Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biochem Pharmacol ; : 116445, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39053638

RESUMO

The maintenance of a highly functional metabolic epithelium in vitro is challenging. Metabolic impairments in primary human hepatocytes (PHHs) over time is primarily due to epithelial-to-mesenchymal transitioning (EMT). The immature hepatoma cell line HepG2 was used as an in vitro model to explore strategies for enhancing the hepatic phenotype. The phenotypic characterization includes measuring the urea cycle, lipid storage, tricarboxylic acid-related metabolites, reactive oxygen species, endoplasmic reticulum calcium efflux, mitochondrial membrane potentials, oxygen consumptions rate, and CYP450 biotransformation capacity. Expression studies were performed with transcriptomics, co-immunoprecipitation and proteomics. CRISPR/Cas9 was also employed to genetically engineer HepG2 cells. After confirming that PHHs develop an EMT phenotype, expression of tankyrase1/2 was found to increase over time. EMT was reverted when blocking tankyrases1/2-dependent poly-ADP-ribosylation (PARylation) activity, by biochemical and genetic perturbation. Wnt/ß-catenin inhibitor XAV-939 blocks tankyrase1/2 and treatment elevated several oxygen-consuming reactions (electron-transport chain, OXHPOS, CYP450 mono-oxidase activity, phase I/II xenobiotic biotransformation, and prandial turnover), suggesting that cell metabolism was enhanced. Glutathione-dependent redox homeostasis was also significantly improved in the XAV-939 condition. Oxygen consumption rate and proteomics experiments in tankyrase1/2 double knockout HepG2 cells then uncovered PARylation as master regulator of aerobic-dependent cell respiration. Furthermore, novel tankyrase1/2-dependent PARylation targets, including mitochondrial DLST, and OGDH, were revealed. This work exposed a new mechanistic framework by linking PARylation to respiration and metabolism, thereby broadening the current understanding that underlies these vital processes. XAV-939 poses an immediate and straightforward strategy to improve aerobic activities, and metabolism, in (immature) cell cultures.

2.
Brain ; 145(12): 4368-4384, 2022 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-36039535

RESUMO

Loss-of-function mutations in the PRKN, PINK1 and PARK7 genes (encoding parkin, PINK1 and DJ-1, respectively) cause autosomal recessive forms of Parkinson's disease. PINK1 and parkin jointly mediate selective autophagy of damaged mitochondria (mitophagy), but the mechanisms by which loss of DJ-1 induces Parkinson's disease are not well understood. Here, we investigated PINK1/parkin-mediated mitophagy in cultured human fibroblasts and induced pluripotent stem cell-derived neurons with homozygous PARK7 mutations. We found that DJ-1 is essential for PINK1/parkin-mediated mitophagy. Loss of DJ-1 did not interfere with PINK1 or parkin activation after mitochondrial depolarization but blocked mitophagy further downstream by inhibiting recruitment of the selective autophagy receptor optineurin to depolarized mitochondria. By contrast, starvation-induced, non-selective autophagy was not affected by loss of DJ-1. In wild-type fibroblasts and induced pluripotent stem cell-derived dopaminergic neurons, endogenous DJ-1 translocated to depolarized mitochondria in close proximity to optineurin. DJ-1 translocation to depolarized mitochondria was dependent on PINK1 and parkin and did not require oxidation of cysteine residue 106 of DJ-1. Overexpression of DJ-1 did not rescue the mitophagy defect of PINK1- or parkin-deficient cells. These findings position DJ-1 downstream of PINK1 and parkin in the same pathway and suggest that disruption of PINK1/parkin/DJ-1-mediated mitophagy is a common pathogenic mechanism in autosomal recessive Parkinson's disease.


Assuntos
Mitofagia , Doença de Parkinson , Proteínas Quinases , Humanos , Mitocôndrias/metabolismo , Mitofagia/genética , Mitofagia/fisiologia , Doença de Parkinson/metabolismo , Proteínas Quinases/genética , Ubiquitina-Proteína Ligases/genética
3.
EMBO Mol Med ; 14(4): e09824, 2022 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-35352880

RESUMO

Single domain antibodies (VHHs) are potentially disruptive therapeutics, with important biological value for treatment of several diseases, including neurological disorders. However, VHHs have not been widely used in the central nervous system (CNS), largely because of their restricted blood-brain barrier (BBB) penetration. Here, we propose a gene transfer strategy based on BBB-crossing adeno-associated virus (AAV)-based vectors to deliver VHH directly into the CNS. As a proof-of-concept, we explored the potential of AAV-delivered VHH to inhibit BACE1, a well-characterized target in Alzheimer's disease. First, we generated a panel of VHHs targeting BACE1, one of which, VHH-B9, shows high selectivity for BACE1 and efficacy in lowering BACE1 activity in vitro. We further demonstrate that a single systemic dose of AAV-VHH-B9 produces positive long-term (12 months plus) effects on amyloid load, neuroinflammation, synaptic function, and cognitive performance, in the AppNL-G-F Alzheimer's mouse model. These results constitute a novel therapeutic approach for neurodegenerative diseases, which is applicable to a range of CNS disease targets.


Assuntos
Doença de Alzheimer , Secretases da Proteína Precursora do Amiloide , Ácido Aspártico Endopeptidases , Anticorpos de Domínio Único , Doença de Alzheimer/patologia , Secretases da Proteína Precursora do Amiloide/imunologia , Secretases da Proteína Precursora do Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Ácido Aspártico Endopeptidases/imunologia , Ácido Aspártico Endopeptidases/metabolismo , Barreira Hematoencefálica , Dependovirus/genética , Modelos Animais de Doenças , Vetores Genéticos/uso terapêutico , Camundongos , Camundongos Transgênicos
4.
Neuron ; 104(5): 972-986.e6, 2019 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-31761708

RESUMO

How neural circuits develop in the human brain has remained almost impossible to study at the neuronal level. Here, we investigate human cortical neuron development, plasticity, and function using a mouse/human chimera model in which xenotransplanted human cortical pyramidal neurons integrate as single cells into the mouse cortex. Combined neuronal tracing, electrophysiology, and in vivo structural and functional imaging of the transplanted cells reveal a coordinated developmental roadmap recapitulating key milestones of human cortical neuron development. The human neurons display a prolonged developmental timeline, indicating the neuron-intrinsic retention of juvenile properties as an important component of human brain neoteny. Following maturation, human neurons in the visual cortex display tuned, decorrelated responses to visual stimuli, like mouse neurons, demonstrating their capacity for physiological synaptic integration in host cortical circuits. These findings provide new insights into human neuronal development and open novel avenues for the study of human neuronal function and disease. VIDEO ABSTRACT.


Assuntos
Neurogênese/fisiologia , Células Piramidais/citologia , Células Piramidais/fisiologia , Células Piramidais/transplante , Animais , Diferenciação Celular/fisiologia , Xenoenxertos , Humanos , Camundongos , Córtex Visual/citologia , Córtex Visual/fisiologia
5.
Science ; 363(6423)2019 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-30630900

RESUMO

Amyloid-ß precursor protein (APP) is central to the pathogenesis of Alzheimer's disease, yet its physiological function remains unresolved. Accumulating evidence suggests that APP has a synaptic function mediated by an unidentified receptor for secreted APP (sAPP). Here we show that the sAPP extension domain directly bound the sushi 1 domain specific to the γ-aminobutyric acid type B receptor subunit 1a (GABABR1a). sAPP-GABABR1a binding suppressed synaptic transmission and enhanced short-term facilitation in mouse hippocampal synapses via inhibition of synaptic vesicle release. A 17-amino acid peptide corresponding to the GABABR1a binding region within APP suppressed in vivo spontaneous neuronal activity in the hippocampus of anesthetized Thy1-GCaMP6s mice. Our findings identify GABABR1a as a synaptic receptor for sAPP and reveal a physiological role for sAPP in regulating GABABR1a function to modulate synaptic transmission.


Assuntos
Precursor de Proteína beta-Amiloide/fisiologia , Plasticidade Neuronal , Receptores de GABA-A/fisiologia , Transmissão Sináptica , Sequência de Aminoácidos , Animais , Células Cultivadas , Células HEK293 , Hipocampo/fisiologia , Humanos , Masculino , Proteínas de Membrana/fisiologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/citologia , Peptídeos , Ligação Proteica , Domínios Proteicos , Proteômica , Sinapses/fisiologia , Vesículas Sinápticas/fisiologia
6.
J Neurosci ; 23(7): 2726-34, 2003 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-12684458

RESUMO

During the female reproductive cycle, hypothalamic oxytocin (OT) neurons undergo sharp changes in excitability. In lactating mammals, bursts of electrical activity of OT neurons result in the release of large amounts of OT in the bloodstream, which causes milk ejection. One hypothesis is that OT neurons regulate their own firing activity and that of nearby OT neurons by somatodendritic release of OT. In this study, we show that OT neuron activity strongly reduces inhibitory synaptic transmission to these neurons. This effect is blocked by antagonists of both adenosine and OT receptors and is mimicked by OT application. Inhibition of soluble N-ethylmaleimide-sensitive factor attachment protein receptor complex formation by tetanus toxin completely blocked the stimulation-induced reduction in inhibitory input, as did the calcium chelator BAPTA. During lactation, the readily releasable pool of secretory vesicles in OT cell bodies was doubled, and calcium currents were upregulated. This resulted in an increased inhibition of GABAergic synaptic transmission by somatodendritic release during lactation compared with the adult virgin stage. These results demonstrate that somatodendritic release is augmented during lactation, which is a novel form of plasticity to change the strength of synaptic transmission.


Assuntos
Lactação , Neurônios/fisiologia , Ocitocina/metabolismo , Núcleo Supraóptico/metabolismo , Transmissão Sináptica , Proteínas de Transporte Vesicular , Potenciais de Ação , Adenosina/metabolismo , Animais , Cálcio/fisiologia , Proteínas de Transporte/fisiologia , Células Cultivadas , Dendritos/metabolismo , Endocitose , Feminino , Masculino , Proteínas de Membrana/fisiologia , Ciclo Menstrual , Proteínas Sensíveis a N-Etilmaleimida , Neurônios/metabolismo , Técnicas de Patch-Clamp , Terminações Pré-Sinápticas/metabolismo , Proteínas R-SNARE , Ratos , Ratos Wistar , Reprodução , Núcleo Supraóptico/citologia , Vesículas Sinápticas/metabolismo , Regulação para Cima , Ácido gama-Aminobutírico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA