Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Eur J Hum Genet ; 27(3): 455-465, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30552425

RESUMO

X-inactivation is a well-established dosage compensation mechanism ensuring that X-chromosomal genes are expressed at comparable levels in males and females. Skewed X-inactivation is often explained by negative selection of one of the alleles. We demonstrate that imbalanced expression of the paternal and maternal X-chromosomes is common in the general population and that the random nature of the X-inactivation mechanism can be sufficient to explain the imbalance. To this end, we analyzed blood-derived RNA and whole-genome sequencing data from 79 female children and their parents from the Genome of the Netherlands project. We calculated the median ratio of the paternal over total counts at all X-chromosomal heterozygous single-nucleotide variants with coverage ≥10. We identified two individuals where the same X-chromosome was inactivated in all cells. Imbalanced expression of the two X-chromosomes (ratios ≤0.35 or ≥0.65) was observed in nearly 50% of the population. The empirically observed skewing is explained by a theoretical model where X-inactivation takes place in an embryonic stage in which eight cells give rise to the hematopoietic compartment. Genes escaping X-inactivation are expressed from both alleles and therefore demonstrate less skewing than inactivated genes. Using this characteristic, we identified three novel escapee genes (SSR4, REPS2, and SEPT6), but did not find support for many previously reported escapee genes in blood. Our collective data suggest that skewed X-inactivation is common in the general population. This may contribute to manifestation of symptoms in carriers of recessive X-linked disorders. We recommend that X-inactivation results should not be used lightly in the interpretation of X-linked variants.


Assuntos
População/genética , Inativação do Cromossomo X , Proteínas de Ligação ao Cálcio/genética , Feminino , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Masculino , Glicoproteínas de Membrana/genética , Países Baixos , Polimorfismo de Nucleotídeo Único , Receptores Citoplasmáticos e Nucleares/genética , Receptores de Peptídeos/genética , Septinas/genética
2.
Ann Rheum Dis ; 75(4): 739-47, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26612340

RESUMO

OBJECTIVES: Systemic lupus erythematosus (SLE) is a serious multisystem autoimmune disease, mediated by disrupted B cell quiescence and typically treated with glucocorticoids. We studied whether B cells in SLE are regulated by the glucocorticoid-induced leucine zipper (GILZ) protein, an endogenous mediator of anti-inflammatory effects of glucocorticoids. METHODS: We conducted a study of GILZ expression in blood mononuclear cells of patients with SLE, performed in vitro analyses of GILZ function in mouse and human B cells, assessed the contributions of GILZ to autoimmunity in mice, and used the nitrophenol coupled to keyhole limpet haemocyanin model of immunisation in mice. RESULTS: Reduced B cell GILZ was observed in patients with SLE and lupus-prone mice, and impaired induction of GILZ in patients with SLE receiving glucocorticoids was associated with increased disease activity. GILZ was downregulated in naïve B cells upon stimulation in vitro and in germinal centre B cells, which contained less enrichment of H3K4me3 at the GILZ promoter compared with naïve and memory B cells. Mice lacking GILZ spontaneously developed lupus-like autoimmunity, and GILZ deficiency resulted in excessive B cell responses to T-dependent stimulation. Accordingly, loss of GILZ in naïve B cells allowed upregulation of multiple genes that promote the germinal centre B cell phenotype, including lupus susceptibility genes and genes involved in cell survival and proliferation. Finally, treatment of human B cells with a cell-permeable GILZ fusion protein potently suppressed their responsiveness to T-dependent stimuli. CONCLUSIONS: Our findings demonstrated that GILZ is a non-redundant regulator of B cell activity, with important potential clinical implications in SLE.


Assuntos
Autoimunidade/imunologia , Linfócitos B/imunologia , Regulação da Expressão Gênica/imunologia , Lúpus Eritematoso Sistêmico/imunologia , Ativação Linfocitária/imunologia , Fatores de Transcrição/imunologia , Adjuvantes Imunológicos/farmacologia , Animais , Subpopulações de Linfócitos B , Regulação da Expressão Gênica/efeitos dos fármacos , Centro Germinativo/citologia , Glucocorticoides/uso terapêutico , Hemocianinas/farmacologia , Histonas , Técnicas In Vitro , Leucócitos Mononucleares , Lúpus Eritematoso Sistêmico/tratamento farmacológico , Masculino , Camundongos , Camundongos Knockout , Nitrofenóis/farmacologia , Regiões Promotoras Genéticas , Reação em Cadeia da Polimerase em Tempo Real , Linfócitos T , Fatores de Transcrição/genética , Regulação para Cima
3.
Proc Natl Acad Sci U S A ; 112(5): 1535-40, 2015 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-25605927

RESUMO

Inflammation is critical for host defense, but without appropriate control, it can cause chronic disease or even provoke fatal responses. Here we identify a mechanism that limits the inflammatory response. Probing the responses of macrophages to the key sensory Toll-like receptors, we identify that the Broad-complex, Tramtrack and Bric-a-brac/poxvirus and zinc finger (BTB/POZ), transcriptional regulator promyelocytic leukemia zinc finger (PLZF) limits the expression of inflammatory gene products. In accord with this finding, PLZF-deficient animals express higher levels of potent inflammatory cytokines and mount exaggerated inflammatory responses to infectious stimuli. Temporal quantitation of inflammatory gene transcripts shows increased gene induction in the absence of PLZF. Genome-wide analysis of histone modifications distinguish that PLZF establishes basal activity states of early response genes to maintain immune homeostasis and limit damaging inflammation. We show that PLZF stabilizes a corepressor complex that encompasses histone deacetylase activity to control chromatin. Together with our previous demonstration that PLZF promotes the antiviral response, these results suggest a strategy that could realize one of the major goals of immune therapy to retain immune resistance to pathogens while curbing damaging inflammation.


Assuntos
Cromatina/metabolismo , Inflamação/metabolismo , Fatores de Transcrição Kruppel-Like/metabolismo , Transdução de Sinais , Animais , Infecções Bacterianas/metabolismo , Imunoprecipitação da Cromatina , Transferência Ressonante de Energia de Fluorescência , Histona Desacetilases/metabolismo , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteína com Dedos de Zinco da Leucemia Promielocítica , Reação em Cadeia da Polimerase em Tempo Real
4.
PLoS One ; 9(6): e98330, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24887064

RESUMO

BACKGROUND: Originating from Primordial Germ Cells/gonocytes and developing via a precursor lesion called Carcinoma In Situ (CIS), Germ Cell Cancers (GCC) are the most common cancer in young men, subdivided in seminoma (SE) and non-seminoma (NS). During physiological germ cell formation/maturation, epigenetic processes guard homeostasis by regulating the accessibility of the DNA to facilitate transcription. Epigenetic deregulation through genetic and environmental parameters (i.e. genvironment) could disrupt embryonic germ cell development, resulting in delayed or blocked maturation. This potentially facilitates the formation of CIS and progression to invasive GCC. Therefore, determining the epigenetic and functional genomic landscape in GCC cell lines could provide insight into the pathophysiology and etiology of GCC and provide guidance for targeted functional experiments. RESULTS: This study aims at identifying epigenetic footprints in SE and EC cell lines in genome-wide profiles by studying the interaction between gene expression, DNA CpG methylation and histone modifications, and their function in the pathophysiology and etiology of GCC. Two well characterized GCC-derived cell lines were compared, one representative for SE (TCam-2) and the other for EC (NCCIT). Data were acquired using the Illumina HumanHT-12-v4 (gene expression) and HumanMethylation450 BeadChip (methylation) microarrays as well as ChIP-sequencing (activating histone modifications (H3K4me3, H3K27ac)). Results indicate known germ cell markers not only to be differentiating between SE and NS at the expression level, but also in the epigenetic landscape. CONCLUSION: The overall similarity between TCam-2/NCCIT support an erased embryonic germ cell arrested in early gonadal development as common cell of origin although the exact developmental stage from which the tumor cells are derived might differ. Indeed, subtle difference in the (integrated) epigenetic and expression profiles indicate TCam-2 to exhibit a more germ cell-like profile, whereas NCCIT shows a more pluripotent phenotype. The results provide insight into the functional genome in GCC cell lines.


Assuntos
Carcinoma Embrionário/genética , Epigênese Genética , Perfilação da Expressão Gênica , Neoplasias Embrionárias de Células Germinativas/genética , Seminoma/genética , Carcinoma Embrionário/patologia , Linhagem Celular Tumoral , Metilação de DNA , Humanos , Neoplasias Embrionárias de Células Germinativas/patologia , Seminoma/patologia
5.
Acta Neuropathol Commun ; 2: 1, 2014 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-24383468

RESUMO

BACKGROUND: Mitochondrial DNA (mtDNA) encodes key proteins of the electron transfer chain (ETC), which produces ATP through oxidative phosphorylation (OXPHOS) and is essential for cells to perform specialised functions. Tumor-initiating cells use aerobic glycolysis, a combination of glycolysis and low levels of OXPHOS, to promote rapid cell proliferation and tumor growth. Glioblastoma multiforme (GBM) is an aggressively malignant brain tumor and mitochondria have been proposed to play a vital role in GBM tumorigenesis. RESULTS: Using next generation sequencing and high resolution melt analysis, we identified a large number of mtDNA variants within coding and non-coding regions of GBM cell lines and predicted their disease-causing potential through in silico modeling. The frequency of variants was greatest in the D-loop and origin of light strand replication in non-coding regions. ND6 was the most susceptible coding gene to mutation whilst ND4 had the highest frequency of mutation. Both genes encode subunits of complex I of the ETC. These variants were not detected in unaffected brain samples and many have not been previously reported. Depletion of HSR-GBM1 cells to varying degrees of their mtDNA followed by transplantation into immunedeficient mice resulted in the repopulation of the same variants during tumorigenesis. Likewise, de novo variants identified in other GBM cell lines were also incorporated. Nevertheless, ND4 and ND6 were still the most affected genes. We confirmed the presence of these variants in high grade gliomas. CONCLUSIONS: These novel variants contribute to GBM by rendering the ETC. partially dysfunctional. This restricts metabolism to anaerobic glycolysis and promotes cell proliferation.


Assuntos
Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , DNA Mitocondrial/genética , Variação Genética/genética , Glioblastoma/genética , Glioblastoma/patologia , Animais , Antimetabólitos/farmacologia , Encéfalo , Linhagem Celular Tumoral , Transformação Celular Neoplásica , DNA Mitocondrial/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/fisiologia , Glicólise/efeitos dos fármacos , Xenoenxertos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Camundongos , ATPases Mitocondriais Próton-Translocadoras/genética , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Modelos Moleculares , Células-Tronco Neurais/metabolismo , Fosforilação Oxidativa/efeitos dos fármacos , Zalcitabina/farmacologia
6.
J Pediatr Surg ; 48(12): 2393-400, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24314177

RESUMO

BACKGROUND/PURPOSE: Bladder exstrophy-epispadias complex (BEEC) is thought to have a genetic component in its pathogenesis. Previously we found that p63(-/-) mice show increased ventral apoptosis and develop a BEEC phenotype. Down-regulation of the anti-apoptotic ΔNP63 and an up-regulation of pro-apoptotic TAP63 isoforms have been demonstrated in BEEC patient bladder tissues. We have previously shown that insertion/deletion polymorphisms of the ΔNp63 promoter are associated with an increased risk of BEEC. In this study, we specifically examined the TAP63 promoter to see if any sequence changes might lead to up-regulation of TAP63 and exaggerated apoptosis in BEEC patients. METHODS: i) Bioinformatic analysis of the TAP63 promoter was performed to identify putative regulatory regions. ii) High-resolution Melt and Sanger sequencing was used to screen targeted regions in 112 BEEC patient DNA samples for potential sequence variants. iii) Sequence variation was analysed for significance against normal population frequency data. RESULTS: i) We identified multiple epigenetic markers of transcriptional regulation within highly conserved areas of the TAP63 promoter sequence. ii) Of the 112 buccal swab DNA samples, adequate and successful screening ranged between 48 and 67 for each region. iii) No novel sequence variation or mutation was uncovered. iv) Two known SNPs were identified. However, allele frequency analysis was not statistically significant. CONCLUSION: Our data do not associate genetic variation within the TAP63 promoter region with an increased risk of BEEC. Our data so far suggests that only ΔNP63 promoter aberration is involved in BEEC pathogenesis.


Assuntos
Anormalidades Múltiplas/genética , Extrofia Vesical/genética , Epispadia/genética , Mutação , Polimorfismo de Nucleotídeo Único , Regiões Promotoras Genéticas , Fatores de Transcrição/genética , Proteínas Supressoras de Tumor/genética , Apoptose/genética , Estudos de Coortes , Biologia Computacional , Marcadores Genéticos , Humanos , Fenótipo , Análise de Sequência de DNA , Regulação para Cima
7.
Int J Dev Biol ; 57(2-4): 299-308, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23784841

RESUMO

Embryonic development is strictly controlled by functionality of genes in which the existing networks can act both on transcription and translation regulation. Germ cell cancers (GCC) are unique because of a number of characteristics. In spite of their clinical presentation, i.e., predominantly after puberty, they arise from primordial germ cells/gonocytes that have failed appropriate maturation to either pre-spermatogonia or oogonia. GCC mimic embryonal development to a certain extent, including capacity for totipotency. This knowledge has allowed the identification of informative diagnostic markers, including OCT3/4 (POU5F1), SOX2 and SOX17. An additional marker is the overall demethylated status of the genome. Genetic mutations in GCC are rare, which is exceptional for solid cancers. Our hypothesis is that a disturbed epigenetic regulation (through combined interaction of genetic or environmental parameters; referred to as genvironment) affect embryonic germ cell development, resulting in delayed or blocked maturation, and potentially progression to GCC. In this respect, studies of patients with Disorders of Sex Development (DSD) have increased our knowledge significantly. Genvironmental influences can lead to retention of existence of embryonic germ cells, the first step in the pathogenesis of GCC, resulting into the precursor lesions gonadoblastoma or carcinoma in situ. Identification of epigenetic alterations could lead to better understanding these processes and development of specific markers for early detection, eventually leading to development of targeted treatment. This review describes an interactive model related to the role of epigenetics in GCC pathogenesis, focusing on DNA methylation, histone modifications, epigenetic memory and inheritance, as well as environmental factors.


Assuntos
Epigênese Genética/genética , Neoplasias Embrionárias de Células Germinativas/etiologia , Humanos , Masculino
8.
J Immunol ; 191(1): 424-33, 2013 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-23729444

RESUMO

Glucocorticoid-induced leucine zipper (GILZ) is an anti-inflammatory protein first identified in T lymphocytes. We recently observed that GILZ is highly expressed in synovial endothelial cells in rheumatoid arthritis. However, the function of GILZ in endothelial cells is unknown. To investigate the actions of GILZ in this cell type, we induced GILZ expression in HUVECs via transient transfection. GILZ overexpression significantly reduced the capacity of TNF-stimulated HUVECs to support leukocyte rolling, adhesion, and transmigration. These effects were associated with decreased expression of E-selectin, ICAM-1, CCL2, CXCL8, and IL-6. Experiments in a human microvascular endothelial cell line demonstrated that TNF-inducible NF-κB activity was significantly inhibited by overexpression of GILZ. Exogenous GILZ inhibited TNF-induced NF-κB p65 DNA binding, although this occurred in the absence of an effect on p65 nuclear translocation, indicating that the mechanism of action of exogenous GILZ in endothelial cells differs from that reported in other cell types. GILZ overexpression also inhibited TNF-induced activation of p38, ERK, and JNK MAPKs, as well as increased expression of the MAPK inhibitory phosphatase, MKP-1. In contrast, silencing endogenous GILZ in glucocorticoid-treated HUVECs did not alter their capacity to support leukocyte interactions. These data demonstrate that exogenous GILZ exerts inhibitory effects on endothelial cell adhesive function via a novel pathway involving modulation of NF-κB p65 DNA binding and MAPK activity. Induction of GILZ expression in endothelial cells may represent a novel therapeutic modality with the potential to inhibit inflammatory leukocyte recruitment.


Assuntos
Endotélio Vascular/imunologia , Endotélio Vascular/metabolismo , Sistema de Sinalização das MAP Quinases/imunologia , Fator de Transcrição RelA/metabolismo , Fatores de Transcrição/genética , Migração Transendotelial e Transepitelial/imunologia , Adesão Celular/genética , Adesão Celular/imunologia , Comunicação Celular/imunologia , Linhagem Celular , Inibição de Migração Celular/genética , Inibição de Migração Celular/imunologia , Endotélio Vascular/fisiologia , Células Endoteliais da Veia Umbilical Humana , Humanos , Leucócitos/imunologia , Leucócitos/metabolismo , Sistema de Sinalização das MAP Quinases/genética , Microcirculação/genética , Microcirculação/imunologia , Cultura Primária de Células , Distribuição Aleatória , Fatores de Transcrição/biossíntese , Fatores de Transcrição/fisiologia , Migração Transendotelial e Transepitelial/genética
9.
BMC Med Genet ; 13: 108, 2012 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-23157850

RESUMO

BACKGROUND: The presence of the Y-chromosome or Y chromosome-derived material is seen in 4-60% of Turner syndrome patients (Chromosomal Disorders of Sex Development (DSD)). DSD patients with specific Y-chromosomal material in their karyotype, the GonadoBlastoma on the Y-chromosome (GBY) region, have an increased risk of developing type II germ cell tumors/cancer (GCC), most likely related to TSPY. The Sex determining Region on the Y gene (SRY) is located on the short arm of the Y-chromosome and is the crucial switch that initiates testis determination and subsequent male development. Mutations in this gene are responsible for sex reversal in approximately 10-15% of 46,XY pure gonadal dysgenesis (46,XY DSD) cases. The majority of the mutations described are located in the central HMG domain, which is involved in the binding and bending of the DNA and harbors two nuclear localization signals. SRY mutations have also been found in a small number of patients with a 45,X/46,XY karyotype and might play a role in the maldevelopment of the gonads. METHODS: To thoroughly investigate the presence of possible SRY gene mutations in mosaic DSD patients, we performed next generation (deep) sequencing on the genomic DNA of fourteen independent patients (twelve 45,X/46,XY, one 45,X/46,XX/46,XY, and one 46,XX/46,XY). RESULTS AND CONCLUSIONS: The results demonstrate that aberrations in SRY are rare in mosaic DSD patients and therefore do not play a significant role in the etiology of the disease.


Assuntos
Cromossomos Humanos Y/genética , Proteína da Região Y Determinante do Sexo/genética , Testículo/anormalidades , Síndrome de Turner/genética , Adolescente , Criança , Pré-Escolar , Análise Mutacional de DNA/métodos , Feminino , Gonadoblastoma/genética , Humanos , Lactente , Cariótipo , Masculino , Mosaicismo , Análise para Determinação do Sexo , Proteína da Região Y Determinante do Sexo/metabolismo , Desenvolvimento Sexual/genética , Fatores de Transcrição/genética
10.
BMC Res Notes ; 5: 569, 2012 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-23068969

RESUMO

BACKGROUND: Testicular Germ Cell Tumours (TGCT) are the most frequently occurring malignancy in males from 15-45 years of age. They are derived from germ cells unable to undergo physiological maturation, although the genetic basis for this is poorly understood. A recent report showed that mutations in the RNase IIIb domain of DICER1, a micro-RNA (miRNA) processing enzyme, are common in non-epithelial ovarian cancers. DICER1 mutations were found in 60% of Sertoli-Leydig cell tumours, clustering in four codons encoding metal-binding sites. Additional analysis of 14 TGCT DNA samples identified one case that also contained a mutation at one of these sites. FINDINGS: A number of previous studies have shown that DICER1 mutations are found in <1% of most cancers. To provide a more accurate estimate of the frequency of such mutations in TGCTs, we have analysed 96 TGCT samples using high resolution melting curve analysis for sequence variants in these four codons. Although we did not detect any mutations in any of these sites, we did identify a novel mutation (c.1725 R>Q) within the RNase IIIb domain in one TGCT sample, which was predicted to disturb DICER1 function. CONCLUSION: Overall our findings suggest a mutation frequency in TGCTs of ~1%. We conclude therefore that hot-spot mutations, frequently seen in Sertoli-Leydig cell tumours, are not common in TGCTs.


Assuntos
RNA Helicases DEAD-box/genética , Mutação , Neoplasias Embrionárias de Células Germinativas/enzimologia , Ribonuclease III/genética , Neoplasias Testiculares/enzimologia , Sequência de Bases , Códon , Primers do DNA , Humanos , Masculino , Neoplasias Embrionárias de Células Germinativas/genética , Neoplasias Testiculares/genética
11.
PLoS One ; 7(7): e40858, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22815844

RESUMO

Patients with Disorders of Sex Development (DSD), especially those with gonadal dysgenesis and hypovirilization are at risk of developing malignant type II germ cell tumors/cancer (GCC) (seminoma/dysgerminoma and nonseminoma), with either carcinoma in situ (CIS) or gonadoblastoma (GB) as precursor lesion. In 10-15% of 46,XY gonadal dysgenesis cases (i.e., Swyer syndrome), SRY mutations, residing in the HMG (High Mobility Group) domain, are found to affect nuclear transport or binding to and bending of DNA. Frasier syndrome (FS) is characterized by gonadal dysgenesis with a high risk for development of GB as well as chronic renal failure in early adulthood, and is known to arise from a splice site mutation in intron 9 of the Wilms' tumor 1 gene (WT1). Mutations in SRY as well as WT1 can lead to diminished expression and function of SRY, resulting in sub-optimal SOX9 expression, Sertoli cell formation and subsequent lack of proper testicular development. Embryonic germ cells residing in this unfavourable micro-environment have an increased risk for malignant transformation. Here a unique case of a phenotypically normal female (age 22 years) is reported, presenting with primary amenorrhoea, later diagnosed as hypergonadotropic hypogonadism on the basis of 46,XY gonadal dygenesis with a novel missense mutation in SRY. Functional in vitro studies showed no convincing protein malfunctioning. Laparoscopic examination revealed streak ovaries and a normal, but small, uterus. Pathological examination demonstrated bilateral GB and dysgerminoma, confirmed by immunohistochemistry. Occurrence of a delayed progressive kidney failure (focal segmental glomerular sclerosis) triggered analysis of WT1, revealing a pathogenic splice-site mutation in intron 9. Analysis of the SRY gene in an additional five FS cases did not reveal any mutations. The case presented shows the importance of multi-gene based diagnosis of DSD patients, allowing early diagnosis and treatment, thus preventing putative development of an invasive cancer.


Assuntos
Disgenesia Gonadal 46 XY/genética , Gonadoblastoma/genética , Mutação de Sentido Incorreto/genética , Neoplasias Ovarianas/genética , Sítios de Splice de RNA/genética , Proteína da Região Y Determinante do Sexo/genética , Proteínas WT1/genética , Sequência de Aminoácidos , Sequência de Bases , Análise Mutacional de DNA , Feminino , Síndrome de Frasier/genética , Disgenesia Gonadal 46 XY/patologia , Gonadoblastoma/patologia , Humanos , Imuno-Histoquímica , Dados de Sequência Molecular , Proteínas WT1/química , Adulto Jovem
12.
Int J Endocrinol ; 2012: 671209, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22315593

RESUMO

Disorders of sex development (DSD) are defined as a congenital condition in which development of chromosomal, gonadal or anatomical sex is atypical. DSD patients with gonadal dysgenesis or hypovirilization, containing part of the Y chromosome (GBY), have an increased risk for malignant type II germ cell tumors (GCTs: seminomas and nonseminomas). DSD may be diagnosed in newborns (e.g., ambiguous genitalia), or later in life, even at or after puberty. Here we describe three independent male patients with a GCT; two were retrospectively recognized as DSD, based on the histological identification of both carcinoma in situ and gonadoblastoma in a single gonad as the cancer precursor. Hypospadias and cryptorchidism in their history are consistent with this conclusion. The power of recognition of these parameters is demonstrated by the third patient, in which the precursor lesion was diagnosed before progression to invasiveness. Early recognition based on these clinical parameters could have prevented development of (metastatic) cancer, to be treated by systemic therapy. All three patients showed a normal male 46,XY karyotype, without obvious genetic rearrangements by high-resolution whole-genome copy number analysis. These cases demonstrate overlap between DSD and the so-called testicular dysgenesis syndrome (TDS), of significant relevance for identification of individuals at increased risk for development of a malignant GCT.

13.
Eur J Hum Genet ; 20(3): 348-51, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22071891

RESUMO

Disorders of sex development (DSD) are congenital conditions where chromosomal, gonad or genital development is atypical. In a significant proportion of 46,XY DSD cases it is not possible to identify a causative mutation, making genetic counseling difficult and potentially hindering optimal treatment. Here, we describe the analysis of a 46,XY DSD patient that presented at birth with ambiguous genitalia. Histological analysis of the surgically removed gonads showed bilateral undifferentiated gonadal tissue and immature testis, both containing malignant germ cells. We screened genomic DNA from this patient for deletions and duplications using an Illumina whole-genome SNP microarray. This analysis revealed a heterozygous deletion within the WWOX gene on chromosome 16, removing exons 6-8. Analysis of parental DNA showed that the deletion was inherited from the mother. cDNA analysis confirmed that the deletion maintained the reading frame, with exon 5 being spliced directly onto exon 9. This deletion is the first description of a germline rearrangement affecting the coding sequence of WWOX in humans. Previously described Wwox knockout mouse models showed gonadal abnormalities, supporting a role for WWOX in human gonad development.


Assuntos
Transtorno 46,XY do Desenvolvimento Sexual/genética , Éxons , Oxirredutases/genética , Deleção de Sequência , Proteínas Supressoras de Tumor/genética , Sequência de Bases , Hibridização Genômica Comparativa , Transtorno 46,XY do Desenvolvimento Sexual/diagnóstico , Humanos , Recém-Nascido , Masculino , Oxidorredutase com Domínios WW
14.
PLoS One ; 6(3): e17793, 2011 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-21408189

RESUMO

Disorders of sex development (DSD), ranging in severity from mild genital abnormalities to complete sex reversal, represent a major concern for patients and their families. DSD are often due to disruption of the genetic programs that regulate gonad development. Although some genes have been identified in these developmental pathways, the causative mutations have not been identified in more than 50% 46,XY DSD cases. We used the Affymetrix Genome-Wide Human SNP Array 6.0 to analyse copy number variation in 23 individuals with unexplained 46,XY DSD due to gonadal dysgenesis (GD). Here we describe three discrete changes in copy number that are the likely cause of the GD. Firstly, we identified a large duplication on the X chromosome that included DAX1 (NR0B1). Secondly, we identified a rearrangement that appears to affect a novel gonad-specific regulatory region in a known testis gene, SOX9. Surprisingly this patient lacked any signs of campomelic dysplasia, suggesting that the deletion affected expression of SOX9 only in the gonad. Functional analysis of potential SRY binding sites within this deleted region identified five putative enhancers, suggesting that sequences additional to the known SRY-binding TES enhancer influence human testis-specific SOX9 expression. Thirdly, we identified a small deletion immediately downstream of GATA4, supporting a role for GATA4 in gonad development in humans. These CNV analyses give new insights into the pathways involved in human gonad development and dysfunction, and suggest that rearrangements of non-coding sequences disturbing gene regulation may account for significant proportion of DSD cases.


Assuntos
Variações do Número de Cópias de DNA/genética , Disgenesia Gonadal 46 XY/genética , Algoritmos , Animais , Proteína Quinase Tipo 1 Dependente de Cálcio-Calmodulina/genética , Proteína Quinase Tipo 1 Dependente de Cálcio-Calmodulina/metabolismo , Aberrações Cromossômicas , Deleção Cromossômica , Cromossomos Humanos Par 17/genética , Cromossomos Humanos Par 8/genética , Feminino , Fator de Transcrição GATA4/genética , Regulação da Expressão Gênica , Rearranjo Gênico/genética , Gônadas/embriologia , Gônadas/metabolismo , Proteínas de Choque Térmico HSP40/genética , Proteínas de Choque Térmico HSP40/metabolismo , Humanos , Masculino , Camundongos , Análise de Sequência com Séries de Oligonucleotídeos , Fatores de Transcrição SOX9/genética
15.
Sci Total Environ ; 408(20): 4826-32, 2010 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-20673965

RESUMO

Effluent discharges at Rodbourne sewage treatment works (STWs) were assessed using chemical and in vitro biological analysis as well as modelling predictions. Results showed that Rodbourne STW discharged less estrone (E1) than expected, but similar 17beta-estradiol (E2) and 17alpha-ethinyl estradiol (EE2) to those predicted by a widely cited effluent prediction model. The Exposure Analysis Modelling System (EXAMS) model was set up using measured effluent concentrations as its starting point to predict estrogen concentrations along a 10 km length of the receiving water of the River Ray. The model adequately simulated estrogen concentrations along the river when compared to July 2007 measured data. The model predicted combined estrogen equivalents in reasonable agreement with estrogenicity as measured by passive sampler (POCIS) extracts using the yeast estrogen screen. Using gauged mean flow values for 2007 the model indicated that the most important determinand for estrogen exposure in the Ray was not season, but proximity to the Rodbourne effluent. Thus, fish in the first 3 km downstream of Rodbourne were typically exposed to two or even three times more estrogens than those living 7-10 km further downstream. The modelling indicated that, assuming the effluent estrogen concentrations measured in February 2008 were typical, throughout the year the whole length of the Ray downstream of Rodbourne would be estrogenic, i.e. exceeding the 1 ng/L E2 equivalent threshold for endocrine disruption.


Assuntos
Monitoramento Ambiental/métodos , Estrogênios/análise , Modelos Químicos , Rios/química , Poluentes Químicos da Água/análise , Bioensaio , Estradiol/análise , Estrona/análise , Etinilestradiol/análise , Previsões , Eliminação de Resíduos Líquidos , Poluição Química da Água/estatística & dados numéricos , Leveduras/genética
16.
Transgenic Res ; 18(6): 987-91, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19504348

RESUMO

The ability to rapidly and unequivocally distinguish heterozygous from homozygous transgenic mice is an integral part of any breeding strategy. Here we describe a quick and simple protocol for determining the zygosity of transgenic mice at multiple loci in a single reaction. This involved the development of a multiplex ligation-dependent probe amplification (MLPA) probe mix to simultaneously measure common transgenic alleles such as Cre recombinase (Cre), neomycin (Neo), beta-galactosidase (LacZ) and enhanced green fluorescent protein (eGFP), as well as loci specific to the X and Y chromosome to allow sexing. Each reaction required as little as 100 ng of genomic DNA isolated from a tail biopsy using a simple procedure. Normalization against autosomal control loci resulted in 100% call accuracy, with no ambiguous results. This probe mix can be easily implemented in any laboratory with access to a PCR machine and a DNA sequencer, and can be rapidly adapted to genotype any additional loci of interest.


Assuntos
Camundongos Transgênicos/genética , Técnicas de Amplificação de Ácido Nucleico/métodos , Animais , Genótipo , Camundongos , Reação em Cadeia da Polimerase , Transgenes
17.
J Am Coll Cardiol ; 49(25): 2430-9, 2007 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-17599607

RESUMO

OBJECTIVES: The goal of this study was to identify the underlying gene defect in a family with inherited myocardial fibrosis. BACKGROUND: A large family with an autosomal dominantly inherited form of myocardial fibrosis with a highly malignant clinical outcome has been investigated. Because myocardial fibrosis preceded the clinical and echocardiographic signs, we consider the disease to be a hereditary form of cardiac fibrosis. METHODS: Twenty-five family members were clinically evaluated, and 5 unaffected and 8 affected family members were included in a genome-wide linkage study. RESULTS: The highest logarithm of the odds (LOD) score (LOD = 2.6) was found in the region of the lamin AC (LMNA) gene. The LMNA mutation analysis, both by denaturing gradient gel electrophoresis and sequencing, failed to show a mutation. Subsequent Southern blotting, complementary deoxyribonucleic acid sequencing, and multiplex ligation-dependent probe amplification analysis, however, revealed a deletion of the start codon-containing exon and an adjacent noncoding exon. In vitro studies demonstrated that the deletion results in the formation of nuclear aggregates of lamin, suggesting that the mutant allele is being transcribed. CONCLUSIONS: This novel LMNA deletion causes a distinct, highly malignant cardiomyopathy with early-onset primary cardiac fibrosis likely due to an effect of the shortened mutant protein, which secondarily leads to arrhythmias and end-stage cardiac failure.


Assuntos
Fibrose Endomiocárdica/epidemiologia , Fibrose Endomiocárdica/genética , Deleção de Genes , Predisposição Genética para Doença , Lamina Tipo A/genética , Mutação , Adulto , Distribuição por Idade , Biópsia por Agulha , Southern Blotting , Eletrocardiografia , Fibrose Endomiocárdica/patologia , Feminino , Regulação da Expressão Gênica , Humanos , Imuno-Histoquímica , Incidência , Masculino , Pessoa de Meia-Idade , Linhagem , Prognóstico , Medição de Risco , Índice de Gravidade de Doença , Distribuição por Sexo , Taxa de Sobrevida
18.
Eur J Hum Genet ; 13(4): 470-4, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15586175

RESUMO

Multiple osteochondromas (MO) is an autosomal dominant condition, caused by mutations in either the EXT1 or the EXT2 gene. The DNA of a cohort of 35 patients, clinically suspected to be affected with MO, was screened for mutations by a combination of direct sequence analysis and multiplex ligation-dependent probe amplification (MLPA). In this cohort, 26 pathogenic gene alterations were found (74%). With sequence analysis mutations were detected in 22 patients (63%). In total, 10 mutations were detected in the EXT1 and 12 in the EXT2 gene. The number of the splice site mutations detected was larger than expected from the literature. In addition, with the MLPA four deletions of one or more exons were found in this cohort. Two patients, of whom one had a negative family history, showed deletions of exon 1 of the EXT1 gene, which is possibly a deletion hot spot. In patients suspected to be affected by MO, we recommend a quantitative analysis such as MLPA, followed by direct sequence analysis for the screening of the EXT1 and EXT2 genes.


Assuntos
Éxons/genética , Exostose Múltipla Hereditária/genética , Testes Genéticos , Mutação/genética , N-Acetilglucosaminiltransferases/genética , Splicing de RNA/genética , Estudos de Coortes , Humanos , Reação em Cadeia da Polimerase , Análise de Sequência , Deleção de Sequência
19.
Nat Genet ; 36(8): 861-6, 2004 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15247918

RESUMO

There is uncertainty about the true nature of predicted single-nucleotide polymorphisms (SNPs) in segmental duplications (duplicons) and whether these markers genuinely exist at increased density as indicated in public databases. We explored these issues by genotyping 157 predicted SNPs in duplicons and control regions in normal diploid genomes and fully homozygous complete hydatidiform moles. Our data identified many true SNPs in duplicon regions and few paralogous sequence variants. Twenty-eight percent of the polymorphic duplicon sequences we tested involved multisite variation, a new type of polymorphism representing the sum of the signals from many individual duplicon copies that vary in sequence content due to duplication, deletion or gene conversion. Multisite variations can masquerade as normal SNPs when genotyped. Given that duplicons comprise at least 5% of the genome and many are yet to be annotated in the genome draft, effective strategies to identify multisite variation must be established and deployed.


Assuntos
Polimorfismo de Nucleotídeo Único , Sequências Repetitivas de Ácido Nucleico , Evolução Molecular , Feminino , Dosagem de Genes , Marcadores Genéticos , Variação Genética , Genoma Humano , Genótipo , Humanos , Mola Hidatiforme/genética , Gravidez
20.
Hum Mutat ; 24(1): 86-92, 2004 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15221792

RESUMO

Genomic deletions and duplications play an important role in the etiology of human disease. Versatile tests are required to detect these rearrangements, both in research and diagnostic settings. Multiplex ligation-dependent probe amplification (MLPA) is such a technique, allowing the rapid and precise quantification of up to 40 sequences within a nucleic acid sample using a one-tube assay. Current MLPA probe design, however, involves time-consuming and costly steps for probe generation. To bypass these limitations we set out to use chemically synthesized oligonucleotide probes only. The inherent limitations of this approach are related to oligonucleotide length, and thus the number of probes that can be combined in one assay is also limited. This problem was tackled by designing a two-color assay, combining two sets of probes, each amplified by primers labeled with a different fluorophore. In this way we successfully combined 28 probes in a single reaction. The assay designed was used to screen for the presence of deletions and duplications in patients with hereditary multiple exostoses (HME). Screening 18 patients without detectable point mutations in the EXT1 and EXT2 genes revealed five cases with deletions of one or more exons: four in EXT1 and one in EXT2. Our results show that a two-color MLPA assay using only synthetic oligonucleotides provides an attractive alternative for probe design. The approach is especially suited for cases in which the number of patients to be tested is limited, making it financially unattractive to invest in cloning.


Assuntos
Aberrações Cromossômicas/classificação , Sondas de DNA/genética , Exostose Múltipla Hereditária/genética , Reação em Cadeia da Ligase/métodos , Técnicas de Amplificação de Ácido Nucleico/métodos , Deleção Cromossômica , Cor , Éxons/genética , Humanos , N-Acetilglucosaminiltransferases/genética , Mutação Puntual/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA