Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Cell Rep ; 34(12): 108893, 2021 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-33761350

RESUMO

Fgf21 (fibroblast growth factor 21) is a regulatory hepatokine that, in pharmacologic form, powerfully promotes weight loss and glucose homeostasis. Although "Fgf21 resistance" is inferred from higher plasma Fgf21 levels in insulin-resistant mice and humans, diminished Fgf21 function is understood primarily via Fgf21 knockout mice. By contrast, we show that modestly reduced Fgf21-owing to cell-autonomous suppression by hepatic FoxO1-contributes to dysregulated metabolism in LDKO mice (Irs1L/L⋅Irs2L/L⋅CreAlb), a model of severe hepatic insulin resistance caused by deletion of hepatic Irs1 (insulin receptor substrate 1) and Irs2. Knockout of hepatic Foxo1 in LDKO mice or direct restoration of Fgf21 by adenoviral infection restored glucose utilization by BAT (brown adipose tissue) and skeletal muscle, normalized thermogenic gene expression in LDKO BAT, and corrected acute cold intolerance of LDKO mice. These studies highlight the Fgf21-dependent plasticity and importance of BAT function to metabolic health during hepatic insulin resistance.


Assuntos
Adaptação Fisiológica , Temperatura Baixa , Fatores de Crescimento de Fibroblastos/metabolismo , Proteína Forkhead Box O1/metabolismo , Glucose/metabolismo , Resistência à Insulina , Insulina/metabolismo , Fígado/metabolismo , Adipócitos Marrons/metabolismo , Tecido Adiposo Marrom/metabolismo , Animais , Glicemia/metabolismo , Peso Corporal , Dieta Hiperlipídica , Regulação da Expressão Gênica , Homeostase , Proteínas Substratos do Receptor de Insulina/metabolismo , Metabolismo dos Lipídeos , Camundongos Knockout , Especificidade de Órgãos , Oxirredução , Termogênese/genética
2.
JCI Insight ; 5(6)2020 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-32213702

RESUMO

Pressure overload (PO) cardiac hypertrophy and heart failure are associated with generalized insulin resistance and hyperinsulinemia, which may exacerbate left ventricular (LV) remodeling. While PO activates insulin receptor tyrosine kinase activity that is transduced by insulin receptor substrate 1 (IRS1), the present study tested the hypothesis that IRS1 and IRS2 have divergent effects on PO-induced LV remodeling. We therefore subjected mice with cardiomyocyte-restricted deficiency of IRS1 (CIRS1KO) or IRS2 (CIRS2KO) to PO induced by transverse aortic constriction (TAC). In WT mice, TAC-induced LV hypertrophy was associated with hyperactivation of IRS1 and Akt1, but not IRS2 and Akt2. CIRS1KO hearts were resistant to cardiac hypertrophy and heart failure in concert with attenuated Akt1 activation. In contrast, CIRS2KO hearts following TAC developed more severe LV dysfunction than WT controls, and this was prevented by haploinsufficiency of Akt1. Failing human hearts exhibited isoform-specific IRS1 and Akt1 activation, while IRS2 and Akt2 activation were unchanged. Kinomic profiling identified IRS1 as a potential regulator of cardioprotective protein kinase G-mediated signaling. In addition, gene expression profiling revealed that IRS1 signaling may promote a proinflammatory response following PO. Together, these data identify IRS1 and Akt1 as critical signaling nodes that mediate LV remodeling in both mice and humans.


Assuntos
Proteínas Substratos do Receptor de Insulina/metabolismo , Insulina/metabolismo , Remodelação Ventricular/fisiologia , Animais , Cardiomegalia/complicações , Humanos , Hiperinsulinismo/complicações , Resistência à Insulina/fisiologia , Camundongos , Camundongos Knockout , Proteínas Proto-Oncogênicas c-akt/metabolismo
3.
Endocrinology ; 160(5): 1333-1347, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30951171

RESUMO

The transcription factor forkhead box O1 (FoxO1) is a key mediator in the insulin signaling pathway and controls multiple physiological functions, including hepatic glucose production (HGP) and pancreatic ß-cell function. We previously demonstrated that S256 in human FOXO1 (FOXO1-S256), equivalent to S253 in mouse FoxO1 (FoxO1-S253), is a key phosphorylation site mediating the effect of insulin as a target of protein kinase B on suppression of FOXO1 activity and expression of target genes responsible for gluconeogenesis. Here, we investigated the role of FoxO1-S253 phosphorylation in control of glucose homeostasis in vivo by generating global FoxO1-S253A/A knockin mice, in which FoxO1-S253 alleles were replaced with alanine (A substitution) blocking FoxO1-S253 phosphorylation. FoxO1-S253A/A mice displayed mild increases in feeding blood glucose and insulin levels but decreases in fasting blood glucose and glucagon concentrations, as well as a reduction in the ratio of pancreatic α-cells/ß-cells per islet. FoxO1-S253A/A mice exhibited a slight increase in energy expenditure but barely altered food intake and glucose uptake among tissues. Further analyses revealed that FoxO1-S253A/A enhances FoxO1 nuclear localization and promotes the effect of glucagon on HGP. We conclude that dephosphorylation of S253 in FoxO1 may reflect a molecular basis of pancreatic plasticity during the development of insulin resistance.


Assuntos
Proteína Forkhead Box O1/metabolismo , Glucose/metabolismo , Homeostase , Serina/metabolismo , Alanina/genética , Alanina/metabolismo , Animais , Glicemia/metabolismo , Proteína Forkhead Box O1/genética , Glucagon/sangue , Insulina/sangue , Resistência à Insulina , Ilhotas Pancreáticas/citologia , Ilhotas Pancreáticas/metabolismo , Fígado/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fosforilação , Serina/genética
4.
J Biol Chem ; 294(7): 2407-2421, 2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30578299

RESUMO

Hyperglycemia and insulin resistance accelerate atherosclerosis by an unclear mechanism. The two factors down-regulate insulin receptor substrate-1 (IRS-1), an intermediary of the insulin/IGF-I signaling system. We previously reported that IRS-1 down-regulation leads to vascular smooth muscle cell (VSMC) dedifferentiation and that IRS-1 deletion from VSMCs in normoglycemic mice replicates this response. However, we did not determine IRS-1's role in mediating differentiation. Here, we sought to define the mechanism by which IRS-1 maintains VSMC differentiation. High glucose or IRS-1 knockdown decreased p53 levels by enhancing MDM2 proto-oncogene (MDM2)-mediated ubiquitination, resulting in decreased binding of p53 to Krüppel-like factor 4 (KLF4). Exposure to nutlin-3, which dissociates MDM2/p53, decreased p53 ubiquitination and enhanced the p53/KLF4 association and differentiation marker protein expression. IRS-1 overexpression in high glucose inhibited the MDM2/p53 association, leading to increased p53 and p53/KLF4 levels, thereby increasing differentiation. Nutlin-3 treatment of diabetic or Irs1-/- mice enhanced p53/KLF4 and the expression of p21, smooth muscle protein 22 (SM22), and myocardin and inhibited aortic VSMC proliferation. Injecting normoglycemic mice with a peptide disrupting the IRS-1/p53 association reduced p53, p53/KLF4, and differentiation. Analyzing atherosclerotic lesions in hypercholesterolemic, diabetic pigs, we found that p53, IRS-1, SM22, myocardin, and KLF4/p53 levels are significantly decreased compared with their expression in nondiabetic pigs. We conclude that IRS-1 is critical for maintaining VSMC differentiation. Hyperglycemia- or insulin resistance-induced IRS-1 down-regulation decreases the p53/KLF4 association and enhances dedifferentiation and proliferation. Our results suggest that enhancing IRS-1-dependent p53 stabilization could attenuate the progression of atherosclerotic lesions in hyperglycemia and insulin-resistance states.


Assuntos
Diferenciação Celular , Hiperglicemia/metabolismo , Proteínas Substratos do Receptor de Insulina/metabolismo , Fatores de Transcrição Kruppel-Like/metabolismo , Complexos Multiproteicos/metabolismo , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Animais , Aterosclerose/genética , Aterosclerose/metabolismo , Aterosclerose/patologia , Humanos , Hiperglicemia/genética , Hiperglicemia/patologia , Proteínas Substratos do Receptor de Insulina/genética , Resistência à Insulina , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like/genética , Camundongos , Camundongos Knockout , Complexos Multiproteicos/genética , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/patologia , Estabilidade Proteica , Proto-Oncogene Mas , Proteínas Proto-Oncogênicas c-mdm2/genética , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Suínos , Proteína Supressora de Tumor p53/genética
5.
Nat Med ; 24(7): 1058-1069, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29867232

RESUMO

Unsuppressed hepatic glucose production (HGP) contributes substantially to glucose intolerance and diabetes, which can be modeled by the genetic inactivation of hepatic insulin receptor substrate 1 (Irs1) and Irs2 (LDKO mice). We previously showed that glucose intolerance in LDKO mice is resolved by hepatic inactivation of the transcription factor FoxO1 (that is, LTKO mice)-even though the liver remains insensitive to insulin. Here, we report that insulin sensitivity in the white adipose tissue of LDKO mice is also impaired but is restored in LTKO mice in conjunction with normal suppression of HGP by insulin. To establish the mechanism by which white adipose tissue insulin signaling and HGP was regulated by hepatic FoxO1, we identified putative hepatokines-including excess follistatin (Fst)-that were dysregulated in LDKO mice but normalized in LTKO mice. Knockdown of hepatic Fst in the LDKO mouse liver restored glucose tolerance, white adipose tissue insulin signaling and the suppression of HGP by insulin; however, the expression of Fst in the liver of healthy LTKO mice had the opposite effect. Of potential clinical significance, knockdown of Fst also improved glucose tolerance in high-fat-fed obese mice, and the level of serum Fst was reduced in parallel with glycated hemoglobin in obese individuals with diabetes who underwent therapeutic gastric bypass surgery. We conclude that Fst is a pathological hepatokine that might be targeted for diabetes therapy during hepatic insulin resistance.


Assuntos
Folistatina/metabolismo , Hiperglicemia/patologia , Fígado/metabolismo , Células 3T3-L1 , Tecido Adiposo Branco/metabolismo , Animais , Cirurgia Bariátrica , Regulação para Baixo/genética , Proteína Forkhead Box O1/metabolismo , Técnicas de Silenciamento de Genes , Glucose/metabolismo , Intolerância à Glucose/complicações , Intolerância à Glucose/patologia , Humanos , Hiperglicemia/complicações , Resistência à Insulina , Fígado/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transdução de Sinais
6.
Proc Natl Acad Sci U S A ; 115(16): 4228-4233, 2018 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-29610318

RESUMO

Non-small-cell lung cancer (NSCLC) is a leading cause of cancer death worldwide, with 25% of cases harboring oncogenic Kirsten rat sarcoma (KRAS). Although KRAS direct binding to and activation of PI3K is required for KRAS-driven lung tumorigenesis, the contribution of insulin receptor (IR) and insulin-like growth factor 1 receptor (IGF1R) in the context of mutant KRAS remains controversial. Here, we provide genetic evidence that lung-specific dual ablation of insulin receptor substrates 1/2 (Irs1/Irs2), which mediate insulin and IGF1 signaling, strongly suppresses tumor initiation and dramatically extends the survival of a mouse model of lung cancer with Kras activation and p53 loss. Mice with Irs1/Irs2 loss eventually succumb to tumor burden, with tumor cells displaying suppressed Akt activation and strikingly diminished intracellular levels of essential amino acids. Acute loss of IRS1/IRS2 or inhibition of IR/IGF1R in KRAS-mutant human NSCLC cells decreases the uptake and lowers the intracellular levels of amino acids, while enhancing basal autophagy and sensitivity to autophagy and proteasome inhibitors. These findings demonstrate that insulin/IGF1 signaling is required for KRAS-mutant lung cancer initiation, and identify decreased amino acid levels as a metabolic vulnerability in tumor cells with IR/IGF1R inhibition. Consequently, combinatorial targeting of IR/IGF1R with autophagy or proteasome inhibitors may represent an effective therapeutic strategy in KRAS-mutant NSCLC.


Assuntos
Carcinogênese/metabolismo , Carcinoma Pulmonar de Células não Pequenas/prevenção & controle , Genes ras , Proteínas Substratos do Receptor de Insulina/fisiologia , Fator de Crescimento Insulin-Like I/fisiologia , Insulina/farmacologia , Neoplasias Pulmonares/prevenção & controle , Proteínas Proto-Oncogênicas p21(ras)/fisiologia , Células A549 , Aminoácidos/metabolismo , Animais , Autofagia , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/fisiopatologia , Códon de Terminação , Humanos , Proteínas Substratos do Receptor de Insulina/deficiência , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/fisiopatologia , Camundongos , Proteínas de Neoplasias/fisiologia , Proteólise , Proteínas Proto-Oncogênicas c-akt/fisiologia , Transdução de Sinais/fisiologia
7.
Nat Commun ; 8(1): 131, 2017 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-28743992

RESUMO

Diabetes and obesity are characterized by insulin resistance and chronic low-grade inflammation. An elevated plasma concentration of lipopolysaccharide (LPS) caused by increased intestinal permeability during diet-induced obesity promotes insulin resistance in mice. Here, we show that LPS induces endoplasmic reticulum (ER) stress and protein levels of P300, an acetyltransferase involved in glucose production. In high-fat diet fed and genetically obese ob/ob mice, P300 translocates from the nucleus into the cytoplasm of hepatocytes. We also demonstrate that LPS activates the transcription factor XBP1 via the ER stress sensor IRE1, resulting in the induction of P300 which, in turn, acetylates IRS1/2, inhibits its association with the insulin receptor, and disrupts insulin signaling. Pharmacological inhibition of P300 acetyltransferase activity by a specific inhibitor improves insulin sensitivity and decreases hyperglycemia in obese mice. We suggest that P300 acetyltransferase activity may be a promising therapeutic target for the treatment of obese patients.Elevated plasma LPS levels have been associated with insulin resistance. Here Cao et al. show that LPS induces ER stress and P300 activity via the XBP1/IRE1 pathway. P300 acetylates IRS1/2 and inhibits its binding with the insulin receptor. The consequent impairment of insulin signaling can be rescued by pharmacological inhibition of P300.


Assuntos
Proteína p300 Associada a E1A/metabolismo , Endotoxemia/metabolismo , Insulina/metabolismo , Obesidade/metabolismo , Transdução de Sinais , Animais , Linhagem Celular Tumoral , Proteína p300 Associada a E1A/genética , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Estresse do Retículo Endoplasmático/genética , Perfilação da Expressão Gênica/métodos , Immunoblotting , Resistência à Insulina , Lipopolissacarídeos/farmacologia , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Obesos , Obesidade/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Receptor de Insulina/genética , Receptor de Insulina/metabolismo , Proteína 1 de Ligação a X-Box/genética , Proteína 1 de Ligação a X-Box/metabolismo
8.
J Biol Chem ; 291(53): 27160-27169, 2016 12 30.
Artigo em Inglês | MEDLINE | ID: mdl-27856640

RESUMO

G protein-coupled receptors (GPCRs) activate PI3K/v-AKT thymoma viral oncoprotein (AKT) to regulate many cellular functions that promote cell survival, proliferation, and growth. However, the mechanism by which GPCRs activate PI3K/AKT remains poorly understood. We used ovarian preantral granulosa cells (GCs) to elucidate the mechanism by which the GPCR agonist FSH via PKA activates the PI3K/AKT cascade. Insulin-like growth factor 1 (IGF1) is secreted in an autocrine/paracrine manner by GCs and activates the IGF1 receptor (IGF1R) but, in the absence of FSH, fails to stimulate YXXM phosphorylation of IRS1 (insulin receptor substrate 1) required for PI3K/AKT activation. We show that PKA directly phosphorylates the protein phosphatase 1 (PP1) regulatory subunit myosin phosphatase targeting subunit 1 (MYPT1) to activate PP1 associated with the IGF1R-IRS1 complex. Activated PP1 is sufficient to dephosphorylate at least four IRS1 Ser residues, Ser318, Ser346, Ser612, and Ser789, and promotes IRS1 YXXM phosphorylation by the IGF1R to activate the PI3K/AKT cascade. Additional experiments indicate that this mechanism also occurs in breast cancer, thyroid, and preovulatory granulosa cells, suggesting that the PKA-dependent dephosphorylation of IRS1 Ser/Thr residues is a conserved mechanism by which GPCRs signal to activate the PI3K/AKT pathway downstream of the IGF1R.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Proteínas Substratos do Receptor de Insulina/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animais , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Células Cultivadas , Feminino , Células da Granulosa/citologia , Células da Granulosa/metabolismo , Humanos , Folículo Ovariano/citologia , Folículo Ovariano/metabolismo , Fosforilação , Ratos , Ratos Sprague-Dawley , Transdução de Sinais , Neoplasias da Glândula Tireoide/metabolismo , Neoplasias da Glândula Tireoide/patologia
9.
Proc Natl Acad Sci U S A ; 113(31): 8795-800, 2016 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-27439864

RESUMO

Insulin receptor substrate-1 (IRS-1) is a signaling adaptor protein that interfaces with many pathways activated in lung cancer. It has been assumed that IRS-1 promotes tumor growth through its ability to activate PI3K signaling downstream of the insulin-like growth factor receptor. Surprisingly, tumors with reduced IRS-1 staining in a human lung adenocarcinoma tissue microarray displayed a significant survival disadvantage, especially within the Kirsten rat sarcoma viral oncogene homolog (KRAS) mutant subgroup. Accordingly, adenoviral Cre recombinase (AdCre)-treated LSL-Kras/Irs-1(fl/fl) (Kras/Irs-1(-/-)) mice displayed increased tumor burden and mortality compared with controls. Mechanistically, IRS-1 deficiency promotes Janus kinase/signal transducers and activators of transcription (JAK/STAT) signaling via the IL-22 receptor, resulting in enhanced tumor-promoting inflammation. Treatment of Kras/Irs-1(+/+) and Kras/Irs-1(-/-) mice with JAK inhibitors significantly reduced tumor burden, most notably in the IRS-1-deficient group.


Assuntos
Adenocarcinoma/metabolismo , Proteínas Substratos do Receptor de Insulina/metabolismo , Neoplasias Pulmonares/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Células A549 , Adenocarcinoma/genética , Adenocarcinoma/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Linhagem Celular Tumoral , Feminino , Humanos , Proteínas Substratos do Receptor de Insulina/deficiência , Proteínas Substratos do Receptor de Insulina/genética , Estimativa de Kaplan-Meier , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Masculino , Camundongos Knockout , Pessoa de Meia-Idade , Mutação , Fenótipo , Proteínas Proto-Oncogênicas p21(ras)/genética , Receptores de Interleucina/genética , Receptores de Interleucina/metabolismo , Transdução de Sinais/genética
10.
J Biol Chem ; 291(16): 8602-17, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-26846849

RESUMO

Constitutive activation of the mammalian target of rapamycin complex 1 and S6 kinase (mTORC1→ S6K) attenuates insulin-stimulated Akt activity in certain tumors in part through "feedback" phosphorylation of the upstream insulin receptor substrate 1 (IRS1). However, the significance of this mechanism for regulating insulin sensitivity in normal tissue remains unclear. We investigated the function of Ser-302 in mouse IRS1, the major site of its phosphorylation by S6K in vitro, through genetic knock-in of a serine-to-alanine mutation (A302). Although insulin rapidly stimulated feedback phosphorylation of Ser-302 in mouse liver and muscle, homozygous A302 mice (A/A) and their knock-in controls (S/S) exhibited similar glucose homeostasis and muscle insulin signaling. Furthermore, both A302 and control primary hepatocytes from which Irs2 was deleted showed marked inhibition of insulin-stimulated IRS1 tyrosine phosphorylation and PI3K binding after emetine treatment to raise intracellular amino acids and activate mTORC1 → S6K signaling. To specifically activate mTORC1 in mouse tissue, we deleted hepatic Tsc1 using Cre adenovirus. Although it moderately decreased IRS1/PI3K association and Akt phosphorylation in liver, Tsc1 deletion failed to cause glucose intolerance or promote hyperinsulinemia in mixed background A/A or S/S mice. Moreover, Tsc1 deletion failed to stimulate phospho-Ser-302 or other putative S6K sites within IRS1, whereas ribosomal S6 protein was constitutively phosphorylated. Following acute Tsc1 deletion from hepatocytes, Akt phosphorylation, but not IRS1/PI3K association, was rapidly restored by treatment with the mTORC1 inhibitor rapamycin. Thus, within the hepatic compartment, mTORC1 → S6K signaling regulates Akt largely through IRS-independent means with little effect upon physiologic insulin sensitivity.


Assuntos
Proteínas Substratos do Receptor de Insulina/metabolismo , Insulina/metabolismo , Fígado/metabolismo , Proteínas Quinases S6 Ribossômicas/metabolismo , Transdução de Sinais/fisiologia , Substituição de Aminoácidos , Animais , Células CHO , Cricetinae , Cricetulus , Deleção de Genes , Intolerância à Glucose/genética , Intolerância à Glucose/metabolismo , Insulina/deficiência , Proteínas Substratos do Receptor de Insulina/genética , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Camundongos Transgênicos , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Mutação de Sentido Incorreto , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação/fisiologia , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Quinases S6 Ribossômicas/genética , Serina/genética , Serina/metabolismo , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Proteína 1 do Complexo Esclerose Tuberosa , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
11.
J Biol Chem ; 289(18): 12467-84, 2014 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-24652289

RESUMO

IRS1 and IRS2 are key substrates of the insulin receptor tyrosine kinase. Mass spectrometry reveals more than 50 phosphorylated IRS1 serine and threonine residues (Ser(P)/Thr(P) residues) in IRS1 from insulin-stimulated cells or human tissues. We investigated a subset of IRS1 Ser(P)/Thr(P) residues using a newly developed panel of 25 phospho-specific monoclonal antibodies (αpS/TmAb(Irs1)). CHO cells overexpressing the human insulin receptor and rat IRS1 were stimulated with insulin in the absence or presence of inhibitors of the PI3K → Akt → mechanistic target of rapamycin (mTOR) → S6 kinase or MEK pathways. Nearly all IRS1 Ser(P)/Thr(P) residues were stimulated by insulin and significantly suppressed by PI3K inhibition; fewer were suppressed by Akt or mTOR inhibition, and none were suppressed by MEK inhibition. Insulin-stimulated Irs1 tyrosine phosphorylation (Tyr(P)(Irs1)) was enhanced by inhibition of the PI3K → Akt → mTOR pathway and correlated with decreased Ser(P)-302(Irs1), Ser(P)-307(Irs1), Ser(P)-318(Irs1), Ser(P)-325(Irs1), and Ser(P)-346(Irs1). Metabolic stress modeled by anisomycin, thapsigargin, or tunicamycin increased many of the same Ser(P)/Thr(P) residues as insulin, some of which (Ser(P)-302(Irs1), Ser(P)-307(Irs1), and four others) correlated significantly with impaired insulin-stimulated Tyr(P)(Irs1). Thus, IRS1 Ser(P)/Thr(P) is an integrated response to insulin stimulation and metabolic stress, which associates with reduced Tyr(P)(Irs1) in CHO(IR)/IRS1 cells.


Assuntos
Proteínas Substratos do Receptor de Insulina/metabolismo , Insulina/farmacologia , Serina/metabolismo , Treonina/metabolismo , Tirosina/metabolismo , Animais , Anisomicina/farmacologia , Antígenos CD/genética , Antígenos CD/metabolismo , Western Blotting , Células CHO , Cricetinae , Cricetulus , Inibidores Enzimáticos/farmacologia , Humanos , Hipoglicemiantes/farmacologia , Proteínas Substratos do Receptor de Insulina/genética , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Fosforilação/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Receptor de Insulina/genética , Receptor de Insulina/metabolismo , Proteínas Quinases S6 Ribossômicas 70-kDa/antagonistas & inibidores , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/metabolismo , Tapsigargina/farmacologia , Tunicamicina/farmacologia
12.
Biochem Biophys Res Commun ; 443(2): 689-93, 2014 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-24333417

RESUMO

Increased mammalian target of rapamycin complex 1 (mTORC1) activity has been suggested to play important roles in development of insulin resistance in obesity. mTORC1 hyperactivity also increases endoplasmic reticulum (ER) stress, which in turn contributes to development of insulin resistance and glucose intolerance. Increased IRS1 phosphorylation at Ser307 in vitro is correlated with mTORC1- and ER stress-induced insulin resistance. This phosphorylation site correlates strongly with impaired insulin receptor signaling in diabetic mice and humans. In contrast, evidence from knock-in mice suggests that phosphorylation of IRS1 at Ser307 is actually required to maintain insulin sensitivity. To study the involvement of IRS1(Ser307) phosphorylation in mTORC1-mediated glucose intolerance and insulin sensitivity in vivo, we investigated the effects of liver specific TSC1 depletion in IRS1(Ser307Ala) mice and controls. Our results demonstrate that blockade of IRS1(Ser307) phosphorylation in vivo does not prevent mTORC1-mediated glucose intolerance and insulin resistance.


Assuntos
Glicemia/metabolismo , Proteínas Substratos do Receptor de Insulina/metabolismo , Resistência à Insulina/fisiologia , Fígado/metabolismo , Complexos Multiproteicos/metabolismo , Serina/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação , Proteína 1 do Complexo Esclerose Tuberosa
13.
Diabetes ; 62(11): 3887-900, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24159000

RESUMO

Cardiac failure is a major cause of death in patients with type 2 diabetes, but the molecular mechanism that links diabetes to heart failure remains unclear. Insulin resistance is a hallmark of type 2 diabetes, and insulin receptor substrates 1 and 2 (IRS1 and IRS2) are the major insulin-signaling components regulating cellular metabolism and survival. To determine the role of IRS1 and IRS2 in the heart and examine whether hyperinsulinemia causes myocardial insulin resistance and cellular dysfunction via IRS1 and IRS2, we generated heart-specific IRS1 and IRS2 gene double-knockout (H-DKO) mice and liver-specific IRS1 and IRS2 double-knockout (L-DKO) mice. H-DKO mice had reduced ventricular mass; developed cardiac apoptosis, fibrosis, and failure; and showed diminished Akt→forkhead box class O-1 signaling that was accompanied by impaired cardiac metabolic gene expression and reduced ATP content. L-DKO mice had decreased cardiac IRS1 and IRS2 proteins and exhibited features of heart failure, with impaired cardiac energy metabolism gene expression and activation of p38α mitogen-activated protein kinase (p38). Using neonatal rat ventricular cardiomyocytes, we further found that chronic insulin exposure reduced IRS1 and IRS2 proteins and prevented insulin action through activation of p38, revealing a fundamental mechanism of cardiac dysfunction during insulin resistance and type 2 diabetes.


Assuntos
Insuficiência Cardíaca/etiologia , Hiperinsulinismo/fisiopatologia , Proteínas Substratos do Receptor de Insulina/deficiência , Resistência à Insulina/fisiologia , Proteína Quinase 14 Ativada por Mitógeno/fisiologia , Transdução de Sinais/efeitos dos fármacos , Animais , Metabolismo Energético/genética , Insulina/fisiologia , Camundongos , Camundongos Knockout , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos
14.
Sci Signal ; 6(286): ra64, 2013 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-23901139

RESUMO

Phosphatidylcholine transfer protein (PC-TP) is a phospholipid-binding protein that is enriched in liver and that interacts with thioesterase superfamily member 2 (THEM2). Mice lacking either protein exhibit improved hepatic glucose homeostasis and are resistant to diet-induced diabetes. Insulin receptor substrate 2 (IRS2) and mammalian target of rapamycin complex 1 (mTORC1) are key effectors of insulin signaling, which is attenuated in diabetes. We found that PC-TP inhibited IRS2, as evidenced by insulin-independent IRS2 activation after knockdown, genetic ablation, or chemical inhibition of PC-TP. In addition, IRS2 was activated after knockdown of THEM2, providing support for a role for the interaction of PC-TP with THEM2 in suppressing insulin signaling. Additionally, we showed that PC-TP bound to tuberous sclerosis complex 2 (TSC2) and stabilized the components of the TSC1-TSC2 complex, which functions to inhibit mTORC1. Preventing phosphatidylcholine from binding to PC-TP disrupted interactions of PC-TP with THEM2 and TSC2, and disruption of the PC-TP-THEM2 complex was associated with increased activation of both IRS2 and mTORC1. In livers of mice with genetic ablation of PC-TP or that had been treated with a PC-TP inhibitor, steady-state amounts of IRS2 were increased, whereas those of TSC2 were decreased. These findings reveal a phospholipid-dependent mechanism that suppresses insulin signaling downstream of its receptor.


Assuntos
Insulina/metabolismo , Proteínas de Transferência de Fosfolipídeos/metabolismo , Tioléster Hidrolases/metabolismo , Animais , Glucose/metabolismo , Células HEK293 , Homeostase , Humanos , Concentração Inibidora 50 , Fígado/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Camundongos Transgênicos , Complexos Multiproteicos/metabolismo , Fosforilação , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Tioléster Hidrolases/genética , Proteína 2 do Complexo Esclerose Tuberosa , Proteínas Supressoras de Tumor/metabolismo
15.
J Biol Chem ; 288(33): 23807-13, 2013 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-23749991

RESUMO

TrkA is a cell surface transmembrane receptor tyrosine kinase for nerve growth factor (NGF). TrkA has an NPXY motif and kinase regulatory loop similar to insulin receptor (INSR) suggesting that NGF→TrkA signaling might overlap with insulin→INSR signaling. During insulin or NGF stimulation TrkA, insulin receptor substrate-1 (IRS-1), INSR (and presumably other proteins) forms a complex in PC12 cells. In PC12 cells, tyrosine phosphorylation of INSR and IRS-1 is dependent upon the functional TrkA kinase domain. Moreover, expression of TrkA kinase-inactive mutant blocked the activation of Akt and Erk5 in response to insulin or NGF. Based on these data, we propose that TrkA participates in insulin signaling pathway in PC12 cells.


Assuntos
Insulina/metabolismo , Fator de Crescimento Neural/metabolismo , Receptor trkA/metabolismo , Transdução de Sinais , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Ativação Enzimática/efeitos dos fármacos , Glucose/metabolismo , Humanos , Insulina/farmacologia , Proteínas Substratos do Receptor de Insulina/metabolismo , Proteína Quinase 7 Ativada por Mitógeno/metabolismo , Dados de Sequência Molecular , Fator de Crescimento Neural/farmacologia , Células PC12 , Fosforilação/efeitos dos fármacos , Fosfotirosina/metabolismo , Ligação Proteica/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Receptor de Insulina/química , Receptor de Insulina/metabolismo , Receptor trkA/química , Transdução de Sinais/efeitos dos fármacos
16.
J Clin Invest ; 123(4): 1750-62, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23478411

RESUMO

Type 2 diabetes (T2D) has emerged as a major threat to human health in most parts of the world. Therapeutic strategies aimed at improving pancreatic ß cell function are predicted to prove beneficial for the treatment of T2D. In the present study, we demonstrate that drug-mediated, chronic, and selective activation of ß cell G(q) signaling greatly improve ß cell function and glucose homeostasis in mice. These beneficial metabolic effects were accompanied by the enhanced expression of many genes critical for ß cell function, maintenance, and differentiation. By employing a combination of in vivo and in vitro approaches, we identified a novel ß cell pathway through which receptor-activated G(q) leads to the sequential activation of ERK1/2 and IRS2 signaling, thus triggering a series of events that greatly improve ß cell function. Importantly, we found that chronic stimulation of a designer G(q)-coupled receptor selectively expressed in ß cells prevented both streptozotocin-induced diabetes and the metabolic deficits associated with the consumption of a high-fat diet in mice. Since ß cells are endowed with numerous receptors that mediate their cellular effects via activation of G(q)-type G proteins, our findings provide a rational basis for the development of novel antidiabetic drugs targeting this class of receptors.


Assuntos
Clozapina/análogos & derivados , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Hipoglicemiantes/farmacologia , Células Secretoras de Insulina/efeitos dos fármacos , Receptores Acoplados a Proteínas G/agonistas , Animais , Linhagem Celular Tumoral , Proliferação de Células , Clozapina/farmacologia , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Experimental/prevenção & controle , Avaliação Pré-Clínica de Medicamentos , Feminino , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/genética , Expressão Gênica/efeitos dos fármacos , Proteínas Substratos do Receptor de Insulina/genética , Proteínas Substratos do Receptor de Insulina/metabolismo , Proteínas Substratos do Receptor de Insulina/fisiologia , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/fisiologia , Sistema de Sinalização das MAP Quinases , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Terapia de Alvo Molecular , Agonistas Muscarínicos/farmacologia , Engenharia de Proteínas , Receptor Muscarínico M3/agonistas , Receptor Muscarínico M3/fisiologia , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Proteínas Recombinantes/agonistas , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
17.
Environ Health Perspect ; 121(2): 170-80, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23232494

RESUMO

BACKGROUND: An emerging literature suggests that environmental chemicals may play a role in the development of childhood obesity and metabolic disorders, especially when exposure occurs early in life. OBJECTIVE: Here we assess the association between these health outcomes and exposure to maternal smoking during pregnancy as part of a broader effort to develop a research agenda to better understand the role of environmental chemicals as potential risk factors for obesity and metabolic disorders. METHODS: PubMed was searched up to 8 March 2012 for epidemiological and experimental animal studies related to maternal smoking or nicotine exposure during pregnancy and childhood obesity or metabolic disorders at any age. A total of 101 studies-83 in humans and 18 in animals-were identified as the primary literature. DISCUSSION: Current epidemiological data support a positive association between maternal smoking and increased risk of obesity or overweight in offspring. The data strongly suggest a causal relation, although the possibility that the association is attributable to unmeasured residual confounding cannot be completely ruled out. This conclusion is supported by findings from laboratory animals exposed to nicotine during development. The existing literature on human exposures does not support an association between maternal smoking during pregnancy and type 1 diabetes in offspring. Too few human studies have assessed outcomes related to type 2 diabetes or metabolic syndrome to reach conclusions based on patterns of findings. There may be a number of mechanistic pathways important for the development of aberrant metabolic outcomes following perinatal exposure to cigarette smoke, which remain largely unexplored. CONCLUSIONS: From a toxicological perspective, the linkages between maternal smoking during pregnancy and childhood overweight/obesity provide proof-of-concept of how early-life exposure to an environmental toxicant can be a risk factor for childhood obesity.


Assuntos
Poluentes Ambientais/toxicidade , Doenças Metabólicas/complicações , Obesidade/complicações , Fumar , Animais , Criança , Fatores de Confusão Epidemiológicos , Feminino , Humanos , Nicotina/administração & dosagem , Gravidez , Fatores de Risco
18.
Diabetes ; 61(9): 2269-79, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22688333

RESUMO

Insulin is secreted as discrete insulin secretory bursts at ~5-min intervals into the hepatic portal vein, these pulses being attenuated early in the development of type 1 and type 2 diabetes mellitus (T2DM). Intraportal insulin infusions (pulsatile, constant, or reproducing that in T2DM) indicated that the pattern of pulsatile insulin secretion delivered via the portal vein is important for hepatic insulin action and, therefore, presumably for hepatic insulin signaling. To test this, we examined hepatic insulin signaling in rat livers exposed to the same three patterns of portal vein insulin delivery by use of sequential liver biopsies in anesthetized rats. Intraportal delivery of insulin in a constant versus pulsatile pattern led to delayed and impaired activation of hepatic insulin receptor substrate (IRS)-1 and IRS-2 signaling, impaired activation of downstream insulin signaling effector molecules AKT and Foxo1, and decreased expression of glucokinase (Gck). We further established that hepatic Gck expression is decreased in the HIP rat model of T2DM, a defect that correlated with a progressive defect of pulsatile insulin secretion. We conclude that the physiological pulsatile pattern of insulin delivery is important in hepatic insulin signaling and glycemic control. Hepatic insulin resistance in diabetes is likely in part due to impaired pulsatile insulin secretion.


Assuntos
Diabetes Mellitus Tipo 2/fisiopatologia , Insulina/fisiologia , Fígado/fisiologia , Animais , Glicemia/metabolismo , Diabetes Mellitus Experimental , Cães , Fatores de Transcrição Forkhead/metabolismo , Glucoquinase/metabolismo , Insulina/administração & dosagem , Insulina/metabolismo , Proteínas Substratos do Receptor de Insulina/metabolismo , Resistência à Insulina/fisiologia , Secreção de Insulina , Masculino , Proteínas do Tecido Nervoso/metabolismo , Veia Porta , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/fisiologia
19.
Diabetes ; 61(8): 2134-45, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22688336

RESUMO

Diabetic bladder dysfunction (DBD) is common and affects 80% of diabetic patients. However, the molecular mechanisms underlying DBD remain elusive because of a lack of appropriate animal models. We demonstrate DBD in a mouse model that harbors hepatic-specific insulin receptor substrate 1 and 2 deletions (double knockout [DKO]), which develops type 2 diabetes. Bladders of DKO animals exhibited detrusor overactivity at an early stage: increased frequency of nonvoiding contractions during bladder filling, decreased voided volume, and dispersed urine spot patterns. In contrast, older animals with diabetes exhibited detrusor hypoactivity, findings consistent with clinical features of diabetes in humans. The tumor necrosis factor (TNF) superfamily genes were upregulated in DKO bladders. In particular, TNF-α was upregulated in serum and in bladder smooth muscle tissue. TNF-α augmented the contraction of primary cultured bladder smooth muscle cells through upregulating Rho kinase activity and phosphorylating myosin light chain. Systemic treatment of DKO animals with soluble TNF receptor 1 (TNFRI) prevented upregulation of Rho A signaling and reversed the bladder dysfunction, without affecting hyperglycemia. TNFRI combined with the antidiabetic agent, metformin, improved DBD beyond that achieved with metformin alone, suggesting that therapies targeting TNF-α may have utility in reversing the secondary urologic complications of type 2 diabetes.


Assuntos
Diabetes Mellitus Tipo 2/fisiopatologia , Receptores Tipo I de Fatores de Necrose Tumoral/uso terapêutico , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Doenças da Bexiga Urinária/tratamento farmacológico , Bexiga Urinária Hiperativa/tratamento farmacológico , Animais , Modelos Animais de Doenças , Proteínas Substratos do Receptor de Insulina/genética , Metformina/administração & dosagem , Camundongos , Camundongos Knockout , Contração Muscular/efeitos dos fármacos , Contração Muscular/fisiologia , Cadeias Leves de Miosina/metabolismo , Fator de Necrose Tumoral alfa/sangue , Fator de Necrose Tumoral alfa/farmacologia , Regulação para Cima/efeitos dos fármacos , Bexiga Urinária/fisiopatologia , Quinases Associadas a rho/biossíntese
20.
Cell Metab ; 15(5): 703-12, 2012 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-22560222

RESUMO

Irs2-mediated insulin/IGF1 signaling in the CNS modulates energy balance and glucose homeostasis; however, the site for Irs2 function is unknown. The hormone leptin mediates energy balance by acting on leptin receptor (LepR-b)-expressing neurons. To determine whether LepR-b neurons mediate the metabolic actions of Irs2 in the brain, we utilized Lepr(cre) together with Irs2(L/L) to ablate Irs2 expression in LepR-b neurons (Lepr(ΔIrs2)). Lepr(ΔIrs2) mice developed obesity, glucose intolerance, and insulin resistance. Leptin action was not altered in young Lepr(ΔIrs2) mice, although insulin-stimulated FoxO1 nuclear exclusion was reduced in Lepr(ΔIrs2) mice. Indeed, deletion of Foxo1 from LepR-b neurons in Lepr(ΔIrs2) mice normalized energy balance, glucose homeostasis, and arcuate nucleus gene expression. Thus, Irs2 signaling in LepR-b neurons plays a crucial role in metabolic sensing and regulation. While not required for leptin action, Irs2 suppresses FoxO1 signaling in LepR-b neurons to promote energy balance and metabolism.


Assuntos
Fatores de Transcrição Forkhead/metabolismo , Proteínas Substratos do Receptor de Insulina/metabolismo , Leptina/metabolismo , Neurônios/metabolismo , Receptores para Leptina/metabolismo , Animais , Encéfalo/metabolismo , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Metabolismo Energético , Feminino , Proteína Forkhead Box O1 , Fatores de Transcrição Forkhead/deficiência , Fatores de Transcrição Forkhead/genética , Expressão Gênica , Glucose/genética , Glucose/metabolismo , Intolerância à Glucose/genética , Intolerância à Glucose/metabolismo , Homeostase , Insulina/genética , Insulina/metabolismo , Proteínas Substratos do Receptor de Insulina/genética , Resistência à Insulina/genética , Leptina/genética , Masculino , Camundongos , Camundongos Transgênicos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Obesidade/genética , Obesidade/metabolismo , Receptores para Leptina/genética , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA