Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
JCI Insight ; 7(15)2022 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-35797133

RESUMO

Hepatic de novo lipogenesis is influenced by the branched-chain α-keto acid dehydrogenase (BCKDH) kinase (BCKDK). Here, we aimed to determine whether circulating levels of the immediate substrates of BCKDH, the branched-chain α-keto acids (BCKAs), and hepatic BCKDK expression are associated with the presence and severity of nonalcoholic fatty liver disease (NAFLD). Eighty metabolites (3 BCKAs, 14 amino acids, 43 acylcarnitines, 20 ceramides) were quantified in plasma from 288 patients with bariatric surgery with severe obesity and scored liver biopsy samples. Metabolite principal component analysis factors, BCKAs, branched-chain amino acids (BCAAs), and the BCKA/BCAA ratio were tested for associations with steatosis grade and presence of nonalcoholic steatohepatitis (NASH). Of all analytes tested, only the Val-derived BCKA, α-keto-isovalerate, and the BCKA/BCAA ratio were associated with both steatosis grade and NASH. Gene expression analysis in liver samples from 2 independent bariatric surgery cohorts showed that hepatic BCKDK mRNA expression correlates with steatosis, ballooning, and levels of the lipogenic transcription factor SREBP1. Experiments in AML12 hepatocytes showed that SREBP1 inhibition lowered BCKDK mRNA expression. These findings demonstrate that higher plasma levels of BCKA and hepatic expression of BCKDK are features of human NAFLD/NASH and identify SREBP1 as a transcriptional regulator of BCKDK.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Obesidade Mórbida , Aminoácidos de Cadeia Ramificada/metabolismo , Humanos , Cetoácidos , Obesidade Mórbida/complicações , Obesidade Mórbida/cirurgia , RNA Mensageiro
2.
Sci Transl Med ; 14(637): eabh3831, 2022 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-35320000

RESUMO

Inflammation has profound but poorly understood effects on metabolism, especially in the context of obesity and nonalcoholic fatty liver disease (NAFLD). Here, we report that hepatic interferon regulatory factor 3 (IRF3) is a direct transcriptional regulator of glucose homeostasis through induction of Ppp2r1b, a component of serine/threonine phosphatase PP2A, and subsequent suppression of glucose production. Global ablation of IRF3 in mice on a high-fat diet protected against both steatosis and dysglycemia, whereas hepatocyte-specific loss of IRF3 affects only dysglycemia. Integration of the IRF3-dependent transcriptome and cistrome in mouse hepatocytes identifies Ppp2r1b as a direct IRF3 target responsible for mediating its metabolic actions on glucose homeostasis. IRF3-mediated induction of Ppp2r1b amplified PP2A activity, with subsequent dephosphorylation of AMPKα and AKT. Furthermore, suppression of hepatic Irf3 expression with antisense oligonucleotides reversed obesity-induced insulin resistance and restored glucose homeostasis in obese mice. Obese humans with NAFLD displayed enhanced activation of liver IRF3, with reversion after bariatric surgery. Hepatic PPP2R1B expression correlated with HgbA1C and was elevated in obese humans with impaired fasting glucose. We therefore identify the hepatic IRF3-PPP2R1B axis as a causal link between obesity-induced inflammation and dysglycemia and suggest an approach for limiting the metabolic dysfunction accompanying obesity-associated NAFLD.


Assuntos
Resistência à Insulina , Hepatopatia Gordurosa não Alcoólica , Animais , Resistência à Insulina/fisiologia , Fator Regulador 3 de Interferon/genética , Fator Regulador 3 de Interferon/metabolismo , Camundongos , Hepatopatia Gordurosa não Alcoólica/complicações , Hepatopatia Gordurosa não Alcoólica/genética , Obesidade/complicações , Obesidade/metabolismo
3.
Nat Commun ; 12(1): 3377, 2021 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-34099716

RESUMO

Animal models of human diseases are classically fed purified diets that contain casein as the unique protein source. We show that provision of a mixed protein source mirroring that found in the western diet exacerbates diet-induced obesity and insulin resistance by potentiating hepatic mTORC1/S6K1 signaling as compared to casein alone. These effects involve alterations in gut microbiota as shown by fecal microbiota transplantation studies. The detrimental impact of the mixed protein source is also linked with early changes in microbial production of branched-chain fatty acids (BCFA) and elevated plasma and hepatic acylcarnitines, indicative of aberrant mitochondrial fatty acid oxidation. We further show that the BCFA, isobutyric and isovaleric acid, increase glucose production and activate mTORC1/S6K1 in hepatocytes. Our findings demonstrate that alteration of dietary protein source exerts a rapid and robust impact on gut microbiota and BCFA with significant consequences for the development of obesity and insulin resistance.


Assuntos
Proteínas Alimentares/efeitos adversos , Ácidos Graxos/metabolismo , Microbioma Gastrointestinal/fisiologia , Resistência à Insulina , Obesidade/etiologia , Ração Animal/efeitos adversos , Animais , Linhagem Celular Tumoral , Dieta Hiperlipídica/efeitos adversos , Dieta Ocidental/efeitos adversos , Sacarose Alimentar/efeitos adversos , Modelos Animais de Doenças , Transplante de Microbiota Fecal , Vida Livre de Germes , Gluconeogênese , Hepatócitos , Humanos , Fígado/metabolismo , Fígado/patologia , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos , Obesidade/metabolismo , Obesidade/patologia , Ratos , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo , Transdução de Sinais
4.
Cell Rep ; 33(6): 108375, 2020 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-33176135

RESUMO

Glycine levels are inversely associated with branched-chain amino acids (BCAAs) and cardiometabolic disease phenotypes, but biochemical mechanisms that explain these relationships remain uncharted. Metabolites and genes related to BCAA metabolism and nitrogen handling were strongly associated with glycine in correlation analyses. Stable isotope labeling in Zucker fatty rats (ZFRs) shows that glycine acts as a carbon donor for the pyruvate-alanine cycle in a BCAA-regulated manner. Inhibition of the BCAA transaminase (BCAT) enzymes depletes plasma pools of alanine and raises glycine levels. In high-fat-fed ZFRs, dietary glycine supplementation raises urinary acyl-glycine content and lowers circulating triglycerides but also results in accumulation of long-chain acyl-coenzyme As (acyl-CoAs), lower 5' adenosine monophosphate-activated protein kinase (AMPK) phosphorylation in muscle, and no improvement in glucose tolerance. Collectively, these studies frame a mechanism for explaining obesity-related glycine depletion and also provide insight into the impact of glycine supplementation on systemic glucose, lipid, and amino acid metabolism.


Assuntos
Glicina/metabolismo , Fígado/fisiopatologia , Músculo Esquelético/fisiopatologia , Nitrogênio/metabolismo , Obesidade/fisiopatologia , Aminoácidos de Cadeia Ramificada/metabolismo , Animais , Masculino , Ratos , Ratos Zucker
5.
JCI Insight ; 4(18)2019 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-31534056

RESUMO

Age is a well-established risk factor for impaired bone fracture healing. Here, we identify a role for apolipoprotein E (ApoE) in age-associated impairment of bone fracture healing and osteoblast differentiation, and we investigate the mechanism by which ApoE alters these processes. We identified that, in both humans and mice, circulating ApoE levels increase with age. We assessed bone healing in WT and ApoE-/- mice after performing tibial fracture surgery: bone deposition was higher within fracture calluses from ApoE-/- mice. In vitro recombinant ApoE (rApoE) treatment of differentiating osteoblasts decreased cellular differentiation and matrix mineralization. Moreover, this rApoE treatment decreased osteoblast glycolytic activity while increasing lipid uptake and fatty acid oxidation. Using parabiosis models, we determined that circulating ApoE plays a strong inhibitory role in bone repair. Using an adeno-associated virus-based siRNA system, we decreased circulating ApoE levels in 24-month-old mice and demonstrated that, as a result, fracture calluses from these aged mice displayed enhanced bone deposition and mechanical strength. Our results demonstrate that circulating ApoE as an aging factor inhibits bone fracture healing by altering osteoblast metabolism, thereby identifying ApoE as a new therapeutic target for improving bone repair in the elderly.


Assuntos
Envelhecimento/sangue , Apolipoproteínas E/sangue , Apolipoproteínas E/genética , Consolidação da Fratura/fisiologia , Osteoblastos/fisiologia , Fraturas da Tíbia/fisiopatologia , Adulto , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Envelhecimento/fisiologia , Animais , Apolipoproteínas E/antagonistas & inibidores , Calo Ósseo/diagnóstico por imagem , Calo Ósseo/efeitos dos fármacos , Calo Ósseo/fisiopatologia , Calcificação Fisiológica/efeitos dos fármacos , Calcificação Fisiológica/genética , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Células Cultivadas , Estudos de Coortes , Dependovirus/genética , Modelos Animais de Doenças , Feminino , Consolidação da Fratura/efeitos dos fármacos , Vetores Genéticos/administração & dosagem , Vetores Genéticos/genética , Humanos , Camundongos , Camundongos Knockout para ApoE , Pessoa de Meia-Idade , Osteoblastos/efeitos dos fármacos , Cultura Primária de Células , RNA Interferente Pequeno/genética , Proteínas Recombinantes/administração & dosagem , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Fraturas da Tíbia/diagnóstico por imagem , Fraturas da Tíbia/cirurgia , Microtomografia por Raio-X
6.
Cell Metab ; 29(5): 1151-1165.e6, 2019 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-30661928

RESUMO

Tumors display profound changes in cellular metabolism, yet how these changes aid the development and growth of tumors is not fully understood. Here we use a multi-omic approach to examine liver carcinogenesis and regeneration, and find that progressive loss of branched-chain amino acid (BCAA) catabolism promotes tumor development and growth. In human hepatocellular carcinomas and animal models of liver cancer, suppression of BCAA catabolic enzyme expression led to BCAA accumulation in tumors, though this was not observed in regenerating liver tissues. The degree of enzyme suppression strongly correlated with tumor aggressiveness, and was an independent predictor of clinical outcome. Moreover, modulating BCAA accumulation regulated cancer cell proliferation in vitro, and tumor burden and overall survival in vivo. Dietary BCAA intake in humans also correlated with cancer mortality risk. In summary, loss of BCAA catabolism in tumors confers functional advantages, which could be exploited by therapeutic interventions in certain cancers.


Assuntos
Aminoácidos de Cadeia Ramificada/metabolismo , Carcinogênese/metabolismo , Carcinoma Hepatocelular/metabolismo , Progressão da Doença , Regulação para Baixo , Neoplasias Hepáticas/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Idoso , Idoso de 80 Anos ou mais , Aminoácidos de Cadeia Ramificada/administração & dosagem , Aminoácidos de Cadeia Ramificada/farmacologia , Animais , Carcinogênese/efeitos dos fármacos , Carcinoma Hepatocelular/patologia , Proliferação de Células/efeitos dos fármacos , Estudos de Coortes , Modelos Animais de Doenças , Feminino , Células Hep G2 , Humanos , Neoplasias Hepáticas/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Ratos , Ratos Endogâmicos ACI
7.
Nat Med ; 20(6): 664-9, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24813250

RESUMO

We previously demonstrated that low biosynthesis of ω-3 fatty acid-derived proresolution mediators, termed protectins, is associated with an impaired global resolution capacity, inflammation and insulin resistance in obese high-fat diet-fed mice. These findings prompted a more direct study of the therapeutic potential of protectins for the treatment of metabolic disorders. Herein we show that protectin DX (PDX) exerts an unanticipated glucoregulatory activity that is distinct from its anti-inflammatory actions. We found that PDX selectively stimulated the release of the prototypic myokine interleukin-6 (IL-6) from skeletal muscle and thereby initiated a myokine-liver signaling axis, which blunted hepatic glucose production via signal transducer and activator of transcription 3 (STAT3)-mediated transcriptional suppression of the gluconeogenic program. These effects of PDX were abrogated in Il6-null mice. PDX also activated AMP-activated protein kinase (AMPK); however, it did so in an IL-6-independent manner. Notably, we demonstrated that administration of PDX to obese diabetic db/db mice raises skeletal muscle IL-6 levels and substantially improves their insulin sensitivity without any impact on adipose tissue inflammation. Our findings thus support the development of PDX-based selective muscle IL-6 secretagogues as a new class of therapy for the treatment of insulin resistance and type 2 diabetes.


Assuntos
Diabetes Mellitus Tipo 2/tratamento farmacológico , Ácidos Docosa-Hexaenoicos/farmacologia , Resistência à Insulina/fisiologia , Interleucina-6/metabolismo , Fígado/metabolismo , Músculo Esquelético/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Etanol/administração & dosagem , Técnica Clamp de Glucose , Lipídeos/administração & dosagem , Camundongos , Camundongos Endogâmicos C57BL
8.
Metabolism ; 60(8): 1122-30, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21306751

RESUMO

Mounting evidence suggests that the benefits of fish consumption are not limited to the well-appreciated effects of omega-3 fatty acids. We previously demonstrated that cod protein protects against the development of diet-induced insulin resistance. The goal of this study was to determine whether other fish protein sources present similar beneficial effects. Rats were fed a high-fat, high-sucrose diet containing protein from casein or fish proteins from bonito, herring, mackerel, or salmon. After 28 days, oral glucose tolerance tests or hyperinsulinemic-euglycemic clamps were performed; and tissues and plasma were harvested for biochemical analyses. Despite equal energy intake among all groups, the salmon-protein-fed group presented significantly lower weight gain that was associated with reduced fat accrual in epididymal white adipose tissue. Although this reduction in visceral adiposity was not associated with improved glucose tolerance, we found that whole-body insulin sensitivity for glucose metabolism was improved using the very sensitive hyperinsulinemic-euglycemic clamp technique. Importantly, expression of both tumor necrosis factor-α and interleukin-6 was reduced in visceral adipose tissue of all fish-protein-fed groups when compared with the casein-fed control group, suggesting that fish proteins carry anti-inflammatory properties that may protect against obesity-linked metabolic complications. Interestingly, consumption of the salmon protein diet was also found to raise circulating salmon calcitonin levels, which may underlie the reduction of weight gain in these rats. These data suggest that not all fish protein sources exert the same beneficial properties on the metabolic syndrome, although anti-inflammatory actions appear to be common.


Assuntos
Adiposidade/efeitos dos fármacos , Peso Corporal/efeitos dos fármacos , Proteínas de Peixes/metabolismo , Inflamação/metabolismo , Resistência à Insulina/fisiologia , Obesidade/metabolismo , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/metabolismo , Adiposidade/fisiologia , Animais , Peso Corporal/fisiologia , Gorduras na Dieta/metabolismo , Ingestão de Energia/efeitos dos fármacos , Ingestão de Energia/fisiologia , Ácidos Graxos Ômega-3/metabolismo , Proteínas de Peixes/administração & dosagem , Masculino , Ratos , Ratos Wistar , Fator de Necrose Tumoral alfa/metabolismo
9.
Diabetes ; 59(12): 3066-73, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20841610

RESUMO

OBJECTIVE: The catabasis of inflammation is an active process directed by n-3 derived pro-resolving lipid mediators. We aimed to determine whether high-fat (HF) diet-induced n-3 deficiency compromises the resolution capacity of obese mice and thereby contributes to obesity-linked inflammation and insulin resistance. RESEARCH DESIGN AND METHODS: We used transgenic expression of the fat-1 n-3 fatty acid desaturase from C. elegans to endogenously restore n-3 fatty acids in HF-fed mice. After 8 weeks on HF or chow diets, wild-type and fat-1 transgenic mice were subjected to insulin and glucose tolerance tests and a resolution assay was performed. Metabolic tissues were then harvested for biochemical analyses. RESULTS: We report that the n-3 docosanoid resolution mediator protectin D1 is lacking in muscle and adipose tissue of HF-fed wild-type mice. Accordingly, HF-fed wild-type mice have an impaired capacity to resolve an acute inflammatory response and display elevated adipose macrophage accrual and chemokine/cytokine expression. This is associated with insulin resistance and higher activation of iNOS and JNK in muscle and liver. These defects are reversed in HF-fed fat-1 mice, in which the biosynthesis of this important n-3 docosanoid resolution mediator is improved. Importantly, transgenic restoration of n-3 fatty acids prevented obesity-linked inflammation and insulin resistance in HF-fed mice without altering food intake, weight gain, or adiposity. CONCLUSIONS: We conclude that inefficient biosynthesis of n-3 resolution mediators in muscle and adipose tissue contributes to the maintenance of chronic inflammation in obesity and that these novel lipids offer exciting potential for the treatment of insulin resistance and diabetes.


Assuntos
Gorduras na Dieta/farmacologia , Ácidos Graxos Ômega-3/metabolismo , Inflamação/prevenção & controle , Resistência à Insulina/fisiologia , Obesidade/fisiopatologia , Animais , Ácidos Graxos/análise , Ácidos Graxos Ômega-3/uso terapêutico , Lipídeos/química , Masculino , Camundongos , Camundongos Transgênicos , Obesidade/complicações , Obesidade/prevenção & controle , Fator de Necrose Tumoral alfa/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA