Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 293(38): 14689-14706, 2018 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-30097518

RESUMO

Atherosclerosis is a complex disease that involves alterations in lipoprotein metabolism and inflammation. Protein and lipid glycosylation events, such as sialylation, contribute to the development of atherosclerosis and are regulated by specific glycosidases, including sialidases. To evaluate the effect of the sialidase neuraminidase 1 (NEU1) on atherogenesis, here we generated apolipoprotein E (ApoE)-deficient mice that express hypomorphic levels of NEU1 (Neu1hypoApoe-/-). We found that the hypomorphic NEU1 expression in male Apoe-/- mice reduces serum levels of very-low-density lipoprotein (VLDL) and LDL cholesterol, diminishes infiltration of inflammatory cells into lesions, and decreases aortic sinus atherosclerosis. Transplantation of Apoe-/- bone marrow (BM) into Neu1hypoApoe-/- mice significantly increased atherosclerotic lesion development and had no effect on serum lipoprotein levels. Moreover, Neu1hypoApoe-/- mice exhibited a reduction in circulating monocyte and neutrophil levels and had reduced hyaluronic acid and P-selectin adhesion capability on monocytes/neutrophils and T cells. Consistent with these findings, administration of a sialidase inhibitor, 2-deoxy-2,3-dehydro-N-acetylneuraminic acid, had a significant anti-atherogenic effect in the Apoe-/- mice. In summary, the reduction in NEU1 expression or function decreases atherosclerosis in mice via its significant effects on lipid metabolism and inflammatory processes. We conclude that NEU1 may represent a promising target for managing atherosclerosis.


Assuntos
Apolipoproteínas E/genética , Aterosclerose/metabolismo , Quimiotaxia de Leucócito , LDL-Colesterol/sangue , VLDL-Colesterol/sangue , Regulação para Baixo , Neuraminidase/metabolismo , Animais , Aorta/patologia , LDL-Colesterol/metabolismo , VLDL-Colesterol/metabolismo , Ácido Hialurônico/metabolismo , Fígado/metabolismo , Macrófagos/citologia , Masculino , Camundongos , Camundongos Knockout para ApoE , Músculo Liso Vascular/citologia , Selectina-P/metabolismo , Linfócitos T/citologia , Triglicerídeos/metabolismo
2.
J Biol Chem ; 292(34): 14122-14133, 2017 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-28679534

RESUMO

Hsp70 is a protein chaperone that prevents protein aggregation and aids protein folding by binding to hydrophobic peptide domains through a reversible mechanism directed by an ATPase cycle. However, Hsp70 also binds U-rich RNA including some AU-rich elements (AREs) that regulate the decay kinetics of select mRNAs and has recently been shown to bind and stabilize some ARE-containing transcripts in cells. Previous studies indicated that both the ATP- and peptide-binding domains of Hsp70 contributed to the stability of Hsp70-RNA complexes and that ATP might inhibit RNA recruitment. This suggested the possibility that RNA binding by Hsp70 might mimic features of its peptide-directed chaperone activities. Here, using purified, cofactor-free preparations of recombinant human Hsp70 and quantitative biochemical approaches, we found that high-affinity RNA binding requires at least 30 nucleotides of RNA sequence but is independent of Hsp70's nucleotide-bound status, ATPase activity, or peptide-binding roles. Furthermore, although both the ATP- and peptide-binding domains of Hsp70 could form complexes with an ARE sequence from VEGFA mRNA in vitro, only the peptide-binding domain could recover cellular VEGFA mRNA in ribonucleoprotein immunoprecipitations. Finally, Hsp70-directed stabilization of VEGFA mRNA in cells was mediated exclusively by the protein's peptide-binding domain. Together, these findings indicate that the RNA-binding and mRNA-stabilizing functions of Hsp70 are independent of its protein chaperone cycle but also provide potential mechanical explanations for several well-established and recently discovered cytoprotective and RNA-based Hsp70 functions.


Assuntos
Proteínas de Choque Térmico HSP70/metabolismo , RNA Mensageiro/metabolismo , Ribonucleoproteínas/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Elementos Ricos em Adenilato e Uridilato , Regulação Alostérica , Sítios de Ligação , Proteínas de Choque Térmico HSP70/química , Proteínas de Choque Térmico HSP70/genética , Células HeLa , Humanos , Imunoprecipitação , Cinética , Mutação , Oligopeptídeos/genética , Oligopeptídeos/metabolismo , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Domínios e Motivos de Interação entre Proteínas , RNA/antagonistas & inibidores , RNA/metabolismo , Interferência de RNA , Estabilidade de RNA , RNA Mensageiro/química , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Ribonucleoproteínas/química , Fator A de Crescimento do Endotélio Vascular/química , Fator A de Crescimento do Endotélio Vascular/genética
3.
Nucleic Acids Res ; 44(5): 2393-408, 2016 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-26819411

RESUMO

Skeletal muscle contains long multinucleated and contractile structures known as muscle fibers, which arise from the fusion of myoblasts into multinucleated myotubes during myogenesis. The myogenic regulatory factor (MRF) MYF5 is the earliest to be expressed during myogenesis and functions as a transcription factor in muscle progenitor cells (satellite cells) and myocytes. In mouse C2C12 myocytes, MYF5 is implicated in the initial steps of myoblast differentiation into myotubes. Here, using ribonucleoprotein immunoprecipitation (RIP) analysis, we discovered a novel function for MYF5 as an RNA-binding protein which associated with a subset of myoblast mRNAs. One prominent MYF5 target was Ccnd1 mRNA, which encodes the key cell cycle regulator CCND1 (Cyclin D1). Biotin-RNA pulldown, UV-crosslinking and gel shift experiments indicated that MYF5 was capable of binding the 3' untranslated region (UTR) and the coding region (CR) of Ccnd1 mRNA. Silencing MYF5 expression in proliferating myoblasts revealed that MYF5 promoted CCND1 translation and modestly increased transcription of Ccnd1 mRNA. Accordingly, overexpressing MYF5 in C2C12 cells upregulated CCND1 expression while silencing MYF5 reduced myoblast proliferation as well as differentiation of myoblasts into myotubes. Moreover, MYF5 silencing reduced myogenesis, while ectopically restoring CCND1 abundance partially rescued the decrease in myogenesis seen after MYF5 silencing. We propose that MYF5 enhances early myogenesis in part by coordinately elevating Ccnd1 transcription and Ccnd1 mRNA translation.


Assuntos
Ciclina D1/genética , Desenvolvimento Muscular/genética , Fator Regulador Miogênico 5/genética , RNA Mensageiro/genética , Animais , Diferenciação Celular , Linhagem Celular , Proliferação de Células , Ciclina D1/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Camundongos , Análise em Microsséries , Mioblastos , Fator Regulador Miogênico 5/metabolismo , Ligação Proteica , Biossíntese de Proteínas , RNA Mensageiro/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Transdução de Sinais
4.
Nat Commun ; 5: 5248, 2014 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-25366541

RESUMO

Post-transcriptional gene regulation is robustly regulated by RNA-binding proteins (RBPs). Here we describe the collection of RNAs regulated by AUF1 (AU-binding factor 1), an RBP linked to cancer, inflammation and aging. Photoactivatable ribonucleoside-enhanced crosslinking and immunoprecipitation (PAR-CLIP) analysis reveals that AUF1 primarily recognizes U-/GU-rich sequences in mRNAs and noncoding RNAs and influences target transcript fate in three main directions. First, AUF1 lowers the steady-state levels of numerous target RNAs, including long noncoding RNA NEAT1, in turn affecting the organization of nuclear paraspeckles. Second, AUF1 does not change the abundance of many target RNAs, but ribosome profiling reveals that AUF1 promotes the translation of numerous mRNAs in this group. Third, AUF1 unexpectedly enhances the steady-state levels of several target mRNAs encoding DNA-maintenance proteins. Through its actions on target RNAs, AUF1 preserves genomic integrity, in agreement with the AUF1-elicited prevention of premature cellular senescence.


Assuntos
Ribonucleoproteínas Nucleares Heterogêneas Grupo D/metabolismo , Regiões 3' não Traduzidas , Proteína Semelhante a ELAV 1/metabolismo , Genoma , Células HEK293 , Células HeLa , Ribonucleoproteína Nuclear Heterogênea D0 , Humanos , Técnicas Imunológicas , Íntrons , RNA Longo não Codificante/metabolismo , RNA Mensageiro/metabolismo , RNA não Traduzido/metabolismo , Análise de Sequência de RNA
5.
Nat Commun ; 4: 2939, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24326307

RESUMO

Although mammalian long non-coding (lnc)RNAs are best known for modulating transcription, their post-transcriptional influence on mRNA splicing, stability and translation is emerging. Here we report a post-translational function for the lncRNA HOTAIR as an inducer of ubiquitin-mediated proteolysis. HOTAIR associates with E3 ubiquitin ligases bearing RNA-binding domains, Dzip3 and Mex3b, as well as with their respective ubiquitination substrates, Ataxin-1 and Snurportin-1. In this manner, HOTAIR facilitates the ubiquitination of Ataxin-1 by Dzip3 and Snurportin-1 by Mex3b in cells and in vitro, and accelerates their degradation. HOTAIR levels are highly upregulated in senescent cells, causing rapid decay of targets Ataxin-1 and Snurportin-1, and preventing premature senescence. These results uncover a role for a lncRNA, HOTAIR, as a platform for protein ubiquitination.


Assuntos
Proteínas/metabolismo , RNA Longo não Codificante/metabolismo , Ubiquitinação , Proteínas Argonautas/metabolismo , Ataxina-1 , Ataxinas , Senescência Celular/genética , Proteínas ELAV/metabolismo , Células HeLa , Humanos , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares/metabolismo , Proteínas/genética , Proteínas de Ligação ao Cap de RNA/metabolismo , Estabilidade de RNA , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
6.
PLoS One ; 8(8): e72492, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23967310

RESUMO

SR-BI deficient mice that are also hypomorphic for apolipoprotein E expression develop diet induced occlusive coronary artery atherosclerosis, myocardial infarction and early death. To test the role of SR-BI in bone marrow derived cells, we used bone marrow transplantation to generate SR-BI-null; apoE-hypomorphic mice in which SR-BI expression was restored solely in bone marrow derived cells. SR-BI-null; apoE-hypomorphic mice were transplanted with SR-BI(+/+)apoE-hypomorphic, or control, autologous SR-BI-null; apoE-hypomorphic bone marrow. Four weeks later, mice were fed a high-fat, high-cholesterol, cholate-containing diet to induce coronary artery atherosclerosis. Mice transplanted with autologous bone marrow developed extensive aortic atherosclerosis and severe occlusive coronary artery atherosclerosis after 4 weeks of feeding. This was accompanied by myocardial fibrosis and increased heart weights. In contrast, restoration of SR-BI expression in bone marrow derived-cells reduced diet induced aortic and coronary artery atherosclerosis, myocardial fibrosis and the increase in heart weights in SR-BI-null; apoE-hypomorphic mice. Restoration of SR-BI in bone marrow derived cells did not, however, affect steady state lipoprotein cholesterol levels, but did reduce plasma levels of IL-6. Monocytes from SR-BI-null mice exhibited a greater capacity to bind to VCAM-1 and ICAM-1 than those from SR-BI(+/+) mice. Furthermore, restoration of SR-BI expression in bone marrow derived cells attenuated monocyte recruitment into atherosclerotic plaques in mice fed high fat, high cholesterol cholate containing diet. These data demonstrate directly that SR-BI in bone marrow-derived cells protects against both aortic and CA atherosclerosis.


Assuntos
Células da Medula Óssea/metabolismo , Transplante de Medula Óssea , Antígenos CD36/genética , Doença da Artéria Coronariana/genética , Dieta , Infarto do Miocárdio/genética , Animais , Aorta/patologia , Apolipoproteínas E/deficiência , Antígenos CD36/metabolismo , Doença da Artéria Coronariana/patologia , Doença da Artéria Coronariana/terapia , Vasos Coronários/metabolismo , Vasos Coronários/patologia , Modelos Animais de Doenças , Feminino , Fibrose , Mediadores da Inflamação/sangue , Mediadores da Inflamação/metabolismo , Molécula 1 de Adesão Intercelular/metabolismo , Lipídeos/sangue , Masculino , Camundongos , Camundongos Knockout , Monócitos/imunologia , Monócitos/metabolismo , Infarto do Miocárdio/terapia , Miocárdio/patologia , Tamanho do Órgão , Molécula 1 de Adesão de Célula Vascular/metabolismo
7.
Hum Mol Genet ; 22(19): 3960-75, 2013 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-23727835

RESUMO

Sandhoff disease (SD) is a lysosomal storage disorder caused by a lack of a functional ß-subunit of the ß-hexosaminidase A and B enzymes, leading to the accumulation of gangliosides in the central nervous system (CNS). The Hexb-/- mouse model of SD shows a progressive neurodegenerative phenotype similar to the human equivalent. Previous studies have revealed that Hexb-/- mice suffer from chronic neuroinflammation characterized by microglial activation and expansion. Tumor necrosis factor-α (TNFα), a key modulator of the CNS immune response in models of neurodegeneration, is a hallmark of this activation. In this study, we explore the role of TNFα in the development and progression of SD in mice, by creating a Hexb-/- Tnfα-/- double-knockout mouse. Our results revealed that the double-knockout mice have an ameliorated disease course, with an extended lifespan, enhanced sensorimotor coordination and improved neurological function. TNFα-deficient SD mice also show decreased levels of astrogliosis and reduced neuronal cell death, with no alterations in neuronal storage of gangliosides. Interestingly, temporal microglia activation appears similar between the Hexb-/- Tnfα-/- and SD mice. Evidence is provided for the TNFα activation of the JAK2/STAT3 pathway as a mechanism for astrocyte activation in the disease. Bone marrow transplantation experiments reveal that both CNS-derived and bone marrow-derived TNFα have a pathological effect in SD mouse models, with CNS-derived TNFα playing a larger role. This study reveals TNFα as a neurodegenerative cytokine mediating astrogliosis and neuronal cell death in SD and points to TNFα as a potential therapeutic target to attenuate neuropathogenesis.


Assuntos
Doença de Sandhoff/metabolismo , Doença de Sandhoff/patologia , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/fisiologia , Animais , Transplante de Medula Óssea , Encéfalo/metabolismo , Morte Celular , Modelos Animais de Doenças , Feminino , Gangliosídeos/metabolismo , Gliose/genética , Gliose/patologia , Humanos , Camundongos , Camundongos Knockout , Microglia/metabolismo , Doença de Sandhoff/genética , Doença de Sandhoff/terapia , Transdução de Sinais , beta-N-Acetil-Hexosaminidases/genética , beta-N-Acetil-Hexosaminidases/metabolismo
8.
Biochim Biophys Acta ; 1829(6-7): 680-8, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23246978

RESUMO

AUF1 is a family of four proteins generated by alternative pre-mRNA splicing that form high affinity complexes with AU-rich, mRNA-destabilizing sequences located within the 3' untranslated regions of many labile mRNAs. While AUF1 binding is most frequently associated with accelerated mRNA decay, emerging examples have demonstrated roles as a mRNA stabilizer or even translational regulator for specific transcripts. In this review, we summarize recent advances in our understanding of mRNA recognition by AUF1 and the biochemical and functional consequences of these interactions. In addition, unique properties of individual AUF1 isoforms and the roles of these proteins in modulating expression of genes associated with inflammatory, neoplastic, and cardiac diseases are discussed. Finally, we describe mechanisms that regulate AUF1 expression in cells, and current knowledge of regulatory switches that modulate the cellular levels and/or activities of AUF1 isoforms through distinct protein post-translational modifications. This article is part of a Special Issue entitled: RNA Decay mechanisms.


Assuntos
Elementos Ricos em Adenilato e Uridilato/genética , Ribonucleoproteínas Nucleares Heterogêneas Grupo D/genética , Estabilidade de RNA/genética , RNA Mensageiro/genética , Processamento Alternativo/genética , Regulação da Expressão Gênica , Ribonucleoproteína Nuclear Heterogênea D0 , Humanos , Processamento de Proteína Pós-Traducional , Precursores de RNA/genética
9.
PLoS One ; 7(3): e33194, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22413002

RESUMO

The serine/threonine kinase Pim-1 directs selected signaling events that promote cell growth and survival and is overexpressed in diverse human cancers. Pim-1 expression is tightly controlled through multiple mechanisms, including regulation of mRNA turnover. In several cultured cell models, mitogenic stimulation rapidly induced and stabilized PIM1 mRNA, however, vigorous destabilization 4-6 hours later helped restore basal expression levels. Acceleration of PIM1 mRNA turnover coincided with accumulation of tristetraprolin (TTP), an mRNA-destabilizing protein that targets transcripts containing AU-rich elements. TTP binds PIM1 mRNA in cells, and suppresses its expression by accelerating mRNA decay. Reporter mRNA decay assays localized the TTP-regulated mRNA decay element to a discrete AU-rich sequence in the distal 3'-untranslated region that binds TTP. These data suggest that coordinated stimulation of TTP and PIM1 expression limits the magnitude and duration of PIM1 mRNA accumulation by accelerating its degradation as TTP protein levels increase. Consistent with this model, PIM1 and TTP mRNA levels were well correlated across selected human tissue panels, and PIM1 mRNA was induced to significantly higher levels in mitogen-stimulated fibroblasts from TTP-deficient mice. Together, these data support a model whereby induction of TTP mediates a negative feedback circuit to limit expression of selected mitogen-activated genes.


Assuntos
Regulação da Expressão Gênica , Processamento de Proteína Pós-Traducional , Proteínas Proto-Oncogênicas c-pim-1/metabolismo , Tristetraprolina/genética , Tristetraprolina/metabolismo , Regiões 3' não Traduzidas , Sequência Rica em At , Animais , Sequência de Bases , Técnicas de Cultura de Células , Linhagem Celular , Ativação Enzimática/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos , Camundongos Knockout , Mitógenos/farmacologia , Dados de Sequência Molecular , Especificidade de Órgãos/genética , Proteínas Proto-Oncogênicas c-pim-1/genética , Estabilidade de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Elementos de Resposta , Transcrição Gênica/efeitos dos fármacos
10.
Am J Physiol Gastrointest Liver Physiol ; 301(5): G835-45, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21836058

RESUMO

Interstitial cells of Cajal associated with the myenteric plexus (ICC-MP) are pacemaker cells of the small intestine, producing the characteristic omnipresent electrical slow waves, which orchestrate peristaltic motor activity and are associated with rhythmic intracellular calcium oscillations. Our objective was to elucidate the origins of the calcium transients. We hypothesized that calcium oscillations in the ICC-MP are primarily regulated by the sarcoplasmic reticulum (SR) calcium release system. With the use of calcium imaging, study of the effect of T-type calcium channel blocker mibefradil revealed that T-type channels did not play a major role in generating the calcium transients. 2-Aminoethoxydiphenyl borate, an inositol 1,4,5 trisphosphate receptor (IP(3)R) inhibitor, and U73122, a phospholipase C inhibitor, both drastically decreased the frequency of calcium oscillations, suggesting a major role of IP(3) and IP(3)-induced calcium release from the SR. Immunohistochemistry proved the expression of IP(3)R type I (IP(3)R-I), but not type II (IP(3)R-II) and type III (IP(3)R-III) in ICC-MP, indicating the involvement of the IP(3)R-I subtype in calcium release from the SR. Cyclopiazonic acid, a SR/endoplasmic reticulum calcium ATPase pump inhibitor, strongly reduced or abolished calcium oscillations. The Na-Ca exchanger (NCX) in reverse mode is likely involved in refilling the SR because the NCX inhibitor KB-R7943 markedly reduced the frequency of calcium oscillations. Immunohistochemistry revealed 100% colocalization of NCX and c-Kit in ICC-MP. Testing a mitochondrial NCX inhibitor, we were unable to show an essential role for mitochondria in regulating calcium oscillations in the ICC-MP. In summary, ongoing IP(3) synthesis and IP(3)-induced calcium release from the SR, via the IP(3)R-I, are the major drivers of the calcium transients associated with ICC pacemaker activity. This suggests that a biochemical clock intrinsic to ICC determines the pacemaker frequency, which is likely directly linked to kinetics of the IP(3)-activated SR calcium channel and IP(3) metabolism.


Assuntos
Sinalização do Cálcio/fisiologia , Cálcio/metabolismo , Células Intersticiais de Cajal/metabolismo , Intestino Delgado/metabolismo , Plexo Mientérico/metabolismo , Animais , Bloqueadores dos Canais de Cálcio/farmacologia , Canais de Cálcio Tipo T/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , ATPases Transportadoras de Cálcio/metabolismo , Células Intersticiais de Cajal/efeitos dos fármacos , Intestino Delgado/efeitos dos fármacos , Mibefradil/farmacologia , Camundongos , Plexo Mientérico/efeitos dos fármacos , Retículo Sarcoplasmático/efeitos dos fármacos , Retículo Sarcoplasmático/metabolismo
11.
DNA Repair (Amst) ; 8(8): 961-8, 2009 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-19589734

RESUMO

The three human LIG genes encode polypeptides that catalyze phosphodiester bond formation during DNA replication, recombination and repair. While numerous studies have identified protein partners of the human DNA ligases (hLigs), there has been little characterization of the catalytic properties of these enzymes. In this study, we developed and optimized a fluorescence-based DNA ligation assay to characterize the activities of purified hLigs. Although hLigI joins DNA nicks, it has no detectable activity on linear duplex DNA substrates with short, cohesive single-strand ends. By contrast, hLigIIIbeta and the hLigIIIalpha/XRCC1 and hLigIV/XRCC4 complexes are active on both nicked and linear duplex DNA substrates. Surprisingly, hLigIV/XRCC4, which is a key component of the major non-homologous end joining (NHEJ) pathway, is significantly less active than hLigIII on a linear duplex DNA substrate. Notably, hLigIV/XRCC4 molecules only catalyze a single ligation event in the absence or presence of ATP. The failure to catalyze subsequent ligation events reflects a defect in the enzyme-adenylation step of the next ligation reaction and suggests that, unless there is an in vivo mechanism to reactivate DNA ligase IV/XRCC4 following phosphodiester bond formation, the cellular NHEJ capacity will be determined by the number of adenylated DNA ligaseIV/XRCC4 molecules.


Assuntos
DNA Ligases/metabolismo , Reparo do DNA , DNA/metabolismo , Adenina/metabolismo , Biocatálise , Bioensaio , Quebras de DNA de Cadeia Dupla , Proteínas de Ligação a DNA/metabolismo , Ésteres/metabolismo , Fluorescência , Humanos , Cinética , Reprodutibilidade dos Testes , Especificidade por Substrato
12.
Am J Physiol Gastrointest Liver Physiol ; 295(4): G691-9, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18669623

RESUMO

The interstitial cells of Cajal (ICC), as pacemaker cells of the gut, contribute to rhythmic peristalsis and muscle excitability through initiation of slow-wave activity, which subsequently actively propagates into the musculature. An E-4031-sensitive K(+) current makes a critical contribution to membrane potential in ICC. This study provides novel features of this current in ICC in physiological solutions and seeks to identify the channel isoform. In situ hybridization and Kit immunohistochemistry were combined to assess ether-a-go-go-related gene (ERG) mRNA expression in ICC in mouse jejunum, while the translated message was assessed by immunofluorescence colocalization of ERG and Kit proteins. E-4031-sensitive currents in cultured ICC were studied by the whole cell patch-clamp method, with physiological K(+) concentration in the bath and the pipette. In situ hybridization combined with Kit immunohistochemistry detected m-erg1 and m-erg3, but not m-erg2, mRNA in ICC. ERG3 protein was colocalized with Kit-immunoreactive ICC in jejunum sections, but ERG1 protein was visualized only in the smooth muscle cells. At physiological K(+) concentration, the E-4031-sensitive outward current in ICC was different from its counterpart in cardiac and gut smooth muscle cells. In particular, inactivation upon depolarization and recovery from inactivation by hyperpolarization were modest in ICC. In summary, the E-4031-sensitive currents influence the kinetics of the pacemaker activity in ICC and contribute to maintenance of the resting membrane potential in smooth muscle cells, which together constitute a marked effect on tissue excitability. Whereas this current is mediated by ERG1 in smooth muscle, it is primarily mediated by ERG3 in ICC.


Assuntos
Motilidade Gastrointestinal/fisiologia , Jejuno/fisiologia , Piperidinas/farmacologia , Canais de Potássio/fisiologia , Piridinas/farmacologia , Animais , Células Cultivadas , Jejuno/citologia , Camundongos , Técnicas de Patch-Clamp , Canais de Potássio/efeitos dos fármacos
13.
J Biol Chem ; 282(29): 20948-59, 2007 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-17517897

RESUMO

The RNA-binding factor HuR is a ubiquitously expressed member of the Hu protein family that binds and stabilizes mRNAs containing AU-rich elements (AREs). Hu proteins share a common domain organization of two tandemly arrayed RNA recognition motifs (RRMs) near the N terminus, followed by a basic hinge domain and a third RRM near the C terminus. In this study, we engineered recombinant wild-type and mutant HuR proteins lacking affinity tags to characterize their ARE-binding properties. Using combinations of electrophoretic mobility shift and fluorescence anisotropy-based binding assays, we show that HuR can bind ARE substrates as small as 13 nucleotides with low nanomolar affinity, but forms cooperative oligomeric protein complexes on ARE substrates of at least 18 nucleotides in length. Analyses of deletion mutant proteins indicated that RRM3 does not contribute to high affinity recognition of ARE substrates, but is required for cooperative assembly of HuR oligomers on RNA. Finally, the hinge domain between RRM2 and RRM3 contributes significant binding energy to HuR.ARE complex formation in an ARE length-dependent manner. The hinge does not enhance RNA-binding activity by increased ion pair formation despite extensive positive charge within this region, and it does not thermodynamically stabilize protein folding. Together, the results define distinct roles for the HuR hinge and RRM3 domains in formation of cooperative HuR.ARE complexes in solution.


Assuntos
Antígenos de Superfície/química , Proteínas ELAV/química , RNA Mensageiro/química , Proteínas de Ligação a RNA/química , Motivos de Aminoácidos , Sequência de Aminoácidos , Proteína Semelhante a ELAV 1 , Polarização de Fluorescência , Deleção de Genes , Vetores Genéticos , Humanos , Dados de Sequência Molecular , Nanotecnologia , Ligação Proteica , Dobramento de Proteína , Estrutura Terciária de Proteína , RNA Mensageiro/metabolismo , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA