Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Cell Proteomics ; 23(2): 100713, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38184013

RESUMO

Optimizing data-independent acquisition methods for proteomics applications often requires balancing spectral resolution and acquisition speed. Here, we describe a real-time full mass range implementation of the phase-constrained spectrum deconvolution method (ΦSDM) for Orbitrap mass spectrometry that increases mass resolving power without increasing scan time. Comparing its performance to the standard enhanced Fourier transformation signal processing revealed that the increased resolving power of ΦSDM is beneficial in areas of high peptide density and comes with a greater ability to resolve low-abundance signals. In a standard 2 h analysis of a 200 ng HeLa digest, this resulted in an increase of 16% in the number of quantified peptides. As the acquisition speed becomes even more important when using fast chromatographic gradients, we further applied ΦSDM methods to a range of shorter gradient lengths (21, 12, and 5 min). While ΦSDM improved identification rates and spectral quality in all tested gradients, it proved particularly advantageous for the 5 min gradient. Here, the number of identified protein groups and peptides increased by >15% in comparison to enhanced Fourier transformation processing. In conclusion, ΦSDM is an alternative signal processing algorithm for processing Orbitrap data that can improve spectral quality and benefit quantitative accuracy in typical proteomics experiments, especially when using short gradients.


Assuntos
Proteoma , Espectrometria de Massas em Tandem , Humanos , Proteoma/metabolismo , Espectrometria de Massas em Tandem/métodos , Peptídeos/análise , Células HeLa , Proteômica/métodos
2.
Nat Methods ; 20(5): 714-722, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37012480

RESUMO

Major aims of single-cell proteomics include increasing the consistency, sensitivity and depth of protein quantification, especially for proteins and modifications of biological interest. Here, to simultaneously advance all these aims, we developed prioritized Single-Cell ProtEomics (pSCoPE). pSCoPE consistently analyzes thousands of prioritized peptides across all single cells (thus increasing data completeness) while maximizing instrument time spent analyzing identifiable peptides, thus increasing proteome depth. These strategies increased the sensitivity, data completeness and proteome coverage over twofold. The gains enabled quantifying protein variation in untreated and lipopolysaccharide-treated primary macrophages. Within each condition, proteins covaried within functional sets, including phagosome maturation and proton transport, similarly across both treatment conditions. This covariation is coupled to phenotypic variability in endocytic activity. pSCoPE also enabled quantifying proteolytic products, suggesting a gradient of cathepsin activities within a treatment condition. pSCoPE is freely available and widely applicable, especially for analyzing proteins of interest without sacrificing proteome coverage. Support for pSCoPE is available at http://scp.slavovlab.net/pSCoPE .


Assuntos
Proteoma , Proteômica , Proteoma/análise , Proteômica/métodos , Espectrometria de Massas , Peptídeos/química , Macrófagos
3.
Mol Cell Proteomics ; 18(5): 982-994, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30755466

RESUMO

Mass spectrometry (MS)-based proteomics is often performed in a shotgun format, in which as many peptide precursors as possible are selected from full or MS1 scans so that their fragment spectra can be recorded in MS2 scans. Although achieving great proteome depths, shotgun proteomics cannot guarantee that each precursor will be fragmented in each run. In contrast, targeted proteomics aims to reproducibly and sensitively record a restricted number of precursor/fragment combinations in each run, based on prescheduled mass-to-charge and retention time windows. Here we set out to unify these two concepts by a global targeting approach in which an arbitrary number of precursors of interest are detected in real-time, followed by standard fragmentation or advanced peptide-specific analyses. We made use of a fast application programming interface to a quadrupole Orbitrap instrument and real-time recalibration in mass, retention time and intensity dimensions to predict precursor identity. MaxQuant.Live is freely available (www.maxquant.live) and has a graphical user interface to specify many predefined data acquisition strategies. Acquisition speed is as fast as with the vendor software and the power of our approach is demonstrated with the acquisition of breakdown curves for hundreds of precursors of interest. We also uncover precursors that are not even visible in MS1 scans, using elution time prediction based on the auto-adjusted retention time alone. Finally, we successfully recognized and targeted more than 25,000 peptides in single LC-MS runs. Global targeting combines the advantages of two classical approaches in MS-based proteomics, whereas greatly expanding the analytical toolbox.


Assuntos
Peptídeos/metabolismo , Software , Algoritmos , Sequência de Aminoácidos , Células HeLa , Humanos , Peptídeos/química , Proteoma/análise , Proteômica , Reprodutibilidade dos Testes
4.
J Chem Phys ; 144(11): 114504, 2016 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-27004884

RESUMO

The infrared (IR) spectra of polypeptides are dominated by the so-called amide bands. Because they originate from the strongly polar and polarizable amide groups (AGs) making up the backbone, their spectral positions sensitively depend on the local electric fields. Aiming at accurate computations of these IR spectra by molecular dynamics (MD) simulations, which derive atomic forces from a hybrid quantum and molecular mechanics (QM/MM) Hamiltonian, here we consider the effects of solvation in bulk liquid water on the amide bands of the AG model compound N-methyl-acetamide (NMA). As QM approach to NMA we choose grid-based density functional theory (DFT). For the surrounding MM water, we develop, largely based on computations, a polarizable molecular mechanics (PMM) model potential called GP6P, which features six Gaussian electrostatic sources (one induced dipole, five static partial charge distributions) and, therefore, avoids spurious distortions of the DFT electron density in hybrid DFT/PMM simulations. Bulk liquid GP6P is shown to have favorable properties at the thermodynamic conditions of the parameterization and beyond. Lennard-Jones (LJ) parameters of the DFT fragment NMA are optimized by comparing radial distribution functions in the surrounding GP6P liquid with reference data obtained from a "first-principles" DFT-MD simulation. Finally, IR spectra of NMA in GP6P water are calculated from extended DFT/PMM-MD trajectories, in which the NMA is treated by three different DFT functionals (BP, BLYP, B3LYP). Method-specific frequency scaling factors are derived from DFT-MD simulations of isolated NMA. The DFT/PMM-MD simulations with GP6P and with the optimized LJ parameters then excellently predict the effects of aqueous solvation and deuteration observed in the IR spectra of NMA. As a result, the methods required to accurately compute such spectra by DFT/PMM-MD also for larger peptides in aqueous solution are now at hand.

5.
J Phys Chem B ; 114(19): 6740-50, 2010 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-20411916

RESUMO

The infrared spectra of polypeptides are dominated by the so-called amide bands. These bands originate from the electrostatically coupled vibrations of the strongly polar amide groups (AGs) making up the polypeptide backbone. Because the AGs are highly polarizable, external electric fields can shift the frequencies of the amide normal modes over wide spectral ranges. The sensitivity to external fields and the strong polarity are the reasons why the shapes of the amide bands can code the structure of the polypeptide backbone. Aiming at a decoding of these band shapes, Schultheis et al. (J. Phys. Chem. B 2008, 112, 12217) have recently suggested a polarizable molecular mechanics (PMM) force field for AGs, which employs field dependent force constants and enables the computation of the amide bands from molecular dynamics simulations. Here we extend and refine this first suggestion of such a PMM force field. The extension rests on the choice of suitable internal coordinates for the AGs and on the inclusion of the complete AG Hessian and of its field dependence. The force field parameters are calculated from density functional theory. The improved quality of the resulting PMM descriptions is demonstrated using very simple examples and an outlook is given.


Assuntos
Amidas/química , Peptídeos/química , Acetamidas/química , Simulação de Dinâmica Molecular , Espectrofotometria Infravermelho , Eletricidade Estática , Vibração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA