Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Chemistry ; 21(42): 15029-38, 2015 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-26311073

RESUMO

Herein, we report the formation of a highly reactive nickel-oxygen species that has been trapped following reaction of a Ni(II) precursor bearing a macrocyclic bis(amidate) ligand with meta-chloroperbenzoic acid (HmCPBA). This compound is only detectable at temperatures below 250 K and is much more reactive toward organic substrates (i.e., C-H bonds, C=C bonds, and sulfides) than previously reported well-defined nickel-oxygen species. Remarkably, this species is formed by heterolytic O-O bond cleavage of a Ni-HmCPBA precursor, which is concluded from experimental and computational data. On the basis of spectroscopy and DFT calculations, this reactive species is proposed to be a Ni(III) -oxyl compound.

2.
ChemSusChem ; 8(6): 1034-42, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25688870

RESUMO

The atom-efficient reaction of CO2 with a variety of epoxides has been efficiently achieved employing iron pyridylamino-bis(phenolate) complexes as bifunctional catalysts. The addition of a Lewis base co-catalyst allowed significant reduction in the amount of iron complex needed to achieve high epoxide conversions. The possibility of controlling the selectivity of the reaction towards either cyclic carbonate or polycarbonate was evaluated. An efficient switch in selectivity could be achieved when cyclic epoxides such as cyclohexene oxide and the seldom explored 1,2-epoxy-4-vinylcyclohexane were used as substrates. The obtained poly(vinylcyclohexene carbonate) presents pending vinyl groups, which allowed post-synthetic cross-linking by reaction with 1,3-propanedithiol. The cross-linked polycarbonate displayed a substantial increase in the glass transition temperature and chemical resistance, thus opening new opportunities for the application of these green polymers.


Assuntos
Dióxido de Carbono/química , Carbonatos/química , Compostos Férricos/química , Cimento de Policarboxilato/química , Catálise , Fenômenos Mecânicos , Temperatura
3.
J Am Chem Soc ; 135(4): 1228-31, 2013 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-23302007

RESUMO

An aluminum complex based on an amino triphenolate ligand scaffold shows unprecedented high activity (initial TOFs up to 36,000 h(-1)), broad substrate scope, and functional group tolerance in the formation of highly functional organic carbonates prepared from epoxides and CO(2). The developed catalytic protocol is further characterized by low catalyst loadings and relative mild reaction conditions using a cheap, abundant, and nontoxic metal.


Assuntos
Alumínio/química , Carbonatos/síntese química , Compostos Organometálicos/química , Carbonatos/química , Catálise , Modelos Moleculares , Estrutura Molecular
4.
Inorg Chem ; 51(20): 10639-49, 2012 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-23005255

RESUMO

Iron(III) amino triphenolate complexes with different substituents in the ortho-position of the phenolate moiety (R = H, Me, tBu, or Ph) have been synthesized by the reaction of iron(III) chloride and the sodium salt (Na(3)L(R)) of the requisite ligand. The complexes have been shown to be of either monomeric ([FeL(R)(THF)]) or dimeric ([FeL(R)](2)) nature by a combination of X-ray diffraction, (1)H NMR, solution magnetic susceptibility, and cyclic voltammetry studies. These analytical studies have shown that the monomeric and dimeric [FeL(R)] complexes behave distinctively, and that the dimer stability is a function of the ortho-positioned groups. Both the dimeric as well as monomeric complexes were tested as catalysts for the catalytic cycloaddition of carbon dioxide to oxiranes, and the data show that the monomeric complexes are able to mediate this conversion with significantly higher activities than the dimeric complexes. This difference in reactivity is controlled by the substitution pattern on the ligand L(R), and is in line with the catalytic requisite of binding of the epoxide substrate by the iron(III) center.


Assuntos
Dimerização , Ferro/química , Compostos Organometálicos/química , Fenóis/química , Dióxido de Carbono/química , Eletroquímica , Óxido de Etileno/química , Fenômenos Magnéticos , Compostos Organometálicos/síntese química
5.
Inorg Chem ; 49(23): 11106-17, 2010 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-21062026

RESUMO

Tetradentate bis(aminophenolate) ligands H(2)salan(X) and H(2)bapen(X) (where X refers to the para-phenolate substituent = H, Me, F, Cl) react with [Fe{N(SiMe(3))(2)}(2)] to form iron(II) complexes, which in the presence of suitable donor ligands L (L = pyridine or THF) can be isolated as the complexes [Fe(salan(X))(L)(2)] and [Fe(bapen(X))(L)(2)]. In the absence of donor ligands, either mononuclear complexes, for example, [Fe(salan(tBu,tBu))], or dinuclear complexes of the type [Fe(salan(X))](2) are obtained. The dynamic coordination behavior in solution of the complexes [Fe(salan(F))(L)(2)] and [Fe(bapen(F))(L)(2)] has been investigated by VT (1)H and (19)F NMR spectroscopy, which has revealed equilibria between isomers with different ligand coordination topologies cis-α, cis-ß and trans. Exposure of the iron(II) salan(X) complexes to O(2) results in the formation of oxo-bridged iron(III) complexes of the type [{Fe(salan(X))}(2)(µ-O)] or [{Fe(salan(X))(L)}(2)(µ-O)]. The lack of catalytic activity of the iron(II) salan and bapen complexes in the oxidation of cyclohexane with H(2)O(2) as the oxidant is attributed to the rapid formation of stable and catalytically inactive oxo-bridged iron(III) complexes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA