Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Commun Biol ; 7(1): 623, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38802487

RESUMO

Nesfatin-1 (NESF-1) has been shown to modulate lipid metabolism. We have identified a nesfatin-1-like-peptide (NLP) processed from a related precursor nucleobindin 1 (NUCB1). Here we determined if NLP, like NESF-1, regulates lipid accumulation in vitro, and tested if the disruption of nucb1 gene affects hepatic lipid metabolism genes in mice. Hepatocytes (HepG2/C3A cells) express NLP and NESF-1 and both peptides significantly reduced lipogenic enzyme mRNAs and enhanced beta-oxidation enzyme mRNAs. Lipid contents in oleic acid induced HepG2/C3A cells were attenuated by NESF-1 and NLP. The inhibitory effect on cellular lipid content was blocked by compound C, an inhibitor of AMPK. The disruption of nucb1 gene affected lipid metabolism-related enzyme mRNAs, endogenous nucb2 mRNA and AMPK phosphorylation. The lipid-lowering effects identified here highlights the potential of nucleobindins and peptides processed from them to address lipid disorders, and its possible benefits in metabolic disease management.


Assuntos
Proteínas de Ligação ao Cálcio , Proteínas de Ligação a DNA , Hepatócitos , Metabolismo dos Lipídeos , Proteínas do Tecido Nervoso , Nucleobindinas , Nucleobindinas/metabolismo , Nucleobindinas/genética , Animais , Humanos , Metabolismo dos Lipídeos/efeitos dos fármacos , Hepatócitos/metabolismo , Hepatócitos/efeitos dos fármacos , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/genética , Camundongos , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Células Hep G2 , Masculino , Camundongos Endogâmicos C57BL
2.
Front Physiol ; 14: 1212785, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37501930

RESUMO

High density lipoproteins (HDL) promote homeostasis and counteract stressful tissue damage that underlie cardiovascular and other diseases by mediating reverse cholesterol transport, reducing inflammation, and abrogating oxidative damage. However, metabolically stressful conditions associated with atherosclerosis can impair these effects. Hepatocytes play a major role in the genesis and maturation of circulating HDL, and liver stress elicits marked regulatory changes to circulating HDL abundance and composition, which affect its functionality. The mechanisms linking liver stress to HDL function are incompletely understood. In this study, we sought to determine whether stress defending transcription factors nuclear factor erythroid 2 related factor-1 (Nrf1) and -2 (Nrf2) promote hepatocyte production of functional HDL. Using genetically engineered mice briefly fed a mild metabolically stressful diet, we investigated the effect of hepatocyte-specific deletion of Nrf1, Nrf2, or both on circulating HDL cholesterol, protein composition, and function. Combined deletion, but not single gene deletion, reduced HDL cholesterol and apolipoprotein A1 levels as well as the capacity of HDL to accept cholesterol undergoing efflux from cultured macrophages and to counteract tumor necrosis factor α-induced inflammatory effect on cultured endothelial cells. This coincided with substantial alteration to the HDL proteome, which correlated with liver gene expression profiles of corresponding proteins. Thus, our findings show complementary actions by hepatocyte Nrf1 and Nrf2 play a role in shaping HDL abundance and composition to promote production of functionally viable HDL. Consequently, our study illuminates the possibility that enhancing stress defense programming in the liver may improve atheroprotective and perhaps other health promoting actions of HDL.

3.
Front Cell Dev Biol ; 10: 1089124, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36712976

RESUMO

Hepatocellular carcinoma (HCC) is a major public health concern that is promoted by obesity and associated liver complications. Onset and progression of HCC in obesity is a multifactorial process involving complex interactions between the metabolic and immune system, in which chronic liver damage resulting from metabolic and inflammatory insults trigger carcinogenesis-promoting gene mutations and tumor metabolism. Moreover, cell growth and proliferation of the cancerous cell, after initiation, requires interactions between various immunological and metabolic pathways that provide stress defense of the cancer cell as well as strategic cell death escape mechanisms. The heterogenic nature of HCC in addition to the various metabolic risk factors underlying HCC development have led researchers to focus on examining metabolic pathways that may contribute to HCC development. In obesity-linked HCC, oncogene-induced modifications and metabolic pathways have been identified to support anabolic demands of the growing HCC cells and combat the concomitant cell stress, coinciding with altered utilization of signaling pathways and metabolic fuels involved in glucose metabolism, macromolecule synthesis, stress defense, and redox homeostasis. In this review, we discuss metabolic insults that can underlie the transition from steatosis to steatohepatitis and from steatohepatitis to HCC as well as aberrantly regulated immunometabolic pathways that enable cancer cells to survive and proliferate in the tumor microenvironment. We also discuss therapeutic modalities targeted at HCC prevention and regression. A full understanding of HCC-associated immunometabolic changes in obesity may contribute to clinical treatments that effectively target cancer metabolism.

4.
Nature ; 513(7518): 440-3, 2014 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-25043031

RESUMO

Eukaryotic cells coordinately control anabolic and catabolic processes to maintain cell and tissue homeostasis. Mechanistic target of rapamycin complex 1 (mTORC1) promotes nutrient-consuming anabolic processes, such as protein synthesis. Here we show that as well as increasing protein synthesis, mTORC1 activation in mouse and human cells also promotes an increased capacity for protein degradation. Cells with activated mTORC1 exhibited elevated levels of intact and active proteasomes through a global increase in the expression of genes encoding proteasome subunits. The increase in proteasome gene expression, cellular proteasome content, and rates of protein turnover downstream of mTORC1 were all dependent on induction of the transcription factor nuclear factor erythroid-derived 2-related factor 1 (NRF1; also known as NFE2L1). Genetic activation of mTORC1 through loss of the tuberous sclerosis complex tumour suppressors, TSC1 or TSC2, or physiological activation of mTORC1 in response to growth factors or feeding resulted in increased NRF1 expression in cells and tissues. We find that this NRF1-dependent elevation in proteasome levels serves to increase the intracellular pool of amino acids, which thereby influences rates of new protein synthesis. Therefore, mTORC1 signalling increases the efficiency of proteasome-mediated protein degradation for both quality control and as a mechanism to supply substrate for sustained protein synthesis.


Assuntos
Complexos Multiproteicos/metabolismo , Biossíntese de Proteínas , Proteínas/metabolismo , Proteólise , Serina-Treonina Quinases TOR/metabolismo , Aminoácidos/metabolismo , Animais , Humanos , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Camundongos Endogâmicos C57BL , Fator 1 Nuclear Respiratório/genética , Fator 1 Nuclear Respiratório/metabolismo , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas/química , Transdução de Sinais , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Transcrição Gênica
5.
Diabetes ; 62(1): 170-82, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22933114

RESUMO

B-cell lymphoma 2 (Bcl-2) family proteins are established regulators of cell survival, but their involvement in the normal function of primary cells has only recently begun to receive attention. In this study, we demonstrate that chemical and genetic loss-of-function of antiapoptotic Bcl-2 and Bcl-x(L) significantly augments glucose-dependent metabolic and Ca(2+) signals in primary pancreatic ß-cells. Antagonism of Bcl-2/Bcl-x(L) by two distinct small-molecule compounds rapidly hyperpolarized ß-cell mitochondria, increased cytosolic Ca(2+), and stimulated insulin release via the ATP-dependent pathway in ß-cell under substimulatory glucose conditions. Experiments with single and double Bax-Bak knockout ß-cells established that this occurred independently of these proapoptotic binding partners. Pancreatic ß-cells from Bcl-2(-/-) mice responded to glucose with significantly increased NAD(P)H levels and cytosolic Ca(2+) signals, as well as significantly augmented insulin secretion. Inducible deletion of Bcl-x(L) in adult mouse ß-cells also increased glucose-stimulated NAD(P)H and Ca(2+) responses and resulted in an improvement of in vivo glucose tolerance in the conditional Bcl-x(L) knockout animals. Our work suggests that prosurvival Bcl proteins normally dampen the ß-cell response to glucose and thus reveals these core apoptosis proteins as integrators of cell death and physiology in pancreatic ß-cells.


Assuntos
Glucose/farmacologia , Células Secretoras de Insulina/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/fisiologia , Transdução de Sinais/fisiologia , Proteína bcl-X/fisiologia , Animais , Apoptose , Cálcio/metabolismo , Retículo Endoplasmático/metabolismo , Humanos , Insulina/metabolismo , Secreção de Insulina , Canais KATP/fisiologia , Camundongos , Proteína Killer-Antagonista Homóloga a bcl-2/fisiologia
6.
PLoS One ; 5(3): e9590, 2010 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-20231880

RESUMO

AIMS: The gastrointestinal hormone GIP promotes pancreatic islet function and exerts pro-survival actions on cultured beta-cells. However, GIP also promotes lipogenesis, thus potentially restricting its therapeutic use. The current studies evaluated the effects of a truncated GIP analog, D-Ala(2)-GIP(1-30) (D-GIP(1-30)), on glucose homeostasis and beta-cell mass in rat models of diabetes. MATERIALS AND METHODS: The insulinotropic and pro-survival potency of D-GIP(1-30) was evaluated in perfused pancreas preparations and cultured INS-1 beta-cells, respectively, and receptor selectivity evaluated using wild type and GIP receptor knockout mice. Effects of D-GIP(1-30) on beta-cell function and glucose homeostasis, in vivo, were determined using Lean Zucker rats, obese Vancouver diabetic fatty rats, streptozotocin treated rats, and obese Zucker diabetic fatty rats, with effects on beta-cell mass determined in histological studies of pancreatic tissue. Lipogenic effects of D-GIP(1-30) were evaluated on cultured 3T3-L1 adipocytes. RESULTS: Acutely, D-GIP(1-30) improved glucose tolerance and insulin secretion. Chronic treatment with D-GIP(1-30) reduced levels of islet pro-apoptotic proteins in Vancouver diabetic fatty rats and preserved beta-cell mass in streptozotocin treated rats and Zucker diabetic fatty rats, resulting in improved insulin responses and glycemic control in each animal model, with no change in body weight. In in vitro studies, D-GIP(1-30) exhibited equivalent potency to GIP(1-42) on beta-cell function and survival, but greatly reduced action on lipoprotein lipase activity in 3T3-L1 adipocytes. CONCLUSIONS: These findings demonstrate that truncated forms of GIP exhibit potent anti-diabetic actions, without pro-obesity effects, and that the C-terminus contributes to the lipogenic actions of GIP.


Assuntos
Proteínas Reguladoras de Apoptose/química , Apoptose , Diabetes Mellitus Experimental/tratamento farmacológico , Células Secretoras de Insulina/metabolismo , Receptores dos Hormônios Gastrointestinais/agonistas , Células 3T3 , Adipócitos/citologia , Animais , Glucose/metabolismo , Teste de Tolerância a Glucose , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ratos , Ratos Zucker , Receptores dos Hormônios Gastrointestinais/química
7.
J Biol Chem ; 284(44): 30372-82, 2009 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-19748889

RESUMO

Glucose-dependent insulinotropic polypeptide (GIP) potentiates glucose-stimulated insulin secretion, insulin biosynthesis, and beta-cell proliferation and survival. In previous studies GIP was shown to promote beta-cell survival by modulating the activity of multiple signaling modules and regulating gene transcription of pro- and anti-apoptotic bcl-2 family proteins. We have now evaluated the mechanisms by which GIP regulates the dynamic interactions between cytoplasmic bcl-2 family members and the mitochondria in INS-1 cells during apoptosis induced by treatment with staurosporine (STS), an activator of the mitochondria-mediated apoptotic pathway. STS induced translocation of bad and bimEL, activation of mitochondrial bax, release of mitochondrial cytochrome c, cleavage of caspase-3, and apoptosis. Each response was significantly diminished by GIP. Using selective enzyme inhibitors, overexpression of dominant-negative Akt, and Akt siRNA, it was demonstrated that GIP promoted beta-cell survival via Akt-dependent suppression of p38 MAPK and JNK and that combined inhibition was sufficient to explain the entire pro-survival responses to GIP during STS treatment. This signaling pathway also explained the pro-survival effects of GIP on INS-1 cells exposed to two other promoters of stress: thapsigargin (endoplasmic reticulum stress) and etoposide (genotoxic stress). Importantly, we discovered that GIP suppressed p38 MAPK and JNK via Akt-mediated changes in the phosphorylation state of the apoptosis signal-regulating kinase 1 in INS-1 cells and human islets, resulting in inhibition of its activity. Inhibition of apoptosis by GIP is therefore mediated via a key pathway involving Akt-dependent inhibition of apoptosis signal-regulating kinase 1, which subsequently prevents the pro-apoptotic actions of p38 MAPK and JNK.


Assuntos
Polipeptídeo Inibidor Gástrico/fisiologia , Células Secretoras de Insulina/citologia , MAP Quinase Quinase Quinase 5/antagonistas & inibidores , Proteína Quinase 8 Ativada por Mitógeno/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/fisiologia , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores , Apoptose , Sobrevivência Celular , Células Cultivadas , Humanos , Ilhotas Pancreáticas/citologia , Transdução de Sinais/fisiologia
8.
J Biol Chem ; 284(16): 10764-73, 2009 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-19233842

RESUMO

Therapeutics based on the actions of the incretin hormones, glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP), have recently been introduced for the treatment of type 2 diabetes mellitus. The serine/threonine kinase Akt is a major mediator of incretin action on the pancreatic islet, increasing beta-cell mass and function and promoting beta-cell survival. The mechanisms underlying incretin activation of Akt are thought to involve an essential phosphoinositide 3-kinase-mediated phosphorylation of threonine 308, similar to the prototypical Akt activator, insulin-like growth factor-I (IGF-I). In this study, using activity assays on immunoprecipitated Akt, we discovered that GIP and GLP-1 were capable of stimulating Akt in the INS-1 beta-cell line and isolated mouse islets via a mechanism that did not require phosphoinositide 3-kinase or phosphorylation of Thr(308) and Ser(473), and this pathway involved the production of cAMP. Furthermore, we found that GIP stimulated anti-apoptotic signaling via this alternate mode of Akt activation. We conclude that incretins can activate Akt via a novel noncanonical mechanism that may provide an alternative therapeutic target for the treatment of type 2 diabetes mellitus and have broader implications for Akt physiology in human health and disease.


Assuntos
Polipeptídeo Inibidor Gástrico/metabolismo , Incretinas/metabolismo , Células Secretoras de Insulina/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Adenilil Ciclases/metabolismo , Animais , Linhagem Celular , Colforsina/metabolismo , Ativação Enzimática , Polipeptídeo Inibidor Gástrico/genética , Peptídeo 1 Semelhante ao Glucagon/genética , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Glucose/metabolismo , Humanos , Insulina/metabolismo , Células Secretoras de Insulina/citologia , Camundongos , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/genética , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA