Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Med Dosim ; 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38431501

RESUMO

Single-fraction stereotactic radiosurgery (SRS) or fractionated SRS (FSRS) are well established strategies for patients with limited brain metastases. A broad spectrum of modern dedicated platforms are currently available for delivering intracranial SRS/FSRS; however, SRS/FSRS delivered using traditional CT-based platforms relies on the need for diagnostic MR images to be coregistered to planning CT scans for target volume delineation. Additionally, the on-board image guidance on traditional platforms yields limited inter-fraction and intra-fraction real-time visualization of the tumor at the time of treatment delivery. MR Linacs are capable of obtaining treatment planning MR and on-table MR sequences to enable visualization of the targets and organs-at-risk and may subsequently help identify anatomical changes prior to treatment that may invoke the need for on table treatment adaptation. Recently, an MR-guided intracranial package (MRIdian A3i BrainTxTM) was released for intracranial treatment with the ability to perform high-resolution MR sequences using a dedicated brain coil and cranial immobilization system. The objective of this report is to provide, through the experience of our first patient treated, a comprehensive overview of the clinical application of our institutional program for FSRS adaptive delivery using MRIdian's A3i BrainTx system-highlights include reviewing the imaging sequence selection, workflow demonstration, and details in its delivery feasibility in clinical practice, and dosimetric outcomes.

2.
Brachytherapy ; 22(6): 872-881, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37722990

RESUMO

PURPOSE: This study evaluates the outcomes of recurrent brain metastasis treated with resection and brachytherapy using a novel Cesium-131 carrier, termed surgically targeted radiation therapy (STaRT), and compares them to the first course of external beam radiotherapy (EBRT). METHODS: Consecutive patients who underwent STaRT between August 2020 and June 2022 were included. All patients underwent maximal safe resection with pathologic confirmation of viable disease prior to STaRT to 60 Gy to a 5-mm depth from the surface of the resection cavity. Complications were assessed using CTCAE version 5.0. RESULTS: Ten patients with 12 recurrent brain metastases after EBRT (median 15.5 months, range: 4.9-44.7) met the inclusion criteria. The median BED10Gy90% and 95% were 132.2 Gy (113.9-265.1 Gy) and 116.0 Gy (96.8-250.6 Gy), respectively. The median maximum point dose BED10Gy for the target was 1076.0 Gy (range: 120.7-1478.3 Gy). The 6-month and 1-year local control rates were 66.7% and 33.3% for the prior EBRT course; these rates were 100% and 100% for STaRT, respectively (p < 0.001). At a median follow-up of 14.5 months, there was one instance of grade two radiation necrosis. Surgery-attributed complications were observed in two patients including pseudomeningocele and minor headache. CONCLUSIONS: STaRT with Cs-131 presents an alternative approach for operable recurrent brain metastases and was associated with superior local control than the first course of EBRT in this series. Our initial clinical experience shows that STaRT is associated with a high local control rate, modest surgical complication rate, and low radiation necrosis risk in the reirradiation setting.


Assuntos
Braquiterapia , Neoplasias Encefálicas , Humanos , Radioisótopos de Césio/uso terapêutico , Braquiterapia/métodos , Neoplasias Encefálicas/radioterapia , Necrose/etiologia
3.
J Appl Clin Med Phys ; 24(6): e13936, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36855958

RESUMO

OBJECTIVES: The objective of this study is to evaluate the user-defined optimization settings in the Fast Inverse Planning (FIP) optimizer in Leksell GammaPlan® and determine the parameters that result in the best stereotactic radiosurgery (SRS) plan quality for brain metastases, benign tumors, and arteriovenous malformations (AVMs). METHODS: Thirty patients with metastases and 30 with benign lesions-vestibular schwannoma, AVMs, pituitary adenoma, and meningioma-treated with SRS were evaluated. Each target was planned by varying the low dose (LD) and beam-on-time (BOT) penalties in increments of 0.1, from 0 to 1. The following plan quality metrics were recorded for each plan: Paddick conformity index (PCI), gradient index (GI), BOT, and maximum organ-at-risk (OAR) doses. A novel objective score matrix was calculated for each target using a linearly weighted combination of the aforementioned metrics. A histogram of optimal solutions containing the five best scores was extracted. RESULTS: A total of 7260 plans were analyzed with 121 plans per patient for the range of LD/BOT penalties. The ranges of PCI, GI, and BOT across all metastatic lesions were 0.58-0.97, 2.1-3.8, and 8.8-238 min, respectively, and were 0.13-0.97, 2.1-3.8, and 8.8-238 min, respectively, for benign lesions. The objective score matrix showed unique optimal solutions for metastatic lesions and benign lesions. Additionally, the plan metrics of the optimal solutions were significantly improved compared to the clinical plans for metastatic lesions with equivalent metrics for all other cases. CONCLUSION: In this study, FIP optimizer was evaluated to determine the optimal solution space to maximize PCI and minimize GI, BOT and OAR doses simultaneously for single metastatic/benign/non-neoplastic targets. The optimal solution chart was determined using a novel objective score which provides novice and expert planners a roadmap to generate the most optimal plans efficiently using FIP.


Assuntos
Malformações Arteriovenosas , Neoplasias Encefálicas , Raio , Radiocirurgia , Humanos , Neoplasias Encefálicas/secundário , Dosagem Radioterapêutica , Malformações Arteriovenosas/cirurgia , Planejamento da Radioterapia Assistida por Computador
4.
Cancers (Basel) ; 15(3)2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36765738

RESUMO

We evaluated the effect of lesion number and volume for brain metastasis treated with SRS using GammaKnife® ICON™ (GK) and CyberKnife® M6™ (CK). Four sets of lesion sizes (<5 mm, 5-10 mm, >10-15 mm, and >15 mm) were contoured and prescribed a dose of 20 Gy/1 fraction. The number of lesions was increased until a threshold mean brain dose of 8 Gy was reached; then individually optimized to achieve maximum conformity. Across GK plans, mean brain dose was linearly proportional to the number of lesions and total GTV for all sizes. The numbers of lesions needed to reach this threshold for GK were 177, 57, 29, and 10 for each size group, respectively; corresponding total GTVs were 3.62 cc, 20.37 cc, 30.25 cc, and 57.96 cc, respectively. For CK, the threshold numbers of lesions were 135, 35, 18, and 8, with corresponding total GTVs of 2.32 cc, 12.09 cc, 18.24 cc, and 41.52 cc respectively. Mean brain dose increased linearly with number of lesions and total GTV while V8 Gy, V10 Gy, and V12 Gy showed quadratic correlations to the number of lesions and total GTV. Modern dedicated intracranial SRS systems allow for treatment of numerous brain metastases especially for ≤10 mm; clinical evidence to support this practice is critical to expansion in the clinic.

5.
Cancers (Basel) ; 14(14)2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35884453

RESUMO

We compared the clinical outcomes of BM treated with mask immobilization with zero-SM (i.e., zero-PTV) to standard zero-SM frame immobilization SRS. Consecutive patients with BM, 0.5−2.0 cm in maximal diameter, treated with single-fraction SRS (22−24 Gy) during March 2019−February 2021 were included. Univariable and multivariable analysis were performed using the Kaplan−Meier method and Cox proportional hazards regression. A total of 150 patients with 453 BM met inclusion criteria. A total of 129 (28.5%) lesions were treated with a zero-SM mask immobilization and 324 (71.5%) with zero-SM frame immobilization. Frame immobilization treatments were associated with a higher proportion of gastrointestinal and fewer breast-cancer metastases (p = 0.024), and a higher number of treated lesions per SRS course (median 7 vs. 3; p < 0.001). With a median follow up of 15 months, there was no difference in FFLF between the mask and frame immobilization groups on univariable (p = 0.29) or multivariable analysis (p = 0.518). Actuarial FFLF at 1 year was 90.5% for mask and 92% for frame immobilization (p = 0.272). Radiation necrosis rates at 1 year were 12.5% for mask and 4.1% for frame immobilization (p = 0.502). For BM 0.5−2.0 cm in maximal diameter treated with single-fraction SRS using 22−24 Gy, mask immobilization with zero SM produces comparable clinical outcomes to frame immobilization. The initial findings support omitting a SM when using mask immobilization with this treatment approach on a Gamma Knife® Icon™.

6.
Radiother Oncol ; 173: 84-92, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35662657

RESUMO

BACKGROUND: Stereotactic radiosurgery (SRS) is increasingly used for brain metastases (BM) patients, but distant intracranial failure (DIF) remains the principal disadvantage of this focal therapeutic approach. The objective of this study was to determine if dedicated SRS imaging would improve lesion detection and reduce DIF. METHODS: Between 02/2020 and 01/2021, SRS patients at a tertiary care institution underwent dedicated treatment planning MRIs of the brain including MPRAGE and SPACE post-contrast sequences. DIF was calculated using the Kaplan-Meier method; comparisons were made to a historical consecutive cohort treated using MPRAGE alone (02/2019-01/2020). RESULTS: 134 patients underwent 171 SRS courses for 821 BM imaged with both MPRAGE and SPACE (primary cohort). MPRAGE sequence evaluation alone detected 679 lesions. With neuroradiologists evaluating SPACE and MPRAGE, an additional 108 lesions were identified (p < 0.001). Upon multidisciplinary review, 34 additional lesions were identified. Compared to the historical cohort (103 patients, 135 SRS courses, 479 BM), the primary cohort had improved median time to DIF (13.5 vs. 5.1 months, p = 0.004). The benefit was even more pronounced for patients treated for their first SRS course (18.4 vs. 6.3 months, p = 0.001). SRS using MPRAGE and SPACE was associated with a 60% reduction in risk of DIF compared to the historical cohort (HR: 0.40; 95% CI: 0.28-0.57, p < 0.001). CONCLUSIONS: Among BM patients treated with SRS, a treatment planning SPACE sequence in addition to MPRAGE substantially improved lesion detection and was associated with a statistically significant and clinically meaningful prolongation in time to DIF, especially for patients undergoing their first SRS course.


Assuntos
Neoplasias Encefálicas , Radiocirurgia , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/cirurgia , Humanos , Imageamento por Ressonância Magnética/métodos , Recidiva Local de Neoplasia/diagnóstico por imagem , Recidiva Local de Neoplasia/etiologia , Recidiva Local de Neoplasia/prevenção & controle , Radiocirurgia/métodos , Estudos Retrospectivos
7.
Neurooncol Pract ; 8(6): 674-683, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34777836

RESUMO

BACKGROUND: The objective of this study was to evaluate the impact of the time interval between planning imaging and stereotactic radiosurgery (SRS) delivery on tumor volumes and spatial anatomic displacements of brain metastases (BM). METHODS: Consecutive patients diagnosed with BM treated with SRS over a 3-year period were evaluated. Only patients who underwent an institutionally standardized diagnostic MRI (MRI-1) and a treatment planning MRI (MRI-2) were included. The impact of histology, inter-scan time interval, lesion location, tumor volume, and diameter were evaluated on final lesion diameter, volume, anatomic displacement, and ultimate need for change in management (ie, expanding margins, rescanning). RESULTS: 101 patients (531 lesions) with a median inter-scan time interval of 8 days (range: 1-42 days) met the inclusion criteria. The median percentage increase in BM diameter and volume were 9.5% (IQR: 2.25%-24.0%) and 20% (IQR: 0.7%-66.7%). Overall, 147 lesions (27.7%) in 57 patients (56.4%) required a change in management. There was a statistically significant relationship between initial tumor diameter (cm) and change in management (OR: 2.69, 95% CI: 1.93-3.75; P < .001). Each day between MRI-1 and MRI-2 was associated with a change in management with an OR of 1.05 (95% CI: 1.03-1.07; P < .001). CONCLUSIONS: Changes in tumor diameter, volume, and spatial position occur as a function of time. Planning imaging for SRS is recommended to occur in close temporal proximity to treatment; for those with delays, a larger setup margin may need to be used to ensure tumor coverage and account for positional changes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA