Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nanomedicine ; 44: 102567, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35595015

RESUMO

Myocardial infarction remains the leading cause of death in the western world. Since the heart has limited regenerative capabilities, several cardiac tissue engineering (CTE) strategies have been proposed to repair the damaged myocardium. A novel electrospun construct with aligned and electroconductive fibers combining gelatin, poly(lactic-co-glycolic) acid and polypyrrole that may serve as a cardiac patch is presented. Constructs were characterized for fiber alignment, surface wettability, shrinkage and swelling behavior, porosity, degradation rate, mechanical properties, and electrical properties. Cell-biomaterial interactions were studied using three different types of cells, Neonatal Rat Ventricular Myocytes (NRVM), human lung fibroblasts (MRC-5) and induced pluripotent stem cells (iPSCs). All cell types showed good viability and unique organization on construct surfaces depending on their phenotype. Finally, we assessed the maturation status of NRVMs after 14 days by confocal images and qRT-PCR. Overall evidence supports a proof-of-concept that this novel biomaterial construct could be a good candidate patch for CTE applications.


Assuntos
Polímeros , Engenharia Tecidual , Animais , Materiais Biocompatíveis/metabolismo , Materiais Biocompatíveis/farmacologia , Células Cultivadas , Humanos , Miócitos Cardíacos/metabolismo , Polímeros/metabolismo , Pirróis , Ratos , Engenharia Tecidual/métodos , Alicerces Teciduais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA