Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
EMBO J ; 19(16): 4393-401, 2000 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-10944122

RESUMO

SecA insertion and deinsertion through SecYEG drive preprotein translocation at the Escherichia coli inner membrane. We present three assessments of the theory that oligomers of SecYEG might form functional translocation sites. (i) Formaldehyde cross- linking of translocase reveals cross-links between SecY, SecE and SecG, but not higher order oligomers. (ii) Cross-linking of membranes containing unmodified SecE and hemagglutinin-tagged SecE (SecE(HA)) reveals cross-links between SecY and SecE and between SecY and SecE(HA). However, anti-HA immunoprecipitates contain neither untagged SecE nor SecY cross-linked to SecE. (iii) Membranes containing similar amounts of SecE and SecE(HA) were saturated with translocation intermediate (I(29)) and detergent solubilized. Anti-HA immunoprecipitation of I(29) required SecYE(HA)G and SecA, yet untagged SecE was not present in this translocation complex. Likewise, anti-HA immunoprecipitates of membranes containing equal amounts of SecY and SecY(HA) were found to contain SecY(HA) but not SecY. Both immunoprecipitates contain more moles of I(29) than of the untagged subunit, again suggesting that translocation intermediates are not engaged with multiple copies of SecYEG. These studies suggest that the active form of preprotein translocase is monomeric SecYEG.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Transporte/metabolismo , Proteínas de Escherichia coli , Proteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras , Adenosina Trifosfatases/química , Proteínas de Bactérias/química , Translocação Bacteriana , Proteínas de Transporte/química , Membrana Celular/metabolismo , Reagentes de Ligações Cruzadas/farmacologia , Relação Dose-Resposta a Droga , Eletroforese em Gel de Poliacrilamida , Escherichia coli/enzimologia , Escherichia coli/metabolismo , Formaldeído/farmacologia , Hemaglutininas/metabolismo , Ligantes , Proteínas de Membrana/química , Modelos Biológicos , Plasmídeos/metabolismo , Testes de Precipitina , Ligação Proteica , Conformação Proteica , Canais de Translocação SEC , Proteínas SecA
2.
Nature ; 387(6629): 199-202, 1997 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-9144293

RESUMO

Membrane fusion is necessary both in the eukaryotic secretory pathway and for the inheritance of organelles during the cell cycle. In the secretory pathway, heterotypic fusion takes place between small transport vesicles and organelles. It requires N-ethylmaleimide-sensitive fusion protein (NSF/Sec18p), soluble NSF attachment proteins (SNAPs/Sec17p) and SNAP receptors (SNAREs). SNAREs are integral membrane proteins (v-SNAREs on vesicles, t-SNAREs on the target organelles) and are thought to provide specificity to the fusion process. It has been suggested that Sec17p and Sec18p bind to v-SNARE/t-SNARE complexes and mediate the membrane fusion event. Homotypic fusion of yeast vacuoles also requires Sec17p and Sec18p (ref. 6), but in vitro they are needed only to 'prime' the vacuoles, not for subsequent docking or fusion. It has been unclear whether these reactions involve SNAREs that are similar to those previously identified in heterotypic fusion systems and, hence, whether the actions of Sec18p/NSF and Sec17p/alpha SNAP in these systems can be compared. Here we identify typical v- and t-SNAREs on the yeast vacuolar membrane. Although both are normally present, vacuoles containing only the v-SNARE can fuse with those containing only the t-SNARE. Vacuoles containing neither SNARE cannot fuse with those containing both, demonstrating that docking is mediated by cognate SNAREs on the two organelle membranes. Even when t- and v-SNAREs are on separate membranes, Sec17p and Sec18p act at the priming stage. Their action is not required at the point of assembly of the SNARE complex, nor for the fusion event itself.


Assuntos
Adenosina Trifosfatases , Membranas Intracelulares/metabolismo , Fusão de Membrana , Proteínas de Membrana/metabolismo , Proteínas de Saccharomyces cerevisiae , Vacúolos/metabolismo , Proteínas de Transporte Vesicular , Proteínas rab de Ligação ao GTP , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Proteínas de Transporte/metabolismo , Proteínas Fúngicas/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Deleção de Genes , Genes Fúngicos , Proteínas de Membrana/genética , Dados de Sequência Molecular , Proteínas SNARE , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Ligação a Fator Solúvel Sensível a N-Etilmaleimida
4.
Proc Natl Acad Sci U S A ; 91(11): 4703-7, 1994 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-8197122

RESUMO

SecY, SecE, and band 1 copurify as the SecY/E integral membrane domain of Escherichia coli preprotein translocase. To measure the in vivo association of these polypeptides and assay possible exchange, plasmid-borne secY and secE genes were placed under control of the ara regulon and fused to DNA encoding the influenza hemagglutinin epitope. Cells were incubated with [35S]methionine, grown for a "chase" period, and then induced with arabinose to express epitope-tagged, nonradioactive SecY and SecE. Both the wild-type and epitope-tagged polypeptides assembled into functional, heterotrimeric SecY/E complex. However, immunoprecipitation with antibody to the epitope tag did not cross-precipitate radiolabeled SecY or SecE. Thus, these subunits normally associate stably in vivo.


Assuntos
Adenosina Trifosfatases/genética , Proteínas de Bactérias/genética , Proteínas de Escherichia coli , Escherichia coli/enzimologia , Proteínas de Membrana Transportadoras , Adenosina Trifosfatases/química , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Sequência de Bases , Membrana Celular/enzimologia , DNA Bacteriano , Escherichia coli/genética , Teste de Complementação Genética , Dados de Sequência Molecular , Mutação , Testes de Precipitina , Canais de Translocação SEC , Proteínas SecA
5.
Yeast ; 5(1): 25-33, 1989.
Artigo em Inglês | MEDLINE | ID: mdl-2648696

RESUMO

The KEX2 protease (product of the KEX2 gene) functions late in the secretory pathway of Saccharomyces cerevisiae by cleaving the polypeptide chains of prepro-killer toxin and prepro-alpha-factor at paired basic amino acid residues. The intracellular vesicles containing KEX2 protease sedimented in density gradients to a position distinct from those containing mannosyltransferase I (product of the MNN1 gene), a marker enzyme for the Golgi complex. The recovery of intact compartments containing these enzymes approached 80% after sedimentation. We propose that the KEX2 protease and mannosyltransferase I reside within distinct compartments.


Assuntos
Grânulos Citoplasmáticos/enzimologia , Hexosiltransferases/análise , Manosiltransferases/análise , Pró-Proteína Convertases , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/enzimologia , Serina Endopeptidases/análise , Subtilisinas , Fracionamento Celular , Centrifugação com Gradiente de Concentração , Cromatografia em Papel , Complexo de Golgi/enzimologia , Saccharomyces cerevisiae/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA