Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
J Control Release ; 368: 566-579, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38438093

RESUMO

Intravenous (IV) iron-carbohydrate complexes are widely used nanoparticles (NPs) to treat iron deficiency anaemia, often associated with medical conditions such as chronic kidney disease, heart failure and various inflammatory conditions. Even though a plethora of physicochemical characterisation data and clinical studies are available for these products, evidence-based correlation between physicochemical properties of iron-carbohydrate complexes and clinical outcome has not fully been elucidated yet. Studies on other metal oxide NPs suggest that early interactions between NPs and blood upon IV injection are key to understanding how differences in physicochemical characteristics of iron-carbohydrate complexes cause variance in clinical outcomes. We therefore investigated the core-ligand structure of two clinically relevant iron-carbohydrate complexes, iron sucrose (IS) and ferric carboxymaltose (FCM), and their interactions with two structurally different human plasma proteins, human serum albumin (HSA) and fibrinogen, using a combination of cryo-scanning transmission electron microscopy (cryo-STEM), x-ray diffraction (XRD), small-angle x-ray scattering (SAXS) and small-angle neutron scattering (SANS). Using this orthogonal approach, we defined the nano-structure, individual building blocks and surface morphology for IS and FCM. Importantly, we revealed significant differences in the surface morphology of the iron-carbohydrate complexes. FCM shows a localised carbohydrate shell around its core, in contrast to IS, which is characterised by a diffuse and dynamic layer of carbohydrate ligand surrounding its core. We hypothesised that such differences in carbohydrate morphology determine the interaction between iron-carbohydrate complexes and proteins and therefore investigated the NPs in the presence of HSA and fibrinogen. Intriguingly, IS showed significant interaction with HSA and fibrinogen, forming NP-protein clusters, while FCM only showed significant interaction with fibrinogen. We postulate that these differences could influence bio-response of the two formulations and their clinical outcome. In conclusion, our study provides orthogonal characterisation of two clinically relevant iron-carbohydrate complexes and first hints at their interaction behaviour with proteins in the human bloodstream, setting a prerequisite towards complete understanding of the correlation between physicochemical properties and clinical outcome.


Assuntos
Anemia Ferropriva , Maltose/análogos & derivados , Nanopartículas Metálicas , Humanos , Ferro/química , Espalhamento a Baixo Ângulo , Ligantes , Difração de Raios X , Compostos Férricos , Óxido de Ferro Sacarado/uso terapêutico , Anemia Ferropriva/tratamento farmacológico , Nanopartículas Metálicas/química , Fibrinogênio
2.
Biomed Pharmacother ; 166: 115404, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37657262

RESUMO

Iron-carbohydrate complexes are widely used to treat iron deficiencies. Macrophages play a crucial role in the uptake and fate of these nanomedicines, however, how complexed iron carbohydrates are taken up and metabolized by macrophages is still not fully understood. Using a (phospho-)proteomics approach, we assessed differences in protein expression and phosphorylation in M2 macrophages triggered by iron sucrose (IS). Our results show that IS alters the expression of multiple receptors, indicative of a complex entry mechanism. Besides, IS induced an increase in intracellular ferritin, the loss of M2 polarization, protective mechanisms against ferroptosis, and an autophagic response. These data indicate that macrophages can use IS as a source of iron for its storage and later release, however, the excess of iron can cause oxidative stress, which can be successfully regulated by the cells. When comparing IS with ferric carboxymaltose (FCM) and iron isomaltoside-1000 (IIM), complexes with a higher carbohydrate ligand stability, we observed that FCM and IIM are metabolized at a slower rate, and trigger M2 polarization loss to a lower extent. These results indicate that the surface characteristics of the iron-carbohydrate complexes may influence the cell responses. Our data show that the application of (phospho-)proteomics can lead to a better understanding of metabolic processes, including the uptake, biodegradation and bioavailability of nanomedicines.


Assuntos
Hematínicos , Proteômica , Humanos , Óxido de Ferro Sacarado , Ferro
3.
Eur J Pharm Sci ; 188: 106521, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37423578

RESUMO

Intravenous iron-carbohydrate nanomedicines are widely used to treat iron deficiency and iron deficiency anemia across a wide breadth of patient populations. These colloidal solutions of nanoparticles are complex drugs which inherently makes physicochemical characterization more challenging than small molecule drugs. There have been advancements in physicochemical characterization techniques such as dynamic light scattering and zeta potential measurement, that have provided a better understanding of the physical structure of these drug products in vitro. However, establishment and validation of complementary and orthogonal approaches are necessary to better understand the 3-dimensional physical structure of the iron-carbohydrate complexes, particularly with regard to their physical state in the context of the nanoparticle interaction with biological components such as whole blood (i.e. the nano-bio interface).


Assuntos
Ferro , Nanopartículas , Humanos , Tamanho da Partícula , Nanomedicina/métodos , Nanopartículas/química , Administração Intravenosa
4.
NanoImpact ; 29: 100452, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36717017

RESUMO

Graphene and its derivatives are attractive materials envisaged to enable a wealth of novel applications in many fields including energy, electronics, composite materials or health. A comprehensive understanding of the potential adverse effects of graphene-related materials (GRM) in humans is a prerequisite to the safe use of these promising materials. Here, we exploited gene expression profiling to identify transcriptional responses and toxicity pathways induced by graphene oxide (GO) and graphene nanoplatelets (GNP) in human macrophages. Primary human monocyte-derived macrophages (MDM) and a human macrophage cell line, i.e. differentiated THP-1 cells, were exposed to 5 or 20 µg/mL GO and GNP for 6 and 24 h to capture early and more persistent acute responses at realistic or slightly overdose concentrations. GO and GNP induced time-, dose- and macrophage type-specific differential expression of a substantial number of genes with some overlap between the two GRM types (up to 384 genes (9.6%) or 447 genes (20.4%) in THP-1 or MDM, respectively) but also a high number of genes exclusively deregulated from each material type. Furthermore, GRM responses on gene expression were highly different from those induced by inflammogenic material crystalline quartz (maximum of 64 (2.3%) or 318 (11.3%) common genes for MDM treated with 20 µg/mL GO and GNP, respectively). Further bioinformatics analysis revealed that GNP predominantly activated genes controlling inflammatory and apoptotic pathways whereas GO showed only limited inflammatory responses. Interestingly, both GRM affected the expression of genes related to antigen processing and presentation and in addition, GO activated pathways of neutrophil activation, degranulation and immunity in MDM. Overall, this study provides an extensive resource of potential toxicity mechanisms for future safety assessment of GRM in more advanced model systems to verify if the observed changes in gene expression in human macrophages could lead to long-term consequences on human health.


Assuntos
Grafite , Nanoestruturas , Humanos , Grafite/química , Nanoestruturas/química , Macrófagos , Perfilação da Expressão Gênica
5.
Nanomaterials (Basel) ; 12(2)2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-35055238

RESUMO

Increased engineered nanomaterial (ENM) production and incorporation in consumer and biomedical products has raised concerns about the potential adverse effects. The DNA damaging capacity is of particular importance since damaged genetic material can lead to carcinogenesis. Consequently, reliable and robust in vitro studies assessing ENM genotoxicity are of great value. We utilized two complementary assays based on different measurement principles: (1) comet assay and (2) FADU (fluorimetric detection of alkaline DNA unwinding) assay. Assessing cell viability ruled out false-positive results due to DNA fragmentation during cell death. Potential structure-activity relationships of 10 ENMs were investigated: three silica nanoparticles (SiO2-NP) with varying degrees of porosity, titanium dioxide (TiO2-NP), polystyrene (PS-NP), zinc oxide (ZnO-NP), gold (Au-NP), graphene oxide (GO) and two multi-walled carbon nanotubes (MWNT). SiO2-NPs, TiO2-NP and GO were neither cytotoxic nor genotoxic to Jurkat E6-I cells. Quantitative interference corrections derived from GO results can make the FADU assay a promising screening tool for a variety of ENMs. MWNT merely induced cytotoxicity, while dose- and time-dependent cytotoxicity of PS-NP was accompanied by DNA fragmentation. Hence, PS-NP served to benchmark threshold levels of cytotoxicity at which DNA fragmentation was expected. Considering all controls revealed the true genotoxicity for Au-NP and ZnO-NP at early time points.

6.
Chimia (Aarau) ; 76(3): 236-241, 2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38069738

RESUMO

Nanomedicine encompasses usage of materials smaller than 100 nm for diagnosis, monitoring and treatment of disease. A frequent application of these materials is in reformulation of active drugs, which were previously approved for clinical use. As illustrated with chemotherapeutics, delivery of a drug within a nanocarrier can represent a clear clinical benefit as it can increase its targeted uptake and reduce the off-target toxicity. Matching nanomedicine treatments with patient-specific biomarkers provides an exciting prospect for moving the filed towards precision medicine. In parallel, a strong potential for personalized treatments comes from employing nanomaterials for the delivery of patient-tailored biologically active molecules. Recent research and clinical data have highlighted mRNA and siRNA molecules, as well as short peptides, as powerful new drug classes that can be designed according to patient profiles and effectively delivered within nanoparticles. Particles used for therapeutic delivery are based on biodegradable and safe materials, frequently lipids and polymers, which can be further functionalized into more complex forms. Currently, there is a strong interest in developing specific nanocarrier formulations which can achieve optimal delivery of active molecules to targeted cells while reducing unwanted side-effects. Here, we discuss recent developments and future perspectives in the nanomedicine field and specifically highlight innovative approaches for the personalized patient treatments.

7.
Bone Joint Res ; 10(3): 218-225, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33739124

RESUMO

AIMS: In orthopaedic and trauma surgery, implant-associated infections are increasingly treated with local application of antibiotics, which allows a high local drug concentration to be reached without eliciting systematic adverse effects. While ceftriaxone is a widely used antibiotic agent that has been shown to be effective against musculoskeletal infections, high local concentrations may harm the surrounding tissue. This study investigates the acute and subacute cytotoxicity of increasing ceftriaxone concentrations as well as their influence on the osteogenic differentiation of human bone progenitor cells. METHODS: Human preosteoblasts were cultured in presence of different concentrations of ceftriaxone for up to 28 days and potential cytotoxic effects, cell death, metabolic activity, cell proliferation, and osteogenic differentiation were studied. RESULTS: Ceftriaxone showed a cytotoxic effect on human bone progenitor cells at 24 h and 48 h at concentrations above 15,000 mg/l. With a longer incubation time of ten days, subtoxic effects could be observed at concentrations above 500 mg/l. Gene and protein expression of collagen, as well as mineralization levels of human bone progenitor cells, showed a continuous decrease with increasing ceftriaxone concentrations by days 14 and 28, respectively. Notably, mineralization was negatively affected already at concentrations above 250 mg/l. CONCLUSION: This study demonstrates a concentration-dependent influence of ceftriaxone on the viability and mineralization potential of primary human bone progenitor cells. While local application of ceftriaxone is highly established in orthopaedic and trauma surgery, a therapeutic threshold of 250 mg/l or lower should diminish the risk of reduced osseointegration of prosthetic implants. Cite this article: Bone Joint Res 2021;10(3):218-225.

8.
Chem Res Toxicol ; 33(10): 2538-2549, 2020 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-32945164

RESUMO

The increased use of engineered nanomaterials (ENM) such as SiO2 and TiO2 in industrial products, especially in food, raises concerns with regard to their effect on human health. In particular, ENM-induced genotoxicity is crucial to investigate, since DNA damage can cause induction or promotion of carcinogenesis. However, current in vitro and in vivo nanogenotoxicological data are highly contradictory, which impedes interpretation and extrapolation. Hence, robust, reliable, and ideally scalable in vitro methods for nanogenotoxicity assessment are of great interest. This work aimed at evaluating the suitability of flow cytometry-based micronuclei scoring for reliable nanogenotoxicological assessment in human intestinal cells. Therefore, we have evaluated the genotoxicity of differently sized SiO2 and TiO2 from different sources (food-relevant, commercially available, and laboratory-synthesized) using the well-established alkaline single cell gel electrophoresis (Comet assay) and the micronucleus (MN) assay employing a flow cytometric readout. Our study demonstrates that physiologically relevant doses of several types of SiO2 and TiO2 did not cause genotoxicity, as assessed by the Comet assay, and the MN flow cytometry assay under the particular experimental conditions described. To improve data reliability, we identified ENM-induced interferences with flow cytometric scoring employing a set of interference controls, which is generally applicable for any nanomaterial and any cell line. In conclusion, flow cytometry-based MN scoring appears to be a promising methodology in nanogenotoxicity testing since data acquisition and analysis are significantly faster, highly scalable in terms of throughput, and less operator-dependent compared to the traditional microscopic evaluation. In particular, ENM-induced false-positive or false-negative results, which have not been addressed sufficiently in the literature, can be detected easily, thus enhancing data reliability.


Assuntos
Citometria de Fluxo , Testes para Micronúcleos , Nanoestruturas/efeitos adversos , Dióxido de Silício/efeitos adversos , Titânio/efeitos adversos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Humanos , Nanoestruturas/química , Dióxido de Silício/química , Titânio/química , Células Tumorais Cultivadas
9.
Nanoscale ; 12(19): 10703-10722, 2020 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-32374300

RESUMO

Due to their mechanical strength, thermal stability and electrical conductivity, graphene-related materials (GRMs) have been extensively explored for various applications. Moreover, GRMs have been studied and applied as fillers in polymer composite manufacturing to enhance the polymer performance. With the foreseen growth in GRM production, occupational and consumer exposure is inevitable, thus raising concerns for potential health risks. Therefore, this study aims (1) to characterize aerosol particles released after mechanical abrasion on GRM-reinforced epoxy composites, (2) to quantify the amounts of protruding and free-standing GRMs in the abraded particles and (3) to assess the potential effects of the pristine GRMs as well as the abraded particles on human macrophages differentiated from the THP-1 cell line in vitro. GRMs used in this study included graphene nanoplatelets (GNPs), graphene oxide (GO), and reduced graphene oxide (rGO). All types of pristine GRMs tested induced a dose-dependent increase in reactive oxygen species formation, but a decrease in cell viability was only detected for large GNPs at high concentrations (20 and 40 µg mL-1). The particle modes measured using a scanning mobility particle sizer (SMPS) were 300-400 nm and using an aerodynamic particle sizer (APS) were between 2-3 µm, indicating the release of respirable particles. A significant fraction (51% to 92%) of the GRMs embedded in the epoxy composites was released in the form of free-standing or protruding GRMs in the abraded particles. The abraded particles did not induce any acute cytotoxic effects.


Assuntos
Grafite , Aerossóis , Sobrevivência Celular , Humanos , Macrófagos
10.
Nanomedicine ; 26: 102178, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32145382

RESUMO

Iron deficiency is an important subclinical disease affecting over one billion people worldwide. A growing body of clinical records supports the use of intravenous iron-carbohydrate complexes for patients where iron replenishment is necessary and oral iron supplements are either ineffective or cannot be tolerated by the gastrointestinal tract. A critical characteristic of iron-carbohydrate drugs is the complexity of their core-shell structure, which has led to differences in the efficacy and safety of various iron formulations. This review describes parameters influencing the safety and effectiveness of iron-carbohydrate complexes during production, storage, handling, and clinical application. We summarized the physicochemical and biological assessments of commercially available iron carbohydrate nanomedicines to provide an overview of publicly available data. Further, we reviewed studies that described how subtle differences in the manufacturing process of iron-carbohydrate complexes can impact on the physicochemical, biological, and clinical outcomes of original product versus their intended copies or so-called iron "similar" products.


Assuntos
Anemia Ferropriva/tratamento farmacológico , Compostos de Ferro/uso terapêutico , Ferro/uso terapêutico , Nanopartículas/uso terapêutico , Administração Intravenosa , Anemia Ferropriva/patologia , Carboidratos/química , Carboidratos/uso terapêutico , Humanos , Ferro/metabolismo , Compostos de Ferro/química , Nanomedicina/tendências , Nanopartículas/química , Tamanho da Partícula
11.
Nanotoxicology ; 14(2): 275-286, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31928272

RESUMO

The major theme of the NRC report "Toxicity Testing in the Twenty-first Century" is to replace animal testing by using alternative in vitro methods. Therefore, it can be expected that in the future in vivo data will be replaced with in vitro data. Hence, there is a need for new strategies to make use of the increasing amount of in vitro data when developing human toxicological effect factors (HEF) to characterize the impact category of human toxicity in life cycle assessment (LCA). Here, we present a new approach for deriving HEF for manufactured nanomaterials (MNMs) based on the combined use of in vitro toxicity data and a relative potency factor (RPF) approach. In vitro toxicity tests with nano-CuO, nano-Ag and nano-ZnO and their corresponding ions were performed on THP-1, CaCo-2 and Hep-G2 cell lines. The ratio of the here calculated EC50 of the ionic form and the nanoform corresponds to the Relative Potency Factor (RPF). Using this approach, HEFs (case/kgintake) for the aforementioned nanoparticles were obtained. Non-carcinogenic HEFs (case/kgintake) for exposure via ingestion of 5.9E-01, 7.5E-03 and 2.5 E-02 were calculated for nano-Ag, nano-CuO and nano-ZnO, respectively. The HEF values here proposed were compared with HEF values extrapolated from in vivo toxicity data reported in the literature. The here presented procedure is the most appropriate approximation currently available for using in vitro toxicity data on MNM for application in the field of LCIA.


Assuntos
Cobre/toxicidade , Manufaturas/toxicidade , Nanopartículas Metálicas/toxicidade , Modelos Teóricos , Prata/toxicidade , Óxido de Zinco/toxicidade , Animais , Células CACO-2 , Sobrevivência Celular/efeitos dos fármacos , Células Hep G2 , Humanos , Íons , Medição de Risco , Células THP-1 , Testes de Toxicidade
12.
Chem Res Toxicol ; 33(2): 283-285, 2020 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-31829006

RESUMO

Damage to DNA is a central mechanism to the initiation of carcinogenesis. As a consequence, precise DNA damage detection is essential for an effective risk assessment of xenobiotics and constitutes a powerful tool for human biomonitoring and early stage cancer risk assessment. Here we highlight four innovative approaches for determining genotoxicity in a reliable and in the future high-throughput manner. In this context, we discuss and evaluate recent improvements to well-established methods and present promising new techniques.


Assuntos
Ensaios de Triagem em Larga Escala , Xenobióticos/toxicidade , Dano ao DNA , Humanos , Testes de Mutagenicidade , Medição de Risco
13.
ACS Appl Mater Interfaces ; 11(50): 46408-46418, 2019 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-31729218

RESUMO

Recent studies suggest that cancer cell death accompanied by organelle dysfunction might be a promising approach for cancer therapy. The Golgi apparatus has a key role in cell function and may initiate signaling pathways to mitigate stress and, if irreparable, start apoptosis. It has been shown that Golgi disassembly and fragmentation under oxidative stress act as indicators for stress-mediated cell death pathways through cell cycle arrest in the G2/M phase. The present study shows that UV-induced reactive oxygen species (ROS) generation by Ag@ZnO nanoparticles (NPs) transform the Golgi structures from compressed perinuclear ribbons into detached vesicle-like structures distributed in the entire cytoplasm of melanoma cells. This study also demonstrates that Ag@ZnO NP-induced Golgi fragmentation cooccurs with G2 block of cell cycle progression, preventing cells from entering the mitosis phase. Additionally, the increased intracellular ROS production triggered by Ag@ZnO NPs upon UV exposure promoted autophagy. Taken together, Ag@ZnO NPs induce stress-related Golgi fragmentation and autophagy, finally leading to melanoma cell apoptosis. Intracellular oxidative stress generated by Ag@ZnO NPs upon UV irradiation may thus represent a targeted approach to induce cancer cell death through organelle destruction in melanoma cells, while fibroblast cells remained largely unaffected.


Assuntos
Proliferação de Células/efeitos dos fármacos , Complexo de Golgi/efeitos dos fármacos , Melanoma/tratamento farmacológico , Estresse Oxidativo/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Apoptose/efeitos da radiação , Autofagia/efeitos dos fármacos , Autofagia/efeitos da radiação , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos da radiação , Linhagem Celular Tumoral , Proliferação de Células/efeitos da radiação , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Complexo de Golgi/genética , Humanos , Melanoma/genética , Melanoma/patologia , Nanopartículas Metálicas/química , Nanopartículas Metálicas/uso terapêutico , Mitose/efeitos dos fármacos , Mitose/efeitos da radiação , Espécies Reativas de Oxigênio/química , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/efeitos da radiação , Prata/química , Prata/farmacologia , Raios Ultravioleta , Óxido de Zinco/química , Óxido de Zinco/farmacologia
14.
Environ Health Perspect ; 127(10): 107004, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31596610

RESUMO

BACKGROUND: Pregnancy is a sensitive condition during which adverse environmental exposures should be monitored thoroughly and minimized whenever possible. In particular, the hormone balance during gestation is delicate, and disturbance may cause acute or chronic long-term health effects. A potential endocrine disruption may be provoked by in utero exposure to xenoestrogens mimicking endogenous estrogens. The mycoestrogen zearalenone (ZEN), a toxic fungal secondary metabolite and mycotoxin found frequently in food and feed, constitutes a prominent example. OBJECTIVES: We performed a comprehensive assessment of the transfer as well as phase I and phase II metabolism of ZEN at the human placental barrier. METHODS: Human placentas were perfused with 1µM (318µg/L) ZEN for 6 h. Samples from the maternal and fetal compartment, placental tissue, and fetal plasma were analyzed by a highly sensitive UHPLC-MS/MS assay to detect ZEN as well as nine key metabolites (α-zearalenol, ß-zearalenol, zearalanone, α-zearalanol, ß-zearalanol, ZEN-14-glucuronide, α-zearalenol-14-glucuronide, ß-zearalenol-14-glucuronide, ZEN-14-sulfate). RESULTS: The model revealed a fast maternofetal transfer of ZEN across the human placental barrier. We also unraveled phase I and phase II metabolism of the parent toxin ZEN into the approximately 70-times more estrogenic α-zearalenol and the less active ZEN-14-sulfate conjugate, which are effectively released into the maternal and fetal circulation in considerable amounts. CONCLUSIONS: Our findings suggest that exposure to ZEN (such as through consumption of ZEN-contaminated cereal-based products) during pregnancy may result in in utero exposure of the fetus, not only to ZEN but also some of its highly estrogenically active metabolites. In the light of the known affinity of ZEN and potentially co-occurring xenoestrogens to the estrogen receptor, and our results demonstrating placental transfer of ZEN and its metabolites in an ex vivo model, we recommend further research and more comprehensive assessment of gestational exposures in women. https://doi.org/10.1289/EHP4860.


Assuntos
Estrogênios/metabolismo , Placenta/metabolismo , Xenobióticos/metabolismo , Zearalenona/metabolismo , Disruptores Endócrinos/metabolismo , Feminino , Humanos , Gravidez , Espectrometria de Massas em Tandem
15.
Artigo em Inglês | MEDLINE | ID: mdl-31552240

RESUMO

Chitosan is a natural polymer revealing an increased potential to be used in different biomedical applications, including drug delivery systems, and tissue engineering. It implies the evaluation of the organism response to the biomaterial implantation. Low-molecular degradation products, the chito-oligomers, are resulting mainly from the influence of enzymes, which are found in the organism fluids. Within this study, we have performed the computational assessment of pharmacological profiles and toxicological effects on human health of small chito-oligomers with distinct molecular weights, deacetylation degrees, and acetylation patterns. Our approach is based on the fact that regulatory agencies and researchers in the drug development field rely on the use of modeling to predict biological effects and to guide decision making. To be considered as valid for regulatory purposes, every model that is used for predictions should be associated with a defined toxicological endpoint and has appropriate robustness and predictivity. Within this context, we have used FAF-Drugs4, SwissADME, and PreADMET tools to predict the oral bioavailability of chito-oligomers and SwissADME, PreADMET, and admetSAR2.0 tools to predict their pharmacokinetic profiles. The organs and genomic toxicities have been assessed using admetSAR2.0 and PreADMET tools but specific computational facilities have been also used for predicting different toxicological endpoints: Pred-Skin for skin sensitization, CarcinoPred-EL for carcinogenicity, Pred-hERG for cardiotoxicity, ENDOCRINE DISRUPTOME for endocrine disruption potential and Toxtree for carcinogenicity and mutagenicity. Our computational assessment showed that investigated chito-oligomers reflect promising pharmacological profiles and limited toxicological effects on humans, regardless of molecular weight, deacetylation degree, and acetylation pattern. According to our results, there is a possible inhibition of the organic anion transporting peptides OATP1B1 and/or OATP1B3, a weak potential of cardiotoxicity, a minor probability of affecting the androgen receptor, and phospholipidosis. Consequently, these results may be used to guide or to complement the existing in vitro and in vivo toxicity tests, to optimize biomaterials properties and to contribute to the selection of prototypes for nanocarriers.

16.
Eur J Pharm Biopharm ; 142: 488-497, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31330257

RESUMO

Titanium dioxide nanoparticles (TiO2 NPs) are widely incorporated in various consumer products such as cosmetics and food. Despite known human exposure, the potential risks of TiO2 NPs during pregnancy are not fully understood, but several studies in mice elucidated toxic effects on fetal development. It has also been shown that modifying NPs with positive or negative surface charge alters cellular uptake and abolishes fetotoxicity of silicon dioxide (SiO2) NPs in mice. Here, we investigated accumulation and translocation of positively charged TiO2-NH2 and negatively charged TiO2-COOH NPs at the placental barrier, to clarify whether surface charge provides a means to control TiO2 NP distribution at the placental barrier. To ensure outcome relevant for humans, the recently developed in vitro human placental co-culture model and the gold standard amongst placental translocation models - the ex vivo perfusion of human term placental tissue - were employed during this study. Sector field-ICP-MS analysis of maternal and fetal supernatants as well as placental cells/tissues revealed a substantial accumulation of both TiO2 NP types while no considerable placental translocation was apparent in both models. Characterization of agglomeration behavior demonstrated a strong and fast agglomeration of TiO2-NH2 and TiO2-COOH NPs in the different culture media. Overall, our results indicate that surface charge is not a key factor to steer placental uptake and transfer of TiO2. Moreover, the negligible placental transfer but high accumulation of TiO2 NPs in placental tissue suggests that potential effects on fetal health may occur indirectly, which calls for further studies elucidating the impact of TiO2 NPs on placental tissue functionality and signaling.


Assuntos
Nanopartículas Metálicas/administração & dosagem , Nanopartículas/metabolismo , Placenta/metabolismo , Titânio/metabolismo , Linhagem Celular Tumoral , Técnicas de Cocultura/métodos , Feminino , Humanos , Gravidez , Dióxido de Silício/metabolismo
17.
Nanoscale ; 10(33): 15723-15735, 2018 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-30094453

RESUMO

Due to their interesting physicochemical properties, gold nanoparticles (Au-NPs) are the focus of increasing attention in the field of biomedicine and are under consideration for use in drug delivery and bioimaging, or as radiosensitizers and nano-based vaccines. Thorough evaluation of the genotoxic potential of Au-NPs is required, since damage to the genome can remain undetected in standard hazard assessments. Available genotoxicity data is either limited or contradictory. Here, we examined the influence of three surface modified 3-4 nm Au-NPs on human A549 cells, according to the reactive oxygen species (ROS) paradigm. After 24 h of Au-NP treatment, nanoparticles were taken up by cells as agglomerates; however, no influence on cell viability or inflammation was detected. No increase in ROS production was observed by H2-DCF assay; however, intracellular glutathione levels reduced over time, indicating oxidative stress. All three types of Au-NPs induced DNA damage, as detected by alkaline comet assay. The strongest genotoxic effect was observed for positively charged Au-NP I. Further analysis of Au-NP I by neutral comet assay, fluorimetric detection of alkaline DNA unwinding assay, and γH2AX staining, revealed that the induced DNA lesions were predominantly alkali-labile sites. As highly controlled repair mechanisms have evolved to remove a wide range of DNA lesions with great efficiency, it is important to focus on both acute cyto- and genotoxicity, alongside post-treatment effects and DNA repair. We demonstrate that Au-NP-induced DNA damage is largely repaired over time, indicating that the observed damage is of transient nature.


Assuntos
Dano ao DNA , Ouro/efeitos adversos , Nanopartículas Metálicas/efeitos adversos , Células A549 , Sobrevivência Celular , Ensaio Cometa , Glutationa/análise , Humanos , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo
18.
Nanotoxicology ; 12(7): 699-711, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29804489

RESUMO

The risks of occupational exposure during handling of multi-walled carbon nanotubes (MWCNTs) have received limited attention to date, in particular for potentially susceptible individuals with highly prevalent chronic obstructive pulmonary disease (COPD). In this in vitro study, we simulated acute inhalation of MWCNTs employing an air-liquid interface cell exposure (ALICE) system: primary human bronchial epithelial cells from COPD patients and healthy donors (controls), cultured at the air-liquid interface (ALI) were exposed to MWCNTs. To study acute health effects on the respiratory epithelium, two different concentrations (0.16; 0.34 µg/cm2) of MWCNTs were aerosolized onto cell cultures followed by analysis after 24 h. Following MWCNT exposure, epithelial integrity and differentiation remained intact. Electron microscopy analyses identified MWCNTs both extra- and intracellular within vesicles of mucus producing cells. In both COPD and healthy control cultures, MWCNTs neither caused increased release of lactate dehydrogenase (LDH), nor alterations in inflammatory responses, as measured by RNA expression and protein secretion of the cytokines IL-6, IL-8, CXCL10, IL-1ß and TGF-ß and oxidative stress markers HMOX-1 and SOD-2. No short-term alteration of epithelial cell function, as determined by ciliary beating frequency (CBF), occurred in any of the conditions tested. In conclusion, the present study provided a reliable and realistic in vitro acute-exposure model of the respiratory tract, responsive to positive controls such as Dörentruper Quartz (DQ12) and asbestos. Acute exposure to MWCNTs did not affect epithelial integrity, nor induce increased cell death, apoptosis or inflammatory changes.


Assuntos
Células Epiteliais/efeitos dos fármacos , Nanotubos de Carbono/toxicidade , Doença Pulmonar Obstrutiva Crônica , Mucosa Respiratória/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Células Cultivadas , Citocinas/metabolismo , Células Epiteliais/imunologia , Células Epiteliais/patologia , Humanos , Nanotubos de Carbono/química , Estresse Oxidativo/efeitos dos fármacos , Cultura Primária de Células , Doença Pulmonar Obstrutiva Crônica/imunologia , Doença Pulmonar Obstrutiva Crônica/patologia , Mucosa Respiratória/imunologia , Mucosa Respiratória/patologia , Propriedades de Superfície
19.
J Nanobiotechnology ; 15(1): 46, 2017 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-28637475

RESUMO

BACKGROUND: Understanding the interaction of graphene-related materials (GRM) with human cells is a key to the assessment of their potential risks for human health. There is a knowledge gap regarding the potential uptake of GRM by human intestinal cells after unintended ingestion. Therefore the aim of our study was to investigate the interaction of label-free graphene oxide (GO) with the intestinal cell line Caco-2 in vitro and to shed light on the influence of the cell phenotype given by the differentiation status on cellular uptake behaviour. RESULTS: Internalisation of two label-free GOs with different lateral size and thickness by undifferentiated and differentiated Caco-2 cells was analysed by scanning electron microscopy and transmission electron microscopy. Semi-quantification of cells associated with GRM was performed by flow cytometry. Undifferentiated Caco-2 cells showed significant amounts of cell-associated GRM, whereas differentiated Caco-2 cells exhibited low adhesion of GO sheets. Transmission electron microscopy analysis revealed internalisation of both applied GO (small and large) by undifferentiated Caco-2 cells. Even large GO sheets with lateral dimensions up to 10 µm, were found internalised by undifferentiated cells, presumably by macropinocytosis. In contrast, no GO uptake could be found for differentiated Caco-2 cells exhibiting an enterocyte-like morphology with apical brush border. CONCLUSIONS: Our results show that the internalisation of GO is highly dependent on the cell differentiation status of human intestinal cells. During differentiation Caco-2 cells undergo intense phenotypic changes which lead to a dramatic decrease in GRM internalisation. The results support the hypothesis that the cell surface topography of differentiated Caco-2 cells given by the brush border leads to low adhesion of GO sheets and sterical hindrance for material uptake. In addition, the mechanical properties of GRM, especially flexibility of the sheets, seem to be an important factor for internalisation of large GO sheets by epithelial cells. Our results highlight the importance of the choice of the in vitro model to enable better in vitro-in vivo translation.


Assuntos
Grafite/metabolismo , Mucosa Intestinal/citologia , Mucosa Intestinal/metabolismo , Óxidos/metabolismo , Células CACO-2 , Diferenciação Celular , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Células Epiteliais/ultraestrutura , Grafite/análise , Humanos , Mucosa Intestinal/ultraestrutura , Microvilosidades/metabolismo , Microvilosidades/ultraestrutura , Nanoestruturas/análise , Nanoestruturas/ultraestrutura , Óxidos/análise
20.
Part Fibre Toxicol ; 14(1): 21, 2017 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-28645296

RESUMO

BACKGROUND: Dendritic cells (DCs) are specialized first-line sensors of foreign materials invading the organism. These sentinel cells rely on pattern recognition receptors such as Nod-like or Toll-like receptors (TLRs) to launch immune reactions against pathogens, but also to mediate tolerance to self-antigens and, in the intestinal milieu, to nutrients and commensals. Since inappropriate DC activation contributes to inflammatory diseases and immunopathologies, a key question in the evaluation of orally ingested nanomaterials is whether their contact with DCs in the intestinal mucosa disrupts this delicate homeostatic balance between pathogen defense and tolerance. Here, we generated steady-state DCs by incubating hematopoietic progenitors with feline McDonough sarcoma-like tyrosine kinase 3 ligand (Flt3L) and used the resulting immature DCs to test potential biological responses against food-grade synthetic amorphous silica (SAS) representing a common nanomaterial generally thought to be safe. RESULTS: Interaction of immature and unprimed DCs with food-grade SAS particles and their internalization by endocytic uptake fails to elicit cytotoxicity and the release of interleukin (IL)-1α or tumor necrosis factor-α, which were identified as master regulators of acute inflammation in lung-related studies. However, the display of maturation markers on the cell surface shows that SAS particles activate completely immature DCs. Also, the endocytic uptake of SAS particles into these steady-state DCs leads to induction of the pro-IL-1ß precursor, subsequently cleaved by the inflammasome to secrete mature IL-1ß. In contrast, neither pro-IL-1ß induction nor mature IL-1ß secretion occurs upon internalization of TiO2 or FePO4 nanoparticles. The pro-IL-1ß induction is suppressed by pharmacologic inhibitors of endosomal TLR activation or by genetic ablation of MyD88, a downstream adapter of TLR pathways, indicating that endosomal pattern recognition is responsible for the observed cytokine response to food-grade SAS particles. CONCLUSIONS: Our results unexpectedly show that food-grade SAS particles are able to directly initiate the endosomal MyD88-dependent pathogen pattern recognition and signaling pathway in steady-state DCs. The ensuing activation of immature DCs with de novo induction of pro-IL-1ß implies that the currently massive use of SAS particles as food additive should be reconsidered.


Assuntos
Células Dendríticas/efeitos dos fármacos , Aditivos Alimentares/toxicidade , Interleucina-1beta/metabolismo , Fator 88 de Diferenciação Mieloide/metabolismo , Precursores de Proteínas/metabolismo , Dióxido de Silício/toxicidade , Animais , Células Cultivadas , Células Dendríticas/metabolismo , Células Dendríticas/ultraestrutura , Relação Dose-Resposta a Droga , Endocitose , Endossomos/efeitos dos fármacos , Endossomos/metabolismo , Endossomos/ultraestrutura , Aditivos Alimentares/síntese química , Aditivos Alimentares/metabolismo , Inocuidade dos Alimentos , Inflamassomos/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator 88 de Diferenciação Mieloide/deficiência , Fator 88 de Diferenciação Mieloide/genética , Nanopartículas , Processamento de Proteína Pós-Traducional , Receptores de Reconhecimento de Padrão/metabolismo , Medição de Risco , Transdução de Sinais/efeitos dos fármacos , Dióxido de Silício/síntese química , Dióxido de Silício/metabolismo , Fatores de Tempo , Receptores Toll-Like/genética , Receptores Toll-Like/metabolismo , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA