Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Death Differ ; 26(12): 2740-2757, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31068677

RESUMO

Motile cilia serve vital functions in development, homeostasis, and regeneration. We recently demonstrated that TAp73 is an essential transcriptional regulator of respiratory multiciliogenesis. Here, we show that TAp73 is expressed in multiciliated cells (MCCs) of diverse tissues. Analysis of TAp73 mutant animals revealed that TAp73 regulates Foxj1, Rfx2, Rfx3, axonemal dyneins Dnali1 and Dnai1, plays a pivotal role in the generation of MCCs in male and female reproductive ducts, and contributes to fertility. However, the function of MCCs in the brain appears to be preserved despite the loss of TAp73, and robust activity of cilia-related networks is maintained in the absence of TAp73. Notably, TAp73 loss leads to distinct changes in ciliogenic microRNAs: miR34bc expression is reduced, whereas the miR449 cluster is induced in diverse multiciliated epithelia. Among different MCCs, choroid plexus (CP) epithelial cells in the brain display prominent miR449 expression, whereas brain ventricles exhibit significant increase in miR449 levels along with an increase in the activity of ciliogenic E2F4/MCIDAS circuit in TAp73 mutant animals. Conversely, E2F4 induces robust transcriptional response from miR449 genomic regions. To address whether increased miR449 levels in the brain maintain the multiciliogenesis program in the absence of TAp73, we deleted both TAp73 and miR449 in mice. Although loss of miR449 alone led to a mild ciliary defect in the CP, more pronounced ciliary defects and hydrocephalus were observed in the brain lacking both TAp73 and miR449. In contrast, miR449 loss in other MCCs failed to enhance ciliary defects associated with TAp73 loss. Together, our study shows that, in addition to the airways, TAp73 is essential for generation of MCCs in male and female reproductive ducts, whereas miR449 and TAp73 complement each other to support multiciliogenesis and CP development in the brain.


Assuntos
Cílios/fisiologia , MicroRNAs/metabolismo , Proteína Tumoral p73/metabolismo , Animais , Diferenciação Celular/fisiologia , Células Cultivadas , Cílios/metabolismo , Humanos , Camundongos , MicroRNAs/genética , Proteínas Nucleares/genética , Proteína Tumoral p73/genética
2.
J Mol Cell Biol ; 9(1): 74-80, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-27927750

RESUMO

Mdm2 is the key negative regulator of the tumour suppressor p53, making it an attractive target for anti-cancer drug design. We recently identified a new role of Mdm2 in gene repression through its direct interaction with several proteins of the polycomb group (PcG) family. PcG proteins form polycomb repressive complexes PRC1 and PRC2. PRC2 (via EZH2) mediates histone 3 lysine 27 (H3K27) trimethylation, and PRC1 (via RING1B) mediates histone 2A lysine 119 (H2AK119) monoubiquitination. Both PRCs mostly support a compact and transcriptionally silent chromatin structure. We found that Mdm2 regulates a gene expression profile similar to that of PRC2 independent of p53. Moreover, Mdm2 promotes the stemness of murine induced pluripotent stem cells and human mesenchymal stem cells, and supports the survival of tumour cells. Mdm2 is recruited to target gene promoters by the PRC2 member and histone methyltransferase EZH2, and enhances PRC-dependent repressive chromatin modifications, specifically H3K27me3 and H2AK119ub1. Mdm2 also cooperates in gene repression with the PRC1 protein RING1B, a H2AK119 ubiquitin ligase. Here we discuss the possible implications of these p53-independent functions of Mdm2 in chromatin dynamics and in the stem cell phenotype. We propose that the p53-independent functions of Mdm2 should be taken into account for cancer drug design. So far, the majority of clinically tested Mdm2 inhibitors target its binding to p53 but do not affect the new functions of Mdm2 described here. However, when targeting the E3 ligase activity of Mdm2, a broader spectrum of its oncogenic activities might become druggable.


Assuntos
Cromatina/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Animais , Evolução Biológica , Instabilidade Genômica , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Proteína Supressora de Tumor p53/metabolismo
3.
Cell Rep ; 17(7): 1845-1857, 2016 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-27829155

RESUMO

p53 induces cell death upon DNA damage, but this may not confer all of its tumor suppressor activity. We report that p53 activation enhances the processivity of DNA replication, as monitored by multi-label fiber assays, whereas removal of p53 reduces fork progression. This is observed in tumor-derived U2OS cells but also in murine embryonic fibroblasts with heterozygous or homozygous p53 deletion and in freshly isolated thymocytes from mice with differential p53 status. Mdm2, a p53-inducible gene product, similarly supports DNA replication even in p53-deficient cells, suggesting that sustained Mdm2-expression is at least one of the mechanisms allowing p53 to prevent replicative stress. Thus, p53 helps to protect the genome during S phase, by preventing the occurrence of stalled or collapsed replication forks. These results expand p53's tumor-suppressive functions, adding to the ex-post model (elimination of damaged cells) an ex-ante activity; i.e., the prevention of DNA damage during replication.


Assuntos
Replicação do DNA , Proteína Supressora de Tumor p53/metabolismo , Animais , Replicação do DNA/genética , Embrião de Mamíferos/citologia , Fibroblastos/metabolismo , Humanos , Linfoma de Células T/patologia , Camundongos , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Fase S/genética , Timócitos/metabolismo , Proteína Supressora de Tumor p53/deficiência
4.
Oncotarget ; 7(22): 31623-38, 2016 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-27183917

RESUMO

Targeting the Mdm2 oncoprotein by drugs has the potential of re-establishing p53 function and tumor suppression. However, Mdm2-antagonizing drug candidates, e. g. Nutlin-3a, often fail to abolish cancer cell growth sustainably. To overcome these limitations, we inhibited Mdm2 and simultaneously a second negative regulator of p53, the phosphatase Wip1/PPM1D. When combining Nutlin-3a with the Wip1 inhibitor GSK2830371 in the treatment of p53-proficient but not p53-deficient cells, we observed enhanced phosphorylation (Ser 15) and acetylation (Lys 382) of p53, increased expression of p53 target gene products, and synergistic inhibition of cell proliferation. Surprisingly, when testing the two compounds individually, largely distinct sets of genes were induced, as revealed by deep sequencing analysis of RNA. In contrast, the combination of both drugs led to an expression signature that largely comprised that of Nutlin-3a alone. Moreover, the combination of drugs, or the combination of Nutlin-3a with Wip1-depletion by siRNA, activated p53-responsive genes to a greater extent than either of the compounds alone. Simultaneous inhibition of Mdm2 and Wip1 enhanced cell senescence and G2/M accumulation. Taken together, the inhibition of Wip1 might fortify p53-mediated tumor suppression by Mdm2 antagonists.


Assuntos
Aminopiridinas/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Dipeptídeos/farmacologia , Inibidores Enzimáticos/farmacologia , Imidazóis/farmacologia , Neoplasias/tratamento farmacológico , Piperazinas/farmacologia , Proteína Fosfatase 2C/antagonistas & inibidores , Proteína Supressora de Tumor p53/metabolismo , Acetilação , Proliferação de Células/efeitos dos fármacos , Senescência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Sinergismo Farmacológico , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica , Células HCT116 , Humanos , Células MCF-7 , Neoplasias/enzimologia , Neoplasias/genética , Neoplasias/patologia , Fosforilação , Proteína Fosfatase 2C/genética , Proteína Fosfatase 2C/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Interferência de RNA , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo , Transcriptoma , Transfecção , Proteína Supressora de Tumor p53/genética , Regulação para Cima
5.
Mol Cell ; 61(1): 68-83, 2016 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-26748827

RESUMO

The MDM2 oncoprotein ubiquitinates and antagonizes p53 but may also carry out p53-independent functions. Here we report that MDM2 is required for the efficient generation of induced pluripotent stem cells (iPSCs) from murine embryonic fibroblasts, in the absence of p53. Similarly, MDM2 depletion in the context of p53 deficiency also promoted the differentiation of human mesenchymal stem cells and diminished clonogenic survival of cancer cells. Most of the MDM2-controlled genes also responded to the inactivation of the Polycomb Repressor Complex 2 (PRC2) and its catalytic component EZH2. MDM2 physically associated with EZH2 on chromatin, enhancing the trimethylation of histone 3 at lysine 27 and the ubiquitination of histone 2A at lysine 119 (H2AK119) at its target genes. Removing MDM2 simultaneously with the H2AK119 E3 ligase Ring1B/RNF2 further induced these genes and synthetically arrested cell proliferation. In conclusion, MDM2 supports the Polycomb-mediated repression of lineage-specific genes, independent of p53.


Assuntos
Montagem e Desmontagem da Cromatina , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Neoplásicas/metabolismo , Complexo Repressor Polycomb 2/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Animais , Diferenciação Celular , Linhagem da Célula , Proliferação de Células , Sobrevivência Celular , Regulação Neoplásica da Expressão Gênica , Células HCT116 , Histonas/metabolismo , Humanos , Células MCF-7 , Metilação , Camundongos , Osteogênese , Fenótipo , Complexo Repressor Polycomb 1/metabolismo , Complexo Repressor Polycomb 2/genética , Proteínas Proto-Oncogênicas c-mdm2/genética , Interferência de RNA , Transdução de Sinais , Fatores de Tempo , Transfecção , Proteína Supressora de Tumor p53/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA