Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
1.
Sci Signal ; 17(828): eabl3758, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38502733

RESUMO

CXCL17 is a chemokine principally expressed by mucosal tissues, where it facilitates chemotaxis of monocytes, dendritic cells, and macrophages and has antimicrobial properties. CXCL17 is also implicated in the pathology of inflammatory disorders and progression of several cancers, and its expression is increased during viral infections of the lung. However, the exact role of CXCL17 in health and disease requires further investigation, and there is a need for confirmed molecular targets mediating CXCL17 functional responses. Using a range of bioluminescence resonance energy transfer (BRET)-based assays, here we demonstrated that CXCL17 inhibited CXCR4-mediated signaling and ligand binding. Moreover, CXCL17 interacted with neuropillin-1, a VEGFR2 coreceptor. In addition, we found that CXCL17 only inhibited CXCR4 ligand binding in intact cells and demonstrated that this effect was mimicked by known glycosaminoglycan binders, surfen and protamine sulfate. Disruption of putative GAG binding domains in CXCL17 prevented CXCR4 binding. This indicated that CXCL17 inhibited CXCR4 by a mechanism of action that potentially required the presence of a glycosaminoglycan-containing accessory protein. Together, our results revealed that CXCL17 is an endogenous inhibitor of CXCR4 and represents the next step in our understanding of the function of CXCL17 and regulation of CXCR4 signaling.


Assuntos
Quimiocinas CXC , Glicosaminoglicanos , Quimiocinas CXC/metabolismo , Glicosaminoglicanos/farmacologia , Ligantes , Quimiocinas/metabolismo , Transdução de Sinais , Receptores CXCR4/genética , Quimiocina CXCL12
2.
Am J Physiol Lung Cell Mol Physiol ; 323(5): L525-L535, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36041220

RESUMO

E-cigarette vaping is a major aspect of nicotine consumption, especially for children and young adults. Although it is branded as a safer alternative to cigarette smoking, murine and rat models of subacute and chronic e-cigarette vaping exposure have shown many proinflammatory changes in the respiratory tract. An acute vaping exposure paradigm has not been demonstrated in the golden Syrian hamster, and the hamster is a readily available small animal model that has the unique benefit of becoming infected with and transmitting respiratory viruses, including SARS-CoV-2, without genetic alteration of the animal or virus. Using a 2-day, whole body vaping exposure protocol in male golden Syrian hamsters, we evaluated serum cotinine, bronchoalveolar lavage cells, lung, and nasal histopathology, and gene expression in the nasopharynx and lung through reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Depending on the presence of nonnormality or outliers, statistical analysis was performed by ANOVA or Kruskal-Wallis tests. For tests that were statistically significant (P < 0.05), post hoc Tukey-Kramer and Dunn's tests, respectively, were performed to make pairwise comparisons between groups. In nasal tissue, RT-qPCR analysis revealed nicotine-dependent increases in gene expression associated with type 1 inflammation (CCL-5 and CXCL-10), fibrosis [transforming growth factor-ß (TGF-ß)], nicotine-independent increase oxidative stress response (SOD-2), and a nicotine-independent decrease in vasculogenesis/angiogenesis (VEGF-A). In the lung, nicotine-dependent increases in the expression of genes involved in the renin-angiotensin pathway [angiotensin-converting enzyme (ACE), ACE2], coagulation (tissue factor, Serpine-1), extracellular matrix remodeling (MMP-2, MMP-9), type 1 inflammation (IL-1ß, TNF-α, and CXCL-10), fibrosis (TGF-ß and Serpine-1), oxidative stress response (SOD-2), neutrophil extracellular traps release (ELANE), and vasculogenesis and angiogenesis (VEGF-A) were identified. To our knowledge, this is the first demonstration that the Syrian hamster is a viable model of e-cigarette vaping. In addition, this is the first report that e-cigarette vaping with nicotine can increase tissue factor gene expression in the lung. Our results show that even an acute exposure to e-cigarette vaping causes significant upregulation of mRNAs in the respiratory tract from pathways involving the renin-angiotensin system, coagulation, extracellular matrix remodeling, type 1 inflammation, fibrosis, oxidative stress response, neutrophil extracellular trap release (NETosis), vasculogenesis, and angiogenesis.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Transcriptoma , Vaping , Animais , Cricetinae , Masculino , Enzima de Conversão de Angiotensina 2 , Angiotensinas , Cotinina , Fibrose , Inflamação/patologia , Metaloproteinase 2 da Matriz , Metaloproteinase 9 da Matriz , Mesocricetus , Nicotina/farmacologia , Renina , Superóxido Dismutase , Tromboplastina , Fator de Crescimento Transformador beta , Fator de Necrose Tumoral alfa , Vaping/efeitos adversos , Fator A de Crescimento do Endotélio Vascular
3.
Clin Toxicol (Phila) ; 60(5): 615-622, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34989638

RESUMO

CONTEXT: Methyl mercaptan (CH3SH) is a colorless, toxic gas with potential for occupational exposure and used as a weapon of mass destruction. Inhalation at high concentrations can result in dyspnea, hypoventilation, seizures, and death. No specific methyl mercaptan antidote exists, highlighting a critical need for such an agent. Here, we investigated the mechanism of CH3SH toxicity, and rescue from CH3SH poisoning by the vitamin B12 analog cobinamide, in mammalian cells. We also developed lethal CH3SH inhalation models in mice and rabbits, and tested the efficacy of intramuscular injection of cobinamide as a CH3SH antidote. RESULTS: We found that cobinamide binds to CH3SH (Kd = 84 µM), and improved growth of cells exposed to CH3SH. CH3SH reduced cellular oxygen consumption and intracellular ATP content and activated the stress protein c-Jun N-terminal kinase (JNK); cobinamide reversed these changes. A single intramuscular injection of cobinamide (20 mg/kg) rescued 6 of 6 mice exposed to a lethal dose of CH3SH gas, while all six saline-treated mice died (p = 0.0013). In rabbits exposed to CH3SH gas, 11 of 12 animals (92%) treated with two intramuscular injections of cobinamide (50 mg/kg each) survived, while only 2 of 12 animals (17%) treated with saline survived (p = 0.001). CONCLUSION: We conclude that cobinamide could potentially serve as a CH3SH antidote.


Assuntos
Antídotos , Cobamidas , Animais , Antídotos/uso terapêutico , Chlorocebus aethiops , Humanos , Camundongos , Coelhos , Compostos de Sulfidrila , Vitamina B 12
4.
Artigo em Inglês | MEDLINE | ID: mdl-34974317

RESUMO

Sodium 2-mercaptoethane sulfonate (MESNA) is a thiol-containing compound that has proven to be effective in inactivating acrolein, the toxic metabolite of some anti-cancer drugs (e.g., cyclophosphamide and ifosphamide). Also, it scavenges free radicals which cause numerous disorders by attacking biological molecules. Current methods available to analyze MESNA in biological matrices include colorimetry and high-performance liquid chromatography (HPLC) with ultraviolet, fluorescence, or electrochemical detection. These methods have several limitations including low sensitivity, poor selectivity, a high degree of difficulty, and long analysis times. Hence, a rapid, simple, and sensitive HPLC tandem mass spectrometry (MS/MS) method was developed and validated to quantify MESNA in rat plasma following IP administration. The analysis of MESNA was accomplished via plasma protein precipitation, centrifugation, supernatant evaporation, reconstitution, and HPLC-MS/MS analysis. The method showcases an outstanding limit of detection (20 nM), excellent linearity (R2 = 0.999, and percent residual accuracy >90%) and a wide linear range (0.05-200 µM). The method also produced good accuracy and precision (100 ± 10% and <10% relative standard deviation, respectively). The validated method was successfully used to analyze MESNA from treated animals and will allow easier development of MESNA for therapeutic purposes.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Mesna/sangue , Espectrometria de Massas em Tandem/métodos , Animais , Estabilidade de Medicamentos , Limite de Detecção , Modelos Lineares , Masculino , Ratos , Ratos Sprague-Dawley , Reprodutibilidade dos Testes
5.
Am J Respir Crit Care Med ; 202(8): 1146-1158, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32551816

RESUMO

Rationale: Antenatal inflammation with placental dysfunction is strongly associated with high bronchopulmonary dysplasia (BPD) risk in preterm infants. Whether antenatal or postnatal HIF (hypoxia-inducible factor) augmentation can preserve lung structure and function and prevent pulmonary hypertension after intrauterine inflammation is controversial.Objectives: To determine whether antenatal or postnatal prolyl-hydroxylase inhibitor (PHi) therapy increases lung HIF expression, preserves lung growth and function, and prevents pulmonary hypertension in a rat model of chorioamnionitis-induced BPD caused by antenatal inflammation.Methods: Endotoxin (ETX) was administered to pregnant rats by intraamniotic injection at Embryonic Day 20, and pups were delivered by cesarean section at Embryonic Day 22. Selective PHi drugs, dimethyloxalylglycine or GSK360A, were administered into the amniotic space at Embryonic Day 20 or after birth by intraperitoneal injection for 2 weeks. Placentas and lung tissue were collected at birth for morphometric and Western blot measurements of HIF-1a, HIF-2a, VEGF (vascular endothelial growth factor), and eNOS (endothelial nitric oxide synthase) protein contents. At Day 14, lung function was assessed, and tissues were harvested to determine alveolarization by radial alveolar counts, pulmonary vessel density, and right ventricle hypertrophy (RVH).Measurements and Main Results: Antenatal PHi therapy preserves lung alveolar and vascular growth and lung function and prevents RVH after intrauterine ETX exposure. Antenatal administration of PHi markedly upregulates lung HIF-1a, HIF-2a, VEGF, and eNOS expression after ETX exposure.Conclusions: HIF augmentation improves lung structure and function, prevents RVH, and improves placental structure following antenatal ETX exposure. We speculate that antenatal or postnatal PHi therapy may provide novel strategies to prevent BPD due to antenatal inflammation.


Assuntos
Displasia Broncopulmonar/tratamento farmacológico , Fator 1 Induzível por Hipóxia/metabolismo , Pulmão/efeitos dos fármacos , Peptídeo PHI/farmacologia , Prenhez , Aminoácidos Dicarboxílicos/farmacologia , Animais , Animais Recém-Nascidos , Western Blotting , Displasia Broncopulmonar/metabolismo , Displasia Broncopulmonar/patologia , Modelos Animais de Doenças , Endotoxinas/efeitos adversos , Endotoxinas/farmacologia , Feminino , Fator 1 Induzível por Hipóxia/efeitos dos fármacos , Imuno-Histoquímica , Técnicas In Vitro , Injeções Intralesionais , Pulmão/embriologia , Gravidez , Cuidado Pré-Natal , Alvéolos Pulmonares/efeitos dos fármacos , Alvéolos Pulmonares/crescimento & desenvolvimento , Circulação Pulmonar/efeitos dos fármacos , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley , Valores de Referência , Testes de Função Respiratória , Técnicas de Cultura de Tecidos
6.
Ann N Y Acad Sci ; 1479(1): 223-233, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32408394

RESUMO

Nitrogen mustard (NM) is a highly toxic alkylating agent. Inhalation exposure can cause acute and chronic lung injury. This study's aims were to develop an in vitro coculture model of mustard-induced airway injury and to identify growth factors contributing to airway pathology. Primary human bronchial epithelial cells cultured with pulmonary endothelial cells were exposed to NM (25, 50, 100, 250, or 500 µM) or PBS (control) for 1 hour. Lactate dehydrogenase (LDH) and transepithelial electrical resistance (TEER) were measured before and 24 h after NM exposure. Fixed cultures were stained for hematoxylin and eosin or live/dead staining. Culture media were analyzed for 11 growth factors. A 1-h vapor exposure to greater than or equal to 50 µM NM increased supernatant LDH, decreased TEER, and caused airway epithelial cell detachment. Endothelial cell death occurred at 500 µM NM. Vascular endothelial growth factor A (VEGF-A) and placental growth factor (PlGF) expression increased in 500 µM NM-exposed cultures compared with PBS-exposed control cultures. NM vapor exposure causes differential cytotoxicity to airway epithelial and endothelial injury in culture. Increased VEGF-A and PlGF expression occurred acutely in airway cocultures. Future studies are required to validate the role of VEGF signaling in mustard-induced airway pathology.


Assuntos
Citotoxinas/toxicidade , Células Endoteliais/metabolismo , Células Epiteliais/metabolismo , Pulmão/metabolismo , Mecloretamina/toxicidade , Fator A de Crescimento do Endotélio Vascular/biossíntese , Linhagem Celular , Células Endoteliais/patologia , Células Epiteliais/patologia , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Pulmão/patologia , Proteínas de Membrana/biossíntese
7.
Cell Chem Biol ; 26(6): 830-841.e9, 2019 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-30956148

RESUMO

Vascular endothelial growth factor (VEGF) is an important mediator of endothelial cell proliferation and angiogenesis via its receptor VEGFR2. A common tumor associated with elevated VEGFR2 signaling is infantile hemangioma that is caused by a rapid proliferation of vascular endothelial cells. The current first-line treatment for infantile hemangioma is the ß-adrenoceptor antagonist, propranolol, although its mechanism of action is not understood. Here we have used bioluminescence resonance energy transfer and VEGFR2 genetically tagged with NanoLuc luciferase to demonstrate that oligomeric complexes involving VEGFR2 and the ß2-adrenoceptor can be generated in both cell membranes and intracellular endosomes. These complexes are induced by agonist treatment and retain their ability to couple to intracellular signaling proteins. Furthermore, coupling of ß2-adrenoceptor to ß-arrestin2 is prolonged by VEGFR2 activation. These data suggest that protein-protein interactions between VEGFR2, the ß2-adrenoceptor, and ß-arrestin2 may provide insight into their roles in health and disease.


Assuntos
Receptores Adrenérgicos beta 2/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Técnicas de Transferência de Energia por Ressonância de Bioluminescência , Células Cultivadas , Corantes Fluorescentes/química , Células HEK293 , Humanos , Ligantes , Luciferases/química , Luciferases/metabolismo , Ligação Proteica , Receptores Adrenérgicos beta 2/química , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/química , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética
8.
Br J Pharmacol ; 176(14): 2358-2365, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30719698

RESUMO

The α1A -adrenoceptor is abundantly expressed in the lower urinary tract and is the principal therapeutic target for the symptomatic treatment of lower urinary tract symptoms in men. Prazosin has a lower affinity for the lower urinary tract α1A -adrenoceptor than α1A -adrenoceptors found in other parts of the body. This has led to the lower urinary tract α1A -adrenoceptor being subclassified as an α1L -adrenoceptor. It was demonstrated that this pharmacologically distinct α1L -adrenoceptor is a product of the α1A -adrenoceptor gene, but the mechanism by which this altered phenotype is achieved remains a mystery. Hypotheses for this altered pharmacology include the presence of an interacting protein such as cysteine-rich with EGF-like domain (CRELD) 1 or other GPCRs such as the CXCR2 chemokine or 5-HT1B receptor. Alternatively, the influence of breast cancer resistance protein (BCRP) efflux transporters on the pharmacology of α1A -adrenoceptors has also been investigated. These and other hypotheses will be described and discussed in this review. LINKED ARTICLES: This article is part of a themed section on Adrenoceptors-New Roles for Old Players. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.14/issuetoc.


Assuntos
Receptores Adrenérgicos alfa 1/genética , Animais , Humanos , Fenótipo
9.
Cell Signal ; 54: 27-34, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30471466

RESUMO

Bioluminescence resonance energy transfer (BRET) is a versatile tool used to investigate membrane receptor signalling and function. We have recently developed a homogenous NanoBRET ligand binding assay to monitor interactions between G protein-coupled receptors and fluorescent ligands. However, this assay requires the exogenous expression of a receptor fused to the nanoluciferase (Nluc) and is thus not applicable to natively-expressed receptors. To overcome this limitation in HEK293 cells, we have utilised CRISPR/Cas9 genome engineering to insert Nluc in-frame with the endogenous ADORA2B locus this resulted in HEK293 cells expressing adenosine A2B receptors under endogenous promotion tagged on their N-terminus with Nluc. As expected, we found relatively low levels of endogenous (gene-edited) Nluc/A2B receptor expression compared to cells transiently transfected with expression vectors coding for Nluc/A2B. However, in cells expressing gene-edited Nluc/A2B receptors we observed clear saturable ligand binding of a non-specific fluorescent adenosine receptor antagonist XAC-X-BY630 (Kd = 21.4 nM). Additionally, at gene-edited Nluc/A2B receptors we derived pharmacological parameters of ligand binding; Kd as well as Kon and Koff for binding of XAC-X-BY630 by NanoBRET association kinetic binding assays. Lastly, cells expressing gene-edited Nluc/A2B were used to determine the pKi of unlabelled adenosine receptor ligands in competition ligand binding assays. Utilising CRISPR/Cas9 genome engineering here we show that NanoBRET ligand binding assays can be performed at gene-edited receptors under endogenous promotion in live cells, therefore overcoming a fundamental limitation of NanoBRET ligand assays.


Assuntos
Técnicas de Transferência de Energia por Ressonância de Bioluminescência/métodos , Receptor A2B de Adenosina/análise , Sistemas CRISPR-Cas , Células HEK293 , Humanos , Luciferases/química
10.
J Chromatogr B Analyt Technol Biomed Life Sci ; 1093-1094: 119-127, 2018 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-30015309

RESUMO

Methyl isocyanate (MIC) is an important precursor for industrial synthesis, but it is highly toxic. MIC causes irritation and damage to the eyes, respiratory tract, and skin. While current treatment is limited to supportive care and counteracting symptoms, promising countermeasures are being evaluated. Our work focuses on understanding the inhalation toxicity of MIC to develop effective therapeutic interventions. However, in-vivo inhalation exposure studies are limited by challenges in estimating the actual respiratory dose, due to animal-to-animal variability in breathing rate, depth, etc. Therefore, a method was developed to estimate the inhaled MIC dose based on analysis of an N-terminal valine hemoglobin adduct. The method features a simple sample preparation scheme, including rapid isolation of hemoglobin, hydrolysis of the hemoglobin adduct with immediate conversion to methyl isopropyl hydantoin (MIH), rapid liquid-liquid extraction, and gas-chromatography mass-spectrometry analysis. The method produced a limit of detection of 0.05 mg MIH/kg RBC precipitate with a dynamic range from 0.05-25 mg MIH/kg. The precision, as measured by percent relative standard deviation, was <8.5%, and the accuracy was within 8% of the nominal concentration. The method was used to evaluate a potential correlation between MIH and MIC internal dose and proved promising. If successful, this method may be used to quantify the true internal dose of MIC from inhalation studies to help determine the effectiveness of MIC therapeutics.


Assuntos
Hidantoínas/sangue , Exposição por Inalação/análise , Isocianatos/administração & dosagem , Isocianatos/toxicidade , Testes de Toxicidade/normas , Animais , Eritrócitos , Cromatografia Gasosa-Espectrometria de Massas , Isocianatos/sangue , Isocianatos/isolamento & purificação , Limite de Detecção , Extração Líquido-Líquido , Ratos , Reprodutibilidade dos Testes
11.
Toxicol Sci ; 159(2): 461-469, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28962529

RESUMO

Sulfur mustard (SM) is a chemical warfare agent. When inhaled, SM causes significant injury to the respiratory tract. Although the mechanism involved in acute airway injury after SM inhalation has been well described previously, the mechanism of SM's contribution to distal lung vascular injury is not well understood. We hypothesized that acute inhalation of vaporized SM causes activated systemic coagulation with subsequent pulmonary vascular thrombi formation after SM inhalation exposure. Sprague Dawley rats inhaled SM ethanolic vapor (3.8 mg/kg). Barium/gelatin CT pulmonary angiograms were performed to assess for pulmonary vascular thrombi burden. Lung immunohistochemistry was performed for common procoagulant markers including fibrin(ogen), von Willebrand factor, and CD42d in control and SM-exposed lungs. Additionally, systemic levels of d-dimer and platelet aggregometry after adenosine diphosphate- and thrombin-stimulation were measured in plasma after SM exposure. In SM-exposed lungs, chest CT angiography demonstrated a significant decrease in the distal pulmonary vessel density assessed at 6 h postexposure. Immunohistochemistry also demonstrated increased intravascular fibrin(ogen), vascular von Willebrand factor, and platelet CD42d in the distal pulmonary vessels (<200 µm diameter). Circulating d-dimer levels were significantly increased (p < .001) at 6, 9, and 12 h after SM inhalation versus controls. Platelet aggregation was also increased in both adenosine diphosphate - (p < .01) and thrombin- (p < .001) stimulated platelet-rich plasma after SM inhalation. Significant pulmonary vascular thrombi formation was evident in distal pulmonary arterioles following SM inhalation in rats assessed by CT angiography and immunohistochemistry. Enhanced systemic platelet aggregation and activated systemic coagulation with subsequent thrombi formation likely contributed to pulmonary vessel occlusion.


Assuntos
Arteríolas/efeitos dos fármacos , Substâncias para a Guerra Química/toxicidade , Pulmão/efeitos dos fármacos , Gás de Mostarda/toxicidade , Trombose/induzido quimicamente , Animais , Arteríolas/patologia , Angiografia por Tomografia Computadorizada , Produtos de Degradação da Fibrina e do Fibrinogênio/metabolismo , Exposição por Inalação , Pulmão/irrigação sanguínea , Pneumopatias/induzido quimicamente , Masculino , Gás de Mostarda/administração & dosagem , Agregação Plaquetária/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley
12.
Ann Am Thorac Soc ; 14(6): 1060-1072, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28418689

RESUMO

This report is based on the proceedings from the Inhalational Lung Injury Workshop jointly sponsored by the American Thoracic Society (ATS) and the National Institutes of Health (NIH) Countermeasures Against Chemical Threats (CounterACT) program on May 21, 2013, in Philadelphia, Pennsylvania. The CounterACT program facilitates research leading to the development of new and improved medical countermeasures for chemical threat agents. The workshop was initiated by the Terrorism and Inhalational Disasters Section of the Environmental, Occupational, and Population Health Assembly of the ATS. Participants included both domestic and international experts in the field, as well as representatives from U.S. governmental funding agencies. The meeting objectives were to (1) provide a forum to review the evidence supporting current standard medical therapies, (2) present updates on our understanding of the epidemiology and underlying pathophysiology of inhalational lung injuries, (3) discuss innovative investigative approaches to further delineating mechanisms of lung injury and identifying new specific therapeutic targets, (4) present promising novel medical countermeasures, (5) facilitate collaborative research efforts, and (6) identify challenges and future directions in the ongoing development, manufacture, and distribution of effective and specific medical countermeasures. Specific inhalational toxins discussed included irritants/pulmonary toxicants (chlorine gas, bromine, and phosgene), vesicants (sulfur mustard), chemical asphyxiants (cyanide), particulates (World Trade Center dust), and respirable nerve agents.


Assuntos
Acidentes de Trabalho , Planejamento em Desastres , Desastres , Exposição Ambiental/efeitos adversos , Lesão Pulmonar/induzido quimicamente , Pulmão/fisiopatologia , Animais , Terrorismo Químico , Humanos , Modelos Animais , Sociedades Médicas , Estados Unidos
13.
Am J Respir Cell Mol Biol ; 56(1): 1-10, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27632244

RESUMO

Cell therapy has the potential to cure disease through replacement of malfunctioning cells. Although the tissue stem cell (TSC) is thought to be the optimal therapeutic cell, transplantation of TSC/progenitor cell mixtures has saved lives. We previously purified the mouse tracheobronchial epithelial TSCs and reported that in vitro amplification generated numerous TSCs. However, these cultures also contained TSC-derived progenitor cells and TSC repurification by flow cytometry compromised TSC self-renewal. These limitations prompted us to determine if a TSC/progenitor cell mixture would repopulate the injured airway epithelium. We developed a cell transplantation protocol and demonstrate that transplanted mouse and human tracheobronchial epithelial TSC/progenitor cell mixtures are 20-25% of airway epithelial cells, actively contribute to epithelial repair, and persist for at least 43 days. At 2 weeks after transplantation, TSCs/progenitor cells differentiated into the three major epithelial cell types: basal, secretory, and ciliated. We conclude that cell therapy that uses adult tracheobronchial TSCs/progenitor cells is an effective therapeutic option.


Assuntos
Células Epiteliais/citologia , Pulmão/citologia , Transplante de Células-Tronco , Células-Tronco/citologia , Animais , Diferenciação Celular , Linhagem da Célula , Epitélio/metabolismo , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Células NIH 3T3 , Naftalenos , Ratos
14.
Toxicol Sci ; 154(2): 341-353, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27605419

RESUMO

Sulfur mustard (bis 2-chloroethyl ethyl sulfide, SM) is a powerful bi-functional vesicating chemical warfare agent. SM tissue injury is partially mediated by the overproduction of reactive oxygen species resulting in oxidative stress. We hypothesized that using a catalytic antioxidant (AEOL 10150) to alleviate oxidative stress and secondary inflammation following exposure to SM would attenuate the toxic effects of SM inhalation. Adult male rats were intubated and exposed to SM (1.4 mg/kg), a dose that produces an LD50 at approximately 24 h. Rats were randomized and treated via subcutaneous injection with either sterile PBS or AEOL 10150 (5 mg/kg, sc, every 4 h) beginning 1 h post-SM exposure. Rats were euthanized between 6 and 48 h after exposure to SM and survival and markers of injury were determined. Catalytic antioxidant treatment improved survival after SM inhalation in a dose-dependent manner, up to 52% over SM PBS at 48 h post-exposure. This improvement was sustained for at least 72 h after SM exposure when treatments were stopped after 48 h. Non-invasive monitoring throughout the duration of the studies also revealed blood oxygen saturations were improved by 10% and clinical scores were reduced by 57% after SM exposure in the catalytic antioxidant treatment group. Tissue analysis showed catalytic antioxidant therapy was able to decrease airway cast formation by 69% at 48 h post-exposure. To investigate antioxidant induced changes at the peak of injury, several biomarkers of oxidative stress and inflammation were evaluated at 24 h post-exposure. AEOL 10150 attenuated SM-mediated lung lipid oxidation, nitrosative stress and many proinflammatory cytokines. The findings indicate that catalytic antioxidants may be useful medical countermeasure against inhaled SM exposure.


Assuntos
Antídotos/farmacologia , Antioxidantes/farmacologia , Substâncias para a Guerra Química/toxicidade , Lesão Pulmonar/prevenção & controle , Pulmão/efeitos dos fármacos , Metaloporfirinas/farmacologia , Gás de Mostarda/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Pneumonia/prevenção & controle , Animais , Citocinas/metabolismo , Relação Dose-Resposta a Droga , Mediadores da Inflamação/metabolismo , Exposição por Inalação , Pulmão/metabolismo , Pulmão/patologia , Lesão Pulmonar/induzido quimicamente , Lesão Pulmonar/metabolismo , Lesão Pulmonar/patologia , Masculino , Pneumonia/induzido quimicamente , Pneumonia/metabolismo , Pneumonia/patologia , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Fatores de Tempo
15.
Mol Endocrinol ; 30(8): 889-904, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27355191

RESUMO

Nephrogenic syndrome of inappropriate antidiuresis (NSIAD) is a genetic disease first described in 2 unrelated male infants with severe symptomatic hyponatremia. Despite undetectable arginine vasopressin levels, patients have inappropriately concentrated urine resulting in hyponatremia, hypoosmolality, and natriuresis. Here, we describe and functionally characterize a novel vasopressin type 2 receptor (V2R) gain-of-function mutation. An L312S substitution in the seventh transmembrane domain was identified in a boy presenting with water-induced hyponatremic seizures at the age of 5.8 years. We show that, compared with wild-type V2R, the L312S mutation results in the constitutive production of cAMP, indicative of the gain-of-function NSIAD profile. Interestingly, like the previously described F229V and I130N NSIAD-causing mutants, this appears to both occur in the absence of notable constitutive ß-arrestin2 recruitment and can be reduced by the inverse agonist Tolvaptan. In addition, to understand the effect of various V2R substitutions on the full receptor "life-cycle," we have used and further developed a bioluminescence resonance energy transfer intracellular localization assay using multiple localization markers validated with confocal microscopy. This allowed us to characterize differences in the constitutive and ligand-induced localization and trafficking profiles of the novel L312S mutation as well as for previously described V2R gain-of-function mutants (NSIAD; R137C and R137L), loss-of-function mutants (nephrogenic diabetes insipidus; R137H, R181C, and M311V), and a putative silent V266A V2R polymorphism. In doing so, we describe differences in trafficking between unique V2R substitutions, even at the same amino acid position, therefore highlighting the value of full and thorough characterization of receptor function beyond simple signaling pathway analysis.


Assuntos
Mutação/genética , Receptores de Vasopressinas/genética , Receptores de Vasopressinas/metabolismo , Pré-Escolar , AMP Cíclico/metabolismo , Transferência Ressonante de Energia de Fluorescência , Células HEK293 , Humanos , Fosfatos de Inositol/metabolismo , Masculino , Microscopia Confocal , Polimorfismo Genético , Ligação Proteica , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , beta-Arrestina 2/genética , beta-Arrestina 2/metabolismo
16.
Toxicol Lett ; 235(3): 161-71, 2015 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-25891025

RESUMO

Our recent studies in SKH-1 hairless mice have demonstrated that topical exposure to nitrogen mustard (NM), an analog of sulfur mustard (SM), triggers the inflammatory response, microvesication and apoptotic cell death. Here, we sought to identify the mechanism/s involved in these NM-induced injury responses. Results obtained show that NM exposure of SKH-1 hairless mouse skin caused H2A.X and p53 phosphorylation and increased p53 accumulation, indicating DNA damage. In addition, NM also induced the activation of MAPKs/ERK1/2, JNK1/2 and p38 as well as that of Akt together with the activation of transcription factor AP1. Also, NM exposure induced robust expression of pro-inflammatory mediators namely cyclooxygenase 2 and inducible nitric oxide synthase and cytokine tumor necrosis factor alpha, and increased the levels of proteolytic mediator matrix metalloproteinase 9. NM exposure of skin also increased lipid peroxidation, 5,5-dimethyl-2-(8-octanoic acid)-1-pyrroline N-oxide protein adduct formation, protein and DNA oxidation indicating an elevated oxidative stress. We also found NM-induced increase in the homologous recombinant repair pathway, suggesting its involvement in the repair of NM-induced DNA damage. Collectively, these results indicate that NM induces oxidative stress, mainly a bi-phasic response in DNA damage and activation of MAPK and Akt pathways, which activate transcription factor AP1 and induce the expression of inflammatory and proteolytic mediators, contributing to the skin injury response by NM. In conclusion, this study for the first time links NM-induced mechanistic changes with our earlier reported murine skin injury lesions with NM, which could be valuable to identify potential therapeutic targets and rescue agents.


Assuntos
Dano ao DNA/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/fisiologia , Mecloretamina/toxicidade , Estresse Oxidativo , Peptídeos/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Substâncias para a Guerra Química/toxicidade , Regulação Enzimológica da Expressão Gênica , Histonas/genética , Histonas/metabolismo , Inflamação/induzido quimicamente , Inflamação/metabolismo , Peroxidação de Lipídeos , Masculino , Camundongos , Camundongos Pelados , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Oxirredução , Peptídeo Hidrolases/genética , Peptídeo Hidrolases/metabolismo , Peptídeos/genética , Fosforilação , Ligação Proteica , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Piruvato Desidrogenase Quinase de Transferência de Acetil , Rad51 Recombinase/genética , Rad51 Recombinase/metabolismo , Pele/efeitos dos fármacos , Pele/metabolismo , Absorção Cutânea , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
17.
Am J Respir Cell Mol Biol ; 52(4): 492-502, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25188881

RESUMO

Autopsy specimens from human victims or experimental animals that die due to acute chlorine gas exposure present features of cardiovascular pathology. We demonstrate acute chlorine inhalation-induced reduction in heart rate and oxygen saturation in rats. Chlorine inhalation elevated chlorine reactants, such as chlorotyrosine and chloramine, in blood plasma. Using heart tissue and primary cardiomyocytes, we demonstrated that acute high-concentration chlorine exposure in vivo (500 ppm for 30 min) caused decreased total ATP content and loss of sarcoendoplasmic reticulum calcium ATPase (SERCA) activity. Loss of SERCA activity was attributed to chlorination of tyrosine residues and oxidation of an important cysteine residue, cysteine-674, in SERCA, as demonstrated by immunoblots and mass spectrometry. Using cardiomyocytes, we found that chlorine-induced cell death and damage to SERCA could be decreased by thiocyanate, an important biological antioxidant, and by genetic SERCA2 overexpression. We also investigated a U.S. Food and Drug Administration-approved drug, ranolazine, used in treatment of cardiac diseases, and previously shown to stabilize SERCA in animal models of ischemia-reperfusion. Pretreatment with ranolazine or istaroxime, another SERCA activator, prevented chlorine-induced cardiomyocyte death. Further investigation of responsible mechanisms showed that ranolazine- and istaroxime-treated cells preserved mitochondrial membrane potential and ATP after chlorine exposure. Thus, these studies demonstrate a novel critical target for chlorine in the heart and identify potentially useful therapies to mitigate toxicity of acute chlorine exposure.


Assuntos
Cloro/toxicidade , Cardiopatias/enzimologia , Exposição por Inalação , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Antioxidantes/farmacologia , Apoptose , Sinalização do Cálcio , Cardiotônicos/farmacologia , Células Cultivadas , Etiocolanolona/análogos & derivados , Etiocolanolona/farmacologia , Cardiopatias/induzido quimicamente , Masculino , Mitocôndrias Cardíacas , Miocárdio/enzimologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Ranolazina/farmacologia , Ratos Sprague-Dawley , Tiocianatos/farmacologia
18.
Exp Toxicol Pathol ; 67(2): 161-70, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25481215

RESUMO

Vesicating agents sulfur mustard (SM) and nitrogen mustard (NM) are reported to be easily absorbed by skin upon exposure causing severe cutaneous injury and blistering. Our studies show that topical exposure of NM (3.2mg) onto SKH-1 hairless mouse skin, not only caused skin injury, but also led to significant body weight loss and 40-80% mortality (120 h post-exposure), suggesting its systemic effects. Accordingly, further studies herein show that NM exposure initiated an increase in circulating white blood cells by 24h (neutrophils, eosinophils and basophils) and thereafter a decrease (neutrophils, lymphocytes and monocytes). NM exposure also reduced both white and red pulp areas of the spleen. In the small intestine, NM exposure caused loss of membrane integrity of the surface epithelium, abnormal structure of glands and degeneration of villi. NM exposure also resulted in the dilation of glomerular capillaries of kidneys, and an increase in blood urea nitrogen/creatinine ratio. Our results here with NM are consistent with earlier reports that exposure to higher SM levels can cause damage to the hematopoietic system, and kidney, spleen and gastrointestinal tract toxicity. These outcomes will add to our understanding of the toxic effects of topical vesicant exposure, which might be helpful towards developing effective countermeasures against injuries from acute topical exposures.


Assuntos
Substâncias para a Guerra Química/toxicidade , Sistema Hematopoético/efeitos dos fármacos , Intestino Delgado/efeitos dos fármacos , Rim/efeitos dos fármacos , Mecloretamina/toxicidade , Pele/efeitos dos fármacos , Baço/efeitos dos fármacos , Administração Cutânea , Animais , Apoptose/efeitos dos fármacos , Peso Corporal/efeitos dos fármacos , Intestino Delgado/patologia , Rim/patologia , Contagem de Leucócitos , Masculino , Camundongos Pelados , Tamanho do Órgão/efeitos dos fármacos , Pele/lesões , Baço/patologia , Análise de Sobrevida
19.
Neurourol Urodyn ; 34(3): 292-8, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24249481

RESUMO

AIMS: An age-related increase in prostatic smooth muscle tone is partly responsible for the lower urinary tract symptoms associated with benign prostatic hyperplasia (BPH). Changes in the effectors of prostatic smooth muscle contraction with age may play a role in the development of these symptoms. Using a mouse model of prostate contractility, this study investigated the effect of age on the different components of contractility in the prostate gland. METHODS: The isometric force developed in response to electrical field stimulation or exogenously applied agonists by mouse prostates mounted in organ baths, was evaluated to determine the effect of age on contractile mechanisms. Changes with age in the rate of ATP breakdown and levels of the P2rx1 gene and P2X1-purinoceptor expression in mouse prostate were measured by a modified luciferin-luciferase assay, RT-PCR and western blot, respectively. RESULTS: Nerve mediated contractile responses containing a component elicited by P2X1-purinoceptors were observed in prostates taken from aged mice, but not in prostates taken from young adult mice. Furthermore, the potency of the endogenous purinoceptor agonist ATP was 50-fold greater in aged mice, whereas the potency of its stable analogue α,ß-metATP was unchanged. An age-related decrease in ATP metabolism was also observed. CONCLUSIONS: With age, a purinergic contractile response to nerve stimulation develops in the mouse prostate gland due to a decrease in the rate of ATP breakdown. This may contribute to the increase in muscular tone observed in BPH and suggests that P2X1-purinoceptors are an additional target for the treatment of BPH.


Assuntos
Trifosfato de Adenosina/metabolismo , Contração Muscular , Próstata/fisiologia , Receptores Purinérgicos P2X1/fisiologia , Fatores Etários , Animais , Masculino , Camundongos , Próstata/metabolismo , Fatores de Tempo
20.
J Vis Exp ; (87)2014 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-24837339

RESUMO

Cell cultures are indispensable to develop and study efficacy of therapeutic agents, prior to their use in animal models. We have the unique ability to model well differentiated human airway epithelium and heart muscle cells. This could be an invaluable tool to study the deleterious effects of toxic inhaled chemicals, such as chlorine, that can normally interact with the cell surfaces, and form various byproducts upon reacting with water, and limiting their effects in submerged cultures. Our model using well differentiated human airway epithelial cell cultures at air-liqiuid interface circumvents this limitation as well as provides an opportunity to evaluate critical mechanisms of toxicity of potential poisonous inhaled chemicals. We describe enhanced loss of membrane integrity, caspase release and death upon toxic inhaled chemical such as chlorine exposure. In this article, we propose methods to model chlorine exposure in mammalian heart and airway epithelial cells in culture and simple tests to evaluate its effect on these cell types.


Assuntos
Técnicas de Cultura de Células/métodos , Células Epiteliais/efeitos dos fármacos , Miócitos Cardíacos/citologia , Miócitos Cardíacos/efeitos dos fármacos , Mucosa Respiratória/citologia , Mucosa Respiratória/efeitos dos fármacos , Testes de Toxicidade/métodos , Administração por Inalação , Animais , Cloro/toxicidade , Impedância Elétrica , Células Epiteliais/citologia , Exposição por Inalação/análise , Masculino , Camundongos , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA