especificidade da Espécie , Transcriptoma
6.
Theor Appl Genet ; 131(10): 2167-2177, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30032317

RESUMO

Colletotrichum crown rot (CCR) is an important disease of strawberry (Fragaria ×ananassa) throughout the Southeastern US and in subtropical climates around the world, where hot and humid conditions facilitate rapid disease development. Yet no resistance loci have been described to date, as genetic studies have been historically difficult in allo-octoploid (2n = 8x = 56) strawberry. In the present study, we investigate the genetic architecture of resistance to CCR. Four population sets from the University of Florida were inoculated in four different seasons from 2013-2014 to 2016-2017. Two large, multiparental discovery population sets were used for QTL discovery, and two validation sets of cultivars and advanced selections representing the parent pool of the breeding program were also assessed. Subgenome-specific single-nucleotide polymorphism (SNP) markers were mapped, and FlexQTL™ software was utilized to perform a Bayesian, pedigree-based QTL analysis. A quantitative trait locus on linkage group 6B, which we name FaRCg1, accounts for most of the genetic variation for resistance in the discovery sets (26.8-29.8% in 2013-2014 and 17% in 2015-2016). High-throughput marker assays were developed for the most significant SNPs which correlated with the mode of the QTL region. The discovery and characterization of the FaRCg1 locus and the molecular tools developed from it will be utilized to achieve increased genetic gains for resistance.


Assuntos
Colletotrichum/patogenicidade , Resistência à Doença/genética , Fragaria/genética , Doenças das Plantas/genética , Locos de Características Quantitativas , Mapeamento Cromossômico , Fragaria/microbiologia , Estudos de Associação Genética , Ligação Genética , Marcadores Genéticos , Genótipo , Fenótipo , Melhoramento Vegetal , Doenças das Plantas/microbiologia , Polimorfismo de Nucleotídeo Único , Poliploidia
7.
J Virol Methods ; 235: 176-181, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27283883

RESUMO

Graft-indexing of an advanced selection from the University of Florida strawberry breeding program produced virus-like symptoms on Fragaria vesca. However; RT-PCR testing of the material did not detect the presence of any of 16 strawberry virus species or members of virus groups for which strawberries are routinely indexed. Large scale sequencing of the material revealed the presence of an isolate of Strawberry necrotic shock virus. The nucleotide sequence of this isolate from Florida shows a significant number of base changes in the annealing sites of the primers compared to the primers currently in use for the detection of SNSV thereby explaining the most probable reason for the inability to detect the virus in the original screening. RT-PCR and Taqman(®) qPCR assays were developed based on conserved virus sequences identified in this isolate from Florida and other sequences for SNSV currently present in GenBank. The two assays were applied successfully on multiple samples collected from several areas across the United States as well as isolates from around the world. Comparison between the RT-PCR and the qPCR assays revealed that the qPCR assay is at least 100 times more sensitive than conventional PCR.


Assuntos
Fragaria/virologia , Ilarvirus/isolamento & purificação , Doenças das Plantas/virologia , Primers do DNA , Ilarvirus/classificação , Ilarvirus/genética , Limite de Detecção , Sondas de Oligonucleotídeos , RNA Viral/isolamento & purificação , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sensibilidade e Especificidade
8.
Theor Appl Genet ; 129(6): 1191-201, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26910360

RESUMO

KEY MESSAGE: Angular leaf spot is a devastating bacterial disease of strawberry. Resistance from two wild accessions is highly heritable and controlled by a major locus on linkage group 6D. Angular leaf spot caused by Xanthomonas fragariae is the only major bacterial disease of cultivated strawberry (Fragaria ×ananassa). While this disease may cause reductions of up to 8 % of marketable yield in Florida winter annual production, no resistant cultivars have been commercialized. Wild accessions US4808 and US4809 were previously identified as resistant to the four genetic clades of X. fragariae, and introgression of the trait into commercial quality perennial-type germplasm was initiated. Previous reports indicated high heritability for the trait but proposed both single-locus and multi-locus inheritance models. The objective of this study was to determine the mode of inheritance of resistance, to identify causal loci, and to begin introgression of resistance into Florida-adapted germplasm. Resistance was observed in two years of field trials with inoculated plants that assayed four full-sib families descended from US4808 to US4809. Resistance segregated 1:1 in all families indicating control by a dominant allele at a single locus. Using a selective genotyping approach with the IStraw90 Axiom(®) SNP array and pedigree-based QTL detection, a single major-effect QTL was identified in two full-sib families, one descended from each resistant accession. High-resolution melt curve analysis validated the presence of the QTL in separate populations. The QTL was delimited to the 33.1-33.6 Mbp (F. vesca vesca v1.1 reference) and 34.8-35.3 Mbp (F. vesca bracteata v2.0 reference) regions of linkage group 6D for both resistance sources and was designated FaRXf1. Characterization of this locus will facilitate marker-assisted selection toward the development of resistant cultivars.


Assuntos
Resistência à Doença/genética , Fragaria/genética , Doenças das Plantas/genética , Xanthomonas , Mapeamento Cromossômico , DNA de Plantas/genética , Fragaria/microbiologia , Ligação Genética , Marcadores Genéticos , Genótipo , Haplótipos , Linhagem , Fenótipo , Doenças das Plantas/microbiologia , Polimorfismo de Nucleotídeo Único , Poliploidia , Locos de Características Quantitativas
9.
J Exp Bot ; 66(15): 4455-67, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25979996

RESUMO

New modulators of the strawberry flavonoid pathway were identified through correlation network analysis. The transcriptomes of red, ripe fruit from two parental lines and 14 of their progeny were compared, and uncharacterized transcripts matching the expression patterns of known flavonoid-pathway genes were identified. Fifteen transcripts corresponded with putative transcription factors, and several of these were examined experimentally using transient expression in developing fruits. The results suggest that two of the newly-identified regulators likely contribute to discrete nodes of the flavonoid pathway. One increases only LEUCOANTHOCYANIDIN REDUCTASE (LAR) and FLAVONOL 3'-HYDROXYLASE (F3'H) transcript accumulation upon overexpression. Another affects LAR and FLAVONOL SYNTHASE (FLS) after overexpression. The third putative transcription factor appears to be a universal regulator of flavonoid-pathway genes, as many pathway transcripts decrease in abundance when this gene is silenced. This report demonstrates that such systems-level approaches may be especially powerful when connected to an effective transient expression system, helping to provide rapid and strong evidence of gene function in key fruit-ripening processes.


Assuntos
Flavonoides/metabolismo , Fragaria/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Flavonoides/genética , Fragaria/metabolismo , Frutas/genética , Frutas/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Dados de Sequência Molecular , Filogenia , Proteínas de Plantas/metabolismo , Poliploidia , Análise de Sequência de RNA , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
10.
Theor Appl Genet ; 120(3): 573-85, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19847388

RESUMO

Black spot disease of rose, incited by the fungus Diplocarpon rosae, is found worldwide and is the most important disease of garden roses. A gene-for-gene interaction in this pathosystem is evidenced by the presence of pathogenic races of D. rosae and the previous discovery of a dominant resistance allele at the Rdr1 locus in the diploid Rosa multiflora. The objective of the present study was to genetically analyze resistances to North American black spot races 3, 8, and 9 previously reported in tetraploid roses. Resistance to North American races 3 and 8 segregated 1:1 in multiple F(1) populations, indicating that both are conferred by dominant alleles at single loci and are present in simplex (Rrrr) configuration. Gene pyramiding was demonstrated by combining both resistances into single genotypes. Resistance to race 9 was partial and segregated in a quantitative fashion. Analysis of these populations with microsatellite markers previously developed for Rdr1 revealed that the gene conferring race 3 resistance resides within the same R gene cluster as Rdr1. Race 8 resistance segregated independently and is, therefore, a novel locus for black spot resistance in rose which we have named Rdr3. NBS and LRR profiling were used in a bulked segregant analysis to identify a marker 9.1 cM from Rdr3, which was converted to a SCAR marker form for marker-assisted breeding.


Assuntos
Loci Gênicos/genética , Imunidade Inata/imunologia , Doenças das Plantas/imunologia , Polimorfismo Genético , Poliploidia , Proteínas/metabolismo , Rosa/genética , Ascomicetos/fisiologia , Sítios de Ligação , Segregação de Cromossomos/genética , Cruzamentos Genéticos , Marcadores Genéticos , Imunidade Inata/genética , Proteínas de Repetições Ricas em Leucina , Repetições de Microssatélites/genética , América do Norte , Nucleotídeos/metabolismo , Fenótipo , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Rosa/imunologia , Rosa/microbiologia , Plântula/genética , Plântula/imunologia , Plântula/microbiologia , Homologia de Sequência do Ácido Nucleico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA