Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mov Disord Clin Pract ; 10(3): 382-391, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36949802

RESUMO

Background: Deep brain stimulation (DBS) for Parkinson's disease (PD) is generally contraindicated in persons with dementia but it is frequently performed in people with mild cognitive impairment or normal cognition, and current clinical guidelines are primarily based on these cohorts. Objectives: To determine if moderately cognitive impaired individuals including those with mild dementia could meaningfully benefit from DBS in terms of motor and non-motor outcomes. Methods: In this retrospective case-control study, we identified a cohort of 40 patients with PD who exhibited moderate (two or more standard deviations below normative scores) cognitive impairment (CI) during presurgical workup and compared their 1-year clinical outcomes to a cohort of 40 matched patients with normal cognition (NC). The surgery targeted subthalamus, pallidus or motor thalamus, in a unilateral, bilateral or staged approach. Results: At preoperative baseline, the CI cohort had higher Unified Parkinson's Disease Rating Scale (UPDRS) subscores, but similar levodopa responsiveness compared to the NC cohort. The NC and CI cohorts demonstrated comparable degrees of postoperative improvement in the OFF-medication motor scores, motor fluctuations, and medication reduction. There was no difference in adverse event rates between the two cohorts. Outcomes in the CI cohort did not depend on the target, surgical staging, or impaired cognitive domain. Conclusions: Moderately cognitively impaired patients with PD can experience meaningful motor benefit and medication reduction with DBS.

2.
J Neurosurg ; 134(3): 1072-1082, 2020 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-32114534

RESUMO

OBJECTIVE: Deep brain stimulation (DBS) lead placement is increasingly performed with the patient under general anesthesia by surgeons using intraoperative MRI (iMRI) guidance without microelectrode recording (MER) or macrostimulation. The authors assessed the accuracy of lead placement, safety, and motor outcomes in patients with Parkinson disease (PD) undergoing DBS lead placement into the globus pallidus internus (GPi) using iMRI or MER guidance. METHODS: The authors identified all patients with PD who underwent either MER- or iMRI-guided GPi-DBS lead placement at Emory University between July 2007 and August 2016. Lead placement accuracy and adverse events were determined for all patients. Clinical outcomes were assessed using the Unified Parkinson's Disease Rating Scale (UPDRS) part III motor scores for patients completing 12 months of follow-up. The authors also assessed the levodopa-equivalent daily dose (LEDD) and stimulation parameters. RESULTS: Seventy-seven patients were identified (MER, n = 28; iMRI, n = 49), in whom 131 leads were placed. The stereotactic accuracy of the surgical procedure with respect to the planned lead location was 1.94 ± 0.21 mm (mean ± SEM) (95% CI 1.54-2.34) with frame-based MER and 0.84 ± 0.007 mm (95% CI 0.69-0.98) with iMRI. The rate of serious complications was similar, at 6.9% for MER-guided DBS lead placement and 9.4% for iMRI-guided DBS lead placement (RR 0.71 [95% CI 0.13%-3.9%]; p = 0.695). Fifty-seven patients were included in clinical outcome analyses (MER, n = 16; iMRI, n = 41). Both groups had similar characteristics at baseline, although patients undergoing MER-guided DBS had a lower response on their baseline levodopa challenge (44.8% ± 5.4% [95% CI 33.2%-56.4%] vs 61.6% ± 2.1% [95% CI 57.4%-65.8%]; t = 3.558, p = 0.001). Greater improvement was seen following iMRI-guided lead placement (43.2% ± 3.5% [95% CI 36.2%-50.3%]) versus MER-guided lead placement (25.5% ± 6.7% [95% CI 11.1%-39.8%]; F = 5.835, p = 0.019). When UPDRS III motor scores were assessed only in the contralateral hemibody (per-lead analyses), the improvements remained significantly different (37.1% ± 7.2% [95% CI 22.2%-51.9%] and 50.0% ± 3.5% [95% CI 43.1%-56.9%] for MER- and iMRI-guided DBS lead placement, respectively). Both groups exhibited similar reductions in LEDDs (21.2% and 20.9%, respectively; F = 0.221, p = 0.640). The locations of all active contacts and the 2D radial distance from these to consensus coordinates for GPi-DBS lead placement (x, ±20; y, +2; and z, -4) did not differ statistically by type of surgery. CONCLUSIONS: iMRI-guided GPi-DBS lead placement in PD patients was associated with significant improvement in clinical outcomes, comparable to those observed following MER-guided DBS lead placement. Furthermore, iMRI-guided DBS implantation produced a similar safety profile to that of the MER-guided procedure. As such, iMRI guidance is an alternative to MER guidance for patients undergoing GPi-DBS implantation for PD.


Assuntos
Estimulação Encefálica Profunda/métodos , Globo Pálido , Imageamento por Ressonância Magnética/métodos , Microeletrodos , Doença de Parkinson/terapia , Idoso , Antiparkinsonianos/uso terapêutico , Estimulação Encefálica Profunda/efeitos adversos , Eletrodos Implantados , Feminino , Humanos , Período Intraoperatório , Levodopa/uso terapêutico , Masculino , Pessoa de Meia-Idade , Doença de Parkinson/cirurgia , Complicações Pós-Operatórias/epidemiologia , Estudos Retrospectivos , Núcleo Subtalâmico/cirurgia , Tálamo/cirurgia , Resultado do Tratamento
3.
Prog Neurol Surg ; 33: 13-24, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29332070

RESUMO

Movement disorders are common and functionally disabling neurologic diseases. Studies over the last decades have investigated the pathophysiology of these diseases in considerable detail, leading to significant insights into their generation of motor disability. While genetically and clinically heterogeneous, most of them are accompanied by prominent and characteristic changes in firing rates and patterns in the basal ganglia, thalamus, and cortex. In recent years, researchers have placed increasing emphasis on the importance of oscillatory changes in firing in these structures, and have discovered that brain areas that were previously considered to be remote from the basal ganglia (such as the cerebellum and the pedunculopontine nucleus) are also highly significant in these disorders. The evolving pathophysiologic concepts have important implications for improving our understanding of the biology of these disorders, and for the development of more effective pharmacologic and surgical therapies with fewer side effects than seen with the currently available treatments. In this chapter, the known pathophysiology of three common movement disorders, Parkinson's disease, dystonia, and essential tremor, is reviewed.


Assuntos
Encéfalo/patologia , Encéfalo/fisiopatologia , Distúrbios Distônicos/patologia , Distúrbios Distônicos/fisiopatologia , Tremor Essencial/patologia , Tremor Essencial/fisiopatologia , Doença de Parkinson/patologia , Doença de Parkinson/fisiopatologia , Humanos
4.
ACS Chem Neurosci ; 8(7): 1570-1576, 2017 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-28324647

RESUMO

The use of Designer Receptors Exclusively Activated by Designer Drugs (DREADDs) in neuroscience has rapidly expanded in rodent studies but has lagged behind in nonhuman primate (NHP) experiments, slowing the development of this method for therapeutic use in humans. One reason for the slow adoption of DREADD technology in primates is that the pharmacokinetic properties and bioavailability of clozapine-n-oxide (CNO), the most commonly used ligand for human muscarinic (hM) DREADDs, are not fully described in primates. We report an extensive pharmacokinetic study using subcutaneous (SC) administration of CNO in five adult rhesus monkeys. CNO reached maximal plasma and cerebrospinal fluid (CSF) concentrations within 2 h after injection, with an observed dose-dependent increase in levels following a 3 and 10 mg/kg SC dose. Since CSF concentrations were below values predicted from unbound plasma concentrations, we investigated whether CNO was restricted from the CNS through active transport at the blood-brain barrier. In vitro assessment demonstrated that CNO is a substrate for P-glycoprotein (Pgp; efflux ratio, 20), thus providing a likely mechanism limiting CNO levels in the CNS. Furthermore, CNO is metabolized to the psychoactive compounds clozapine and n-desmethylclozapine in monkeys. The concentrations of clozapine detected in the CSF are sufficient to activate several types of receptor (including the hM-DREADDs). Our results suggest that CNO metabolism and distribution may interfere with reproducibility and interpretation of DREADD-related experiments in NHPs and calls for a re-evaluation of the use of CNO in DREADD-related experiments in NHPs along with the need to test alternative compounds.


Assuntos
Antipsicóticos/farmacocinética , Clozapina/análogos & derivados , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/antagonistas & inibidores , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Antipsicóticos/sangue , Antipsicóticos/líquido cefalorraquidiano , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Permeabilidade Capilar/efeitos dos fármacos , Clozapina/sangue , Clozapina/líquido cefalorraquidiano , Clozapina/farmacocinética , Cães , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Feminino , Humanos , Macaca mulatta , Células Madin Darby de Rim Canino , Masculino , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Transfecção
5.
JAMA Neurol ; 72(11): 1354-60, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26409114

RESUMO

IMPORTANCE: The revival of stereotactic surgery for Parkinson disease (PD) in the 1990s, with pallidotomy and then with high-frequency deep brain stimulation (DBS), has led to a renaissance in functional surgery for movement and other neuropsychiatric disorders. OBJECTIVE: To examine the scientific foundations and rationale for the use of ablation and DBS for treatment of neurologic and psychiatric diseases, using PD as the primary example. EVIDENCE REVIEW: A summary of the large body of relevant literature is presented on anatomy, physiology, pathophysiology, and functional surgery for PD and other basal ganglia disorders. FINDINGS: The signs and symptoms of movement disorders appear to result largely from signature abnormalities in one of several parallel and largely segregated basal ganglia thalamocortical circuits (ie, the motor circuit). The available evidence suggests that the varied movement disorders resulting from dysfunction of this circuit result from propagated disruption of downstream network activity in the thalamus, cortex, and brainstem. Ablation and DBS act to free downstream networks to function more normally. The basal ganglia thalamocortical circuit may play a key role in the expression of disordered movement, and the basal ganglia-brainstem projections may play roles in akinesia and disturbances of gait. Efforts are under way to target circuit dysfunction in brain areas outside of the traditionally implicated basal ganglia thalamocortical system, in particular, the pedunculopontine nucleus, to address gait disorders that respond poorly to levodopa and conventional DBS targets. CONCLUSIONS AND RELEVANCE: Deep brain stimulation is now the treatment of choice for many patients with advanced PD and other movement disorders. The success of DBS and other forms of neuromodulation for neuropsychiatric disorders is the result of the ability to modulate circuit activity in discrete functional domains within the basal ganglia circuitry with highly focused interventions, which spare uninvolved areas that are often disrupted with drugs.


Assuntos
Gânglios da Base/fisiopatologia , Estimulação Encefálica Profunda/métodos , Rede Nervosa/fisiopatologia , Doença de Parkinson/terapia , Humanos , Vias Neurais/fisiopatologia
6.
Neuron ; 52(1): 197-204, 2006 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-17015236

RESUMO

In the 1960s, ablative stereotactic surgery was employed for a variety of movement disorders and psychiatric conditions. Although largely abandoned in the 1970s because of highly effective drugs, such as levodopa for Parkinson's disease (PD), and a reaction against psychosurgery, the field has undergone a virtual renaissance, guided by a better understanding of brain circuitry and the circuit abnormalities underlying movement disorders such as PD and neuropsychiatric conditions, such as obsessive compulsive disorder. High-frequency electrical deep brain stimulation (DBS) of specific targets, introduced in the early 1990s for tremor, has gained widespread acceptance because of its less invasive, reversible, and adjustable features and is now utilized for an increasing number of brain disorders. This review summarizes the rationale behind DBS and the use of this technique for a variety of movement disorders and neuropsychiatric diseases.


Assuntos
Estimulação Encefálica Profunda/métodos , Transtornos Mentais/terapia , Doenças do Sistema Nervoso/terapia , Animais , Encéfalo/patologia , Encéfalo/fisiopatologia , Encéfalo/efeitos da radiação , Estimulação Encefálica Profunda/história , História do Século XX , Humanos , Vias Neurais/patologia , Vias Neurais/fisiopatologia , Vias Neurais/efeitos da radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA