Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
J Med Chem ; 67(13): 11182-11196, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38906533

RESUMO

Analogues of hormonal vitamin D, 1,25-dihydroxyvitamin D (1,25D), signal through the nuclear vitamin D receptor (VDR). They have potential in combination therapies with other anticancer agents such as histone deacetylase inhibitors (HDACi's). Here, we characterize the ZG series of hybrid compounds that combine HDACi within the backbone of a VDR agonist. All display improved solubility, with ZG-126 being the most robustly bifunctional molecule in multiple cell lines. ZG-126 is well tolerated and strongly induces VDR target gene expression in vivo at therapeutic doses. Its antitumor efficacy is superior to 1,25D and the HDACi SAHA, separately or together, in mouse models of melanoma and triple-negative breast cancer (TNBC). Notably, ZG-126 treatment reduces metastases almost 4-fold in an aggressive TNBC model. ZG-126 also reduces total macrophage infiltration and the proportion of immunosuppressive M2-polarized macrophages in TNBC tumors by 2-fold. ZG-126 thus represents a bifunctional and efficacious anticancer agent with improved physicochemical properties.


Assuntos
Antineoplásicos , Inibidores de Histona Desacetilases , Receptores de Calcitriol , Animais , Feminino , Humanos , Camundongos , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/química , Inibidores de Histona Desacetilases/síntese química , Inibidores de Histona Desacetilases/uso terapêutico , Camundongos Endogâmicos C57BL , Receptores de Calcitriol/agonistas , Receptores de Calcitriol/metabolismo , Relação Estrutura-Atividade , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/patologia
2.
J Immunol ; 211(2): 175-179, 2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37265392

RESUMO

Vitamin D deficiency is associated with the development of autoimmunity, which arises from defects in T cell tolerance to self-antigens. Interactions of developing T cells with medullary thymic epithelial cells, which express tissue-restricted Ags, are essential for the establishment of central tolerance. However, vitamin D signaling in the thymus is poorly characterized. We find that stromal and hematopoietic cells in the mouse thymus express the vitamin D receptor (Vdr) and Cyp27b1, the enzyme that produces hormonal 1,25-dihydroxyvitamin D (1,25D). Treatment of cultured thymic slices with 1,25D enhances expression of the critical medullary thymic epithelial cell transcription factor autoimmune regulator (Aire), its colocalization with the Vdr, and enhances tissue-restricted Ag gene expression. Moreover, the Vdr interacts with Aire in a 1,25D-dependent manner and recruits Aire to DNA at vitamin D response elements, where it acts as a Vdr coactivator. These data link vitamin D signaling directly to critical transcriptional events necessary for central tolerance.


Assuntos
Receptores de Calcitriol , Fatores de Transcrição , Animais , Camundongos , Células Epiteliais , Regulação da Expressão Gênica , Receptores de Calcitriol/metabolismo , Timo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Vitamina D/metabolismo , Proteína AIRE
3.
Sci Rep ; 12(1): 6745, 2022 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-35468986

RESUMO

The active form of vitamin D, 1,25-dihydroxyvitamin D (1,25D), and its analogues signal through the nuclear vitamin D receptor (VDR), a ligand-regulated transcription factor, and have been extensively investigated as anticancer agents. 1,25D and its analogs have potential in combination therapies because they exhibit synergistic activities with other anticancer agents such as histone deacetylase inhibitors (HDACi). We have developed a series of hybrid molecules that combine HDACi within the backbone of a VDR agonist and thus represent fully integrated bifunctional molecules. They exhibit anti-tumor efficacy in reducing tumor growth and metastases in an aggressive model of triple-negative breast cancer. However, their solubility is limited by their hydrophobic diarylpentane cores. Our goals here were two-fold: (1) to improve the solubility of hybrids by introducing nitrogen into diarylpentane cores, and (2) to investigate the molecular mechanisms underlying their anti-tumor efficacy by performing comparative gene expression profiling studies with 1,25D and the potent HDACi suberoylanilide hydroxamic acid (SAHA). We found that substituting aryl with pyrydyl rings did not sacrifice bifunctionality and modestly improved solubility. Notably, one compound, AM-193, displayed enhanced potency as a VDR agonist and in cellular assays of cytotoxicity. RNAseq studies in triple negative breast cancer cells revealed that gene expression profiles of hybrids were very similar to that of 1,25D, as was that observed with 1,25D and SAHA combined. The effects of SAHA alone on gene expression were limited and distinct from those 1,25D or hybrids. The combined results suggest that efficacy of hybrids arises from targeting HDACs that do not have a direct role in gene regulation. Moreover, pathways analysis revealed that hybrids regulate numerous genes controlling immune cell infiltration into tumors and suppress the expression of several secreted molecules that promote breast cancer growth and metastasis.


Assuntos
Antineoplásicos , Neoplasias de Mama Triplo Negativas , Antineoplásicos/uso terapêutico , Proliferação de Células , Inibidores de Histona Desacetilases/uso terapêutico , Humanos , Receptores de Calcitriol/genética , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Vorinostat/farmacologia , Vorinostat/uso terapêutico
4.
Endocrinology ; 162(2)2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33249469

RESUMO

Vitamin D has pleiotropic physiological actions including immune system regulation, in addition to its classical role in calcium homeostasis. Hormonal 1,25-dihydroxyvitamin D (1,25D) signals through the nuclear vitamin D receptor, and large-scale expression profiling has provided numerous insights into its diverse physiological roles. To obtain a comprehensive picture of vitamin D signaling, we analyzed raw data from 94 (80 human, 14 mouse) expression profiles of genes regulated by 1,25D or its analogs. This identified several thousand distinct genes directly or indirectly up- or downregulated in a highly cell-specific manner in human cells using a 1.5-fold cut-off. There was significant overlap of biological processes regulated in human and mouse but minimal intersection between genes regulated in each species. Disease ontology clustering confirmed roles for 1,25D in immune homeostasis in several human cell types, and analysis of canonical pathways revealed novel and cell-specific roles of vitamin D in innate immunity. This included cell-specific regulation of several components of Nucleotide-binding Oligomerization Domain-like (NOD-like) pattern recognition receptor signaling, and metabolic events controlling innate immune responses. Notably, 1,25D selectively enhanced catabolism of branched-chain amino acids (BCAAs) in monocytic cells. BCAA levels regulate the major metabolic kinase mammalian Target of Rapamycin (mTOR), and pretreatment with 1,25D suppressed BCAA-dependent activation of mTOR signaling. Furthermore, ablation of BCAT1 expression in monocytic cells blocked 1,25D-induced increases in autophagy marker LAMP1. In conclusion, the data generated represents a powerful tool to further understand the diverse physiological roles of vitamin D signaling and provides multiple insights into mechanisms of innate immune regulation by 1,25D.


Assuntos
Regulação da Expressão Gênica , Imunidade Inata , Vitamina D/fisiologia , Aminoácidos de Cadeia Ramificada/metabolismo , Animais , Linhagem Celular Tumoral , Humanos , Macrófagos/metabolismo , Camundongos , Cultura Primária de Células , Especificidade da Espécie , Transcriptoma
5.
JBMR Plus ; 4(12): e10417, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33354643

RESUMO

The Third International Conference on Controversies in Vitamin D was held in Gubbio, Italy, September 10-13, 2019. The conference was held as a follow-up to previous meetings held in 2017 and 2018 to address topics of controversy in vitamin D research. The specific topics were selected by the steering committee of the conference and based upon areas that remain controversial from the preceding conferences. Other topics were selected anew that reflect specific topics that have surfaced since the last international conference. Consensus was achieved after formal presentations and open discussions among experts. As will be detailed in this article, consensus was achieved with regard to the following: the importance and prevalence of nutritional rickets, amounts of vitamin D that are typically generated by sun exposure, worldwide prevalence of vitamin D deficiency, the importance of circulating concentrations of 25OHD as the best index of vitamin D stores, definitions and thresholds of vitamin D deficiency, and efficacy of vitamin D analogues in the treatment of psoriasis. Areas of uncertainly and controversy include the following: daily doses of vitamin D needed to maintain a normal level of 25OHD in the general population, recommendations for supplementation in patients with metabolic bone diseases, cutaneous production of vitamin D by UVB exposure, hepatic regulation of 25OHD metabolites, definition of vitamin D excess, vitamin D deficiency in acute illness, vitamin D requirements during reproduction, potential for a broad spectrum of cellular and organ activities under the influence of the vitamin D receptor, and potential links between vitamin D and major human diseases. With specific regard to the latter area, the proceedings of the conference led to recommendations for areas in need of further investigation through appropriately designed intervention trials. © 2020 The Authors. JBMR Plus published by Wiley Periodicals LLC. on behalf of American Society for Bone and Mineral Research.

6.
Heliyon ; 6(10): e05149, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33072916

RESUMO

Our previous reports showed that 1α,25-dihydroxyvitamin D3 (1α,25(OH)2D3) has antiproliferative actions in endothelial cells stably expressing viral G protein-coupled receptor (vGPCR) associated with the pathogenesis of Kaposi's sarcoma. It has been reported that COX-2 enzyme, involved in the tumorigenesis of many types of cancers, is induced by vGPCR. Therefore, we investigated whether COX-2 down-regulation is part of the growth inhibitory effects of 1α,25(OH)2D3. Proliferation was measured in presence of COX-2 inhibitor Celecoxib (10-20 µM) revealing a decreased in vGPCR cell number, displaying typically apoptotic features in a dose dependent manner similarly to 1α,25(OH)2D3. In addition, the reduced cell viability observed with 20 µM Celecoxib was enhanced in presence of 1α,25(OH)2D3. Remarkably, although COX-2 mRNA and protein levels were up-regulated after 1α,25(OH)2D3 treatment, COX-2 enzymatic activity was reduced in a VDR-dependent manner. Furthermore, an interaction between COX-2 and VDR was revealed through GST pull-down and computational analysis. Additionally, high-affinity prostanoid receptors (EP3 and EP4) were found down-regulated by 1α,25(OH)2D3. Altogether, these results suggest a down-regulation of COX-2 activity and of prostanoid receptors as part of the antineoplastic mechanism of 1α,25(OH)2D3 in endothelial cells transformed by vGPCR.

7.
J Immunol ; 205(2): 398-406, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-32540991

RESUMO

Vitamin D deficiency is a major environmental risk factor for the development of multiple sclerosis. The major circulating metabolite of vitamin D (25-hydroxyvitamin D) is converted to the active form (calcitriol) by the hydroxylase enzyme CYP27B1 In multiple sclerosis lesions, the tyrosine kinase MerTK expressed by myeloid cells regulates phagocytosis of myelin debris and apoptotic cells that can accumulate and inhibit tissue repair and remyelination. In this study, we explored the effect of calcitriol on homeostatic (M-CSF, TGF-ß-treated) and proinflammatory (GM-CSF-treated) human monocyte-derived macrophages and microglia using RNA sequencing. Transcriptomic analysis revealed significant calcitriol-mediated effects on both Ag presentation and phagocytosis pathways. Calcitriol downregulated MerTK mRNA and protein expression in both myeloid populations, resulting in reduced capacity of these cells to phagocytose myelin and apoptotic T cells. Proinflammatory myeloid cells expressed high levels of CYP27B1 compared with homeostatic myeloid cells. Only proinflammatory cells in the presence of TNF-α generated calcitriol from 25-hydroxyvitamin D, resulting in repression of MerTK expression and function. This selective production of calcitriol in proinflammatory myeloid cells has the potential to reduce the risk for autoantigen presentation while retaining the phagocytic ability of homeostatic myeloid cells.


Assuntos
Encéfalo/patologia , Inflamação/metabolismo , Macrófagos/imunologia , Microglia/imunologia , Esclerose Múltipla/metabolismo , Vitamina D/metabolismo , c-Mer Tirosina Quinase/metabolismo , Apresentação de Antígeno , Autoantígenos/imunologia , Autoantígenos/metabolismo , Células Cultivadas , Perfilação da Expressão Gênica , Homeostase , Humanos , Inflamação/imunologia , Esclerose Múltipla/imunologia , Fagocitose , Análise de Sequência de RNA , Fator de Necrose Tumoral alfa/metabolismo , Regulação para Cima , c-Mer Tirosina Quinase/genética
10.
Mol Cancer Res ; 17(3): 709-719, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30606768

RESUMO

The E3 ligase and tumor suppressor FBW7 targets drivers of cell-cycle progression such as the oncogenic transcription factor c-MYC, for proteasomal degradation. Vitamin D signaling regulates c-MYC expression and turnover in vitro and in vivo, which is highly significant as epidemiologic data link vitamin D deficiency to increased cancer incidence. We hypothesized that FBW7 and the vitamin D receptor (VDR) controlled each other's function as regulators of protein turnover and gene transcription, respectively. We found that hormonal 1,25-dihydroxyvitamin D3 (1,25D) rapidly enhanced the interaction of FBW7 with VDR and with c-MYC, whereas it blocked FBW7 binding to c-MYC antagonist MXD1. 1,25D stimulated the recruitment of FBW7, SCF complex subunits, and ubiquitin to DNA-bound c-MYC, consistent with 1,25D-regulated c-MYC degradation on DNA. 1,25D also accelerated the turnover of other FBW7 target proteins such as Cyclin E, c-JUN, MCL1, and AIB1, and, importantly, FBW7 depletion attenuated the 1,25D-induced cell-cycle arrest. Although the VDR contains a consensus FBW7 recognition motif in a VDR-specific insertion domain, its mutation did not affect FBW7-VDR interactions, and FBW7 ablation did not stabilize the VDR. Remarkably, however, FBW7 is essential for optimal VDR gene expression. In addition, the FBW7 and SCF complex subunits are recruited to 1,25D-induced genes and FBW7 depletion inhibited the 1,25D-dependent transactivation. Collectively, these data show that the VDR and FBW7 are mutual cofactors, and provide a mechanistic basis for the cancer-preventive actions of vitamin D. IMPLICATIONS: The key findings show that the VDR and the E3 ligase FBW7 regulate each other's functions in transcriptional regulation and control of protein turnover, respectively, and provide a molecular basis for cancer-preventive actions of vitamin D.Visual Overview: http://mcr.aacrjournals.org/content/17/3/709/F1.large.jpg.


Assuntos
Proteína 7 com Repetições F-Box-WD/genética , Proteína 7 com Repetições F-Box-WD/metabolismo , Receptores de Calcitriol/genética , Receptores de Calcitriol/metabolismo , Calcitriol/farmacologia , Pontos de Checagem do Ciclo Celular/fisiologia , Linhagem Celular Tumoral , Regulação da Expressão Gênica , Genes Supressores de Tumor , Humanos , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Neoplasias da Língua/genética , Neoplasias da Língua/metabolismo , Transfecção
11.
Endocr Rev ; 40(4): 1109-1151, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-30321335

RESUMO

The etiology of endemic rickets was discovered a century ago. Vitamin D is the precursor of 25-hydroxyvitamin D and other metabolites, including 1,25(OH)2D, the ligand for the vitamin D receptor (VDR). The effects of the vitamin D endocrine system on bone and its growth plate are primarily indirect and mediated by its effect on intestinal calcium transport and serum calcium and phosphate homeostasis. Rickets and osteomalacia can be prevented by daily supplements of 400 IU of vitamin D. Vitamin D deficiency (serum 25-hydroxyvitamin D <50 nmol/L) accelerates bone turnover, bone loss, and osteoporotic fractures. These risks can be reduced by 800 IU of vitamin D together with an appropriate calcium intake, given to institutionalized or vitamin D-deficient elderly subjects. VDR and vitamin D metabolic enzymes are widely expressed. Numerous genetic, molecular, cellular, and animal studies strongly suggest that vitamin D signaling has many extraskeletal effects. These include regulation of cell proliferation, immune and muscle function, skin differentiation, and reproduction, as well as vascular and metabolic properties. From observational studies in human subjects, poor vitamin D status is associated with nearly all diseases predicted by these extraskeletal actions. Results of randomized controlled trials and Mendelian randomization studies are supportive of vitamin D supplementation in reducing the incidence of some diseases, but, globally, conclusions are mixed. These findings point to a need for continued ongoing and future basic and clinical studies to better define whether vitamin D status can be optimized to improve many aspects of human health. Vitamin D deficiency enhances the risk of osteoporotic fractures and is associated with many diseases. We review what is established and what is plausible regarding the health effects of vitamin D.


Assuntos
Osso e Ossos/metabolismo , Cálcio/metabolismo , Vitamina D/metabolismo , Animais , Osso e Ossos/fisiologia , Feminino , Humanos , Masculino , Osteomalacia/tratamento farmacológico , Osteomalacia/prevenção & controle , Raquitismo/tratamento farmacológico , Raquitismo/prevenção & controle , Transdução de Sinais , Vitamina D/fisiologia , Vitamina D/uso terapêutico , Deficiência de Vitamina D/tratamento farmacológico , Deficiência de Vitamina D/prevenção & controle
12.
J Steroid Biochem Mol Biol ; 175: 23-28, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28025175

RESUMO

Vitamin D has emerged as a key regulator of innate immune responses to pathogen threat. The hormonal form of vitamin D signals through a nuclear receptor transcription factor and regulates gene transcription. Several papers have shown that vitamin D signaling is active both upstream and downstream of pattern recognition receptors, vanguards of innate immune responses. Crohn's disease (CD) is a relapsing-recurring inflammatory bowel disease (IBD) that arises from dysregulated intestinal innate immunity. Indeed, genetic studies have identified several CD susceptibility markers linked to mechanisms of innate immune responses to infection. Interest in links between vitamin D deficiency and CD has grown substantially, particularly in the last five years. While a number of studies have consistently revealed an association between CD and vitamin D deficiency, recent experimental work has uncovered a compelling mechanistic basis for the contribution of vitamin D deficiency to the pathogenesis of the disease. Moreover, a number of intervention trials have provided generally solid evidence that robust vitamin D supplementation may be of therapeutic benefit to patients with CD. This review summarizes these laboratory and clinical findings.


Assuntos
Doença de Crohn/complicações , Proteína Adaptadora de Sinalização NOD2/imunologia , Receptores de Calcitriol/imunologia , Deficiência de Vitamina D/complicações , Vitamina D/imunologia , Ensaios Clínicos como Assunto , Doença de Crohn/dietoterapia , Doença de Crohn/genética , Doença de Crohn/imunologia , Suplementos Nutricionais , Regulação da Expressão Gênica , Humanos , Imunidade Inata/efeitos dos fármacos , Interleucina-1beta/genética , Interleucina-1beta/imunologia , Proteína Adaptadora de Sinalização NOD2/genética , Receptores de Calcitriol/genética , Transdução de Sinais , Transcrição Gênica , Vitamina D/análogos & derivados , Vitamina D/metabolismo , Vitamina D/uso terapêutico , Deficiência de Vitamina D/dietoterapia , Deficiência de Vitamina D/genética , Deficiência de Vitamina D/imunologia , Elemento de Resposta à Vitamina D/genética , Elemento de Resposta à Vitamina D/imunologia
13.
J Steroid Biochem Mol Biol ; 177: 135-139, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28847749

RESUMO

Hormonal 1,25-dihydroxyvitamin D (1,25D) and its analogues have shown efficacy in some preclinical models of cancer. However, many models are resistant to the antiproliferative effects of 1,25D or its analogues in vitro or in vivo, and such compounds have failed in the clinic as monotherapies because of tumor resistance. Given the observed synergism between 1,25D analogues and histone deacetylase inhibitors (HDACi) in 1,25D-resistant cells, we previously developed a series of hybrid secosteroidal and easily assembled non-secosteroidal analogues that combined agonism for the vitamin D receptor and HDACi in a single backbone. These compounds displayed enhanced efficacy against 1,25D-resistant malignant cells in vitro. Structure/function studies led to synthesis of several non-secosteroidal variants in which HDACi potency was optimized without substantially sacrificing VDR agonism. Here, we present the first studies of efficacy in vivo of two of these compounds, DK-366 and DK-406, in the aggressive mouse 4T1 model of triple-negative breast cancer, a form of the disease for which treatment options are limited. 4T1 cells are resistant in vitro to the cytostatic and cytotoxic effects of 1,25D and the potent HDACi SAHA individually up to concentrations of 1µM and 50µM, respectively, whereas combinations of the two are efficacious. In vitro, DK-366 or -406 induced dose-dependent arrest of cell proliferation and cytotoxicity at 10-20µM. In vivo, the maximum tolerated dose (MTD) of DK-366 and DK-406 were 2.5 and 5.0mg/kg, respectively. Although the compounds induced hypercalcemia at elevated doses, consistent with VDR agonism in vivo, they both reduced tumor burden at doses below their MTD's. Moreover, in a separate experiment, DK-406 at 5mg/kg reduced 4T1 lung metastases by at least 50%. Under the same conditions, 1,25D (0.25µg/kg) and SAHA (25mg/kg) combined had no effect on tumor burden or on lung metastases. These experiments show that hybrid compounds are bioavailable and efficacious against a particularly aggressive model of metastatic breast cancer, providing strong support for the therapeutic potential of the hybrid concept.


Assuntos
Antineoplásicos , Inibidores de Histona Desacetilases , Receptores de Calcitriol/agonistas , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Vitamina D , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Feminino , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Camundongos Endogâmicos BALB C , Vitamina D/análogos & derivados , Vitamina D/farmacologia , Vitamina D/uso terapêutico
15.
J Biol Chem ; 292(50): 20657-20668, 2017 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-29061851

RESUMO

PD-L1 (programmed death ligand 1) and PD-L2 are cell-surface glycoproteins that interact with programmed death 1 (PD-1) on T cells to attenuate inflammation. PD-1 signaling has attracted intense interest for its role in a pathophysiological context: suppression of anti-tumor immunity. Similarly, vitamin D signaling has been increasingly investigated for its non-classical actions in stimulation of innate immunity and suppression of inflammatory responses. Here, we show that hormonal 1,25-dihydroxyvitamin D (1,25D) is a direct transcriptional inducer of the human genes encoding PD-L1 and PD-L2 through the vitamin D receptor, a ligand-regulated transcription factor. 1,25D stimulated transcription of the gene encoding PD-L1 in epithelial and myeloid cells, whereas the gene encoding the more tissue-restricted PD-L2 was regulated only in myeloid cells. We identified and characterized vitamin D response elements (VDREs) located in both genes and showed that 1,25D treatment induces cell-surface expression of PD-L1 in epithelial and myeloid cells. In co-culture experiments with primary human T cells, epithelial cells pretreated with 1,25D suppressed activation of CD4+ and CD8+ cells and inhibited inflammatory cytokine production in a manner that was abrogated by anti-PD-L1 blocking antibody. Consistent with previous observations of species-specific regulation of immunity by vitamin D, the VDREs are present in primate genes, but neither the VDREs nor the regulation by 1,25D is present in mice. These findings reinforce the physiological role of 1,25D in controlling inflammatory immune responses but may represent a double-edged sword, as they suggest that elevated vitamin D signaling in humans could suppress anti-tumor immunity.


Assuntos
Antígeno B7-H1/agonistas , Regulação da Expressão Gênica/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Proteína 2 Ligante de Morte Celular Programada 1/agonistas , Regulação para Cima/efeitos dos fármacos , Elemento de Resposta à Vitamina D/efeitos dos fármacos , Vitamina D/análogos & derivados , Animais , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Linhagem Celular , Células Cultivadas , Técnicas de Cocultura , Feminino , Humanos , Macrófagos/citologia , Macrófagos/imunologia , Macrófagos/metabolismo , Masculino , Camundongos , Mucosa Nasal/citologia , Mucosa Nasal/efeitos dos fármacos , Mucosa Nasal/metabolismo , Especificidade de Órgãos , Proteína 2 Ligante de Morte Celular Programada 1/genética , Proteína 2 Ligante de Morte Celular Programada 1/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Especificidade da Espécie , Linfócitos T/citologia , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Linfócitos T/metabolismo , Vitamina D/farmacologia
17.
Free Radic Biol Med ; 108: 19-31, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28254546

RESUMO

Chronic obstructive pulmonary disease (COPD) is a chronic and prevalent respiratory disease caused primarily by long term inhalation of cigarette smoke. A major hallmark of COPD is elevated apoptosis of structural lung cells including fibroblasts. The NF-κB member RelB may suppress apoptosis in response to cigarette smoke, but its role in lung cell survival is not known. RelB may act as a pro-survival factor by controlling the expression of superoxide dismutase 2 (SOD2). SOD2 is also regulated by the aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor that suppresses cigarette smoke-induced apoptosis. As the AhR is also a binding partner for RelB, we speculate that RelB suppresses cigarette smoke-induced apoptosis by regulating the AhR. Using an in vitro model of cigarette smoke exposure (cigarette smoke extract [CSE]), we found that CSE down-regulated RelB expression in mouse lung fibroblasts, which was associated with elevated levels of cleaved PARP. Genetic ablation of RelB elevated CSE-induced apoptosis, including chromatin condensation, and reduced mitochondrial function. There was also more reactive oxygen species production in RelB-/- cells exposed to CSE. While there was no alteration in Nrf2 expression or localization between RelB-/- and wild type cells in response to CSE, RelB-/- cells displayed significantly decreased AhR mRNA and protein expression, concomitant with loss of AhR target gene expression (Cyp1a1, Cyp1b1, Nqo1). Finally, we found that RelB binds to the Ahr gene at 3 sites to potentially increase its expression via transcriptional induction. These data support that RelB suppresses cigarette smoke-induced apoptosis, potentially by increasing the AhR. Together, these two proteins may comprise an important cell survival signaling pathway that reduces apoptosis upon cigarette smoke exposure.


Assuntos
Fibroblastos/fisiologia , Pulmão/patologia , Doença Pulmonar Obstrutiva Crônica/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo , Fator de Transcrição RelB/metabolismo , Regiões 3' não Traduzidas/genética , Animais , Apoptose , Células Cultivadas , Fumar Cigarros/efeitos adversos , Regulação para Baixo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Poli(ADP-Ribose) Polimerase-1/metabolismo , Ligação Proteica , Doença Pulmonar Obstrutiva Crônica/genética , Espécies Reativas de Oxigênio/metabolismo , Receptores de Hidrocarboneto Arílico/genética , Transdução de Sinais , Fator de Transcrição RelB/genética , Transcrição Gênica
18.
Nucleic Acids Res ; 44(22): 10571-10587, 2016 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-27604870

RESUMO

To understand the epigenetic regulation of transcriptional response of macrophages during early-stage M. tuberculosis (Mtb) infection, we performed ChIPseq analysis of H3K4 monomethylation (H3K4me1), a marker of poised or active enhancers. De novo H3K4me1 peaks in infected cells were associated with genes implicated in host defenses and apoptosis. Our analysis revealed that 40% of de novo regions contained human/primate-specific Alu transposable elements, enriched in the AluJ and S subtypes. These contained several transcription factor binding sites, including those for members of the MEF2 and ATF families, and LXR and RAR nuclear receptors, all of which have been implicated in macrophage differentiation, survival, and responses to stress and infection. Combining bioinformatics, molecular genetics, and biochemical approaches, we linked genes adjacent to H3K4me1-associated Alu repeats to macrophage metabolic responses against Mtb infection. In particular, we show that LXRα signaling, which reduced Mtb viability 18-fold by altering cholesterol metabolism and enhancing macrophage apoptosis, can be initiated at response elements present in Alu repeats. These studies decipher the mechanism of early macrophage transcriptional responses to Mtb, highlighting the role of Alu element transposition in shaping human transcription programs during innate immunity.


Assuntos
Elementos Alu , Regulação da Expressão Gênica/imunologia , Macrófagos/metabolismo , Mycobacterium tuberculosis/imunologia , Tuberculose/metabolismo , Sequência de Bases , Sítios de Ligação , Linhagem Celular , Humanos , Imunidade Inata , Receptores X do Fígado/fisiologia , Macrófagos/imunologia , Macrófagos/microbiologia , Masculino , Viabilidade Microbiana , Fatores de Transcrição/fisiologia , Transcriptoma , Tuberculose/imunologia , Tuberculose/microbiologia
19.
Cell Rep ; 16(7): 1829-37, 2016 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-27498878

RESUMO

Pro-inflammatory signals provided by the microenvironment are critical to activate dendritic cells (DCs), components of the innate immune system that shape both innate and adaptive immunity. However, to prevent inappropriate immune activation, mechanisms must be in place to restrain DC activation to ensure DCs are activated only once sufficient stimuli have been received. Here, we report that DC activation and immunogenicity are regulated by the transcriptional repressor Polycomb group factor 6 (PCGF6). Pcgf6 is rapidly downregulated upon stimulation, and this downregulation is necessary to permit full DC activation. Silencing PCGF6 expression enhanced both spontaneous and stimulated DC activation. We show that PCGF6 associates with the H3K4me3 demethylase JARID1c, and together, they negatively regulate H3K4me3 levels in DCs. Our results identify two key regulators, PCGF6 and JARID1c that temper DC activation and implicate active transcriptional silencing via histone demethylation as a previously unappreciated mechanism for regulating DC activation and quiescence.


Assuntos
Células Dendríticas/imunologia , Histonas/genética , Oxirredutases N-Desmetilantes/genética , Complexo Repressor Polycomb 1/genética , Proteínas Repressoras/genética , Animais , Células da Medula Óssea/citologia , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/imunologia , Diferenciação Celular/imunologia , Cromatina/química , Cromatina/metabolismo , Células Dendríticas/citologia , Células Dendríticas/efeitos dos fármacos , Feminino , Regulação da Expressão Gênica , Histona Desmetilases , Histonas/metabolismo , Lipopolissacarídeos/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Oxirredutases N-Desmetilantes/imunologia , Complexo Repressor Polycomb 1/antagonistas & inibidores , Complexo Repressor Polycomb 1/imunologia , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Proteínas Repressoras/imunologia , Transdução de Sinais , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA