Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Front Cardiovasc Med ; 10: 1071643, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36865891

RESUMO

Objectives: Non-invasive assessment of aortic hemodynamics using four dimensional (4D) flow magnetic resonance imaging (MRI) provides new information on blood flow patterns and wall shear stress (WSS). Aortic valve stenosis (AS) and/or bicuspid aortic valves (BAV) are associated with altered aortic flow patterns and elevated WSS. Aim of this study was to investigate changes in aortic hemodynamics over time in patients with AS and/or BAV with or without aortic valve replacement. Methods: We rescheduled 20 patients for a second 4D flow MRI examination, whose first examination was at least 3 years prior. A total of 7 patients received an aortic valve replacement between baseline and follow up examination (=operated group = OP group). Aortic flow patterns (helicity/vorticity) were assessed using a semi-quantitative grading approach from 0 to 3, flow volumes were evaluated in 9 planes, WSS in 18 and peak velocity in 3 areas. Results: While most patients had vortical and/or helical flow formations within the aorta, there was no significant change over time. Ascending aortic forward flow volumes were significantly lower in the OP group than in the NOP group at baseline (NOP 69.3 mL ± 14.2 mL vs. OP 55.3 mL ± 1.9 mL p = 0.029). WSS in the outer ascending aorta was significantly higher in the OP group than in the NOP group at baseline (NOP 0.6 ± 0.2 N/m2 vs. OP 0.8 ± 0.2 N/m2, p = 0.008). Peak velocity decreased from baseline to follow up in the aortic arch only in the OP group (1.6 ± 0.6 m/s vs. 1.2 ± 0.3 m/s, p = 0.018). Conclusion: Aortic valve replacement influences aortic hemodynamics. The parameters improve after surgery.

2.
J Am Coll Cardiol ; 78(6): 545-558, 2021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34353531

RESUMO

BACKGROUND: Cardiovascular magnetic resonance (CMR) is increasingly used for risk stratification in aortic stenosis (AS). However, the relative prognostic power of CMR markers and their respective thresholds remains undefined. OBJECTIVES: Using machine learning, the study aimed to identify prognostically important CMR markers in AS and their thresholds of mortality. METHODS: Patients with severe AS undergoing AVR (n = 440, derivation; n = 359, validation cohort) were prospectively enrolled across 13 international sites (median 3.8 years' follow-up). CMR was performed shortly before surgical or transcatheter AVR. A random survival forest model was built using 29 variables (13 CMR) with post-AVR death as the outcome. RESULTS: There were 52 deaths in the derivation cohort and 51 deaths in the validation cohort. The 4 most predictive CMR markers were extracellular volume fraction, late gadolinium enhancement, indexed left ventricular end-diastolic volume (LVEDVi), and right ventricular ejection fraction. Across the whole cohort and in asymptomatic patients, risk-adjusted predicted mortality increased strongly once extracellular volume fraction exceeded 27%, while late gadolinium enhancement >2% showed persistent high risk. Increased mortality was also observed with both large (LVEDVi >80 mL/m2) and small (LVEDVi ≤55 mL/m2) ventricles, and with high (>80%) and low (≤50%) right ventricular ejection fraction. The predictability was improved when these 4 markers were added to clinical factors (3-year C-index: 0.778 vs 0.739). The prognostic thresholds and risk stratification by CMR variables were reproduced in the validation cohort. CONCLUSIONS: Machine learning identified myocardial fibrosis and biventricular remodeling markers as the top predictors of survival in AS and highlighted their nonlinear association with mortality. These markers may have potential in optimizing the decision of AVR.


Assuntos
Estenose da Valva Aórtica , Fibrose/diagnóstico por imagem , Implante de Prótese de Valva Cardíaca , Imagem Cinética por Ressonância Magnética , Miocárdio/patologia , Remodelação Ventricular , Idoso , Estenose da Valva Aórtica/complicações , Estenose da Valva Aórtica/diagnóstico , Estenose da Valva Aórtica/mortalidade , Técnicas de Imagem Cardíaca/métodos , Feminino , Testes de Função Cardíaca/métodos , Implante de Prótese de Valva Cardíaca/métodos , Implante de Prótese de Valva Cardíaca/mortalidade , Humanos , Aprendizado de Máquina , Imagem Cinética por Ressonância Magnética/métodos , Imagem Cinética por Ressonância Magnética/estatística & dados numéricos , Masculino , Prognóstico , Reprodutibilidade dos Testes , Medição de Risco/métodos , Índice de Gravidade de Doença , Análise de Sobrevida
3.
J Cardiovasc Magn Reson ; 22(1): 6, 2020 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-31955712

RESUMO

BACKGROUND: T1 mapping using modified Look-Locker inversion recovery (MOLLI) provides quantitative information on myocardial tissue composition. T1 results differ between sites due to variations in hardware and software equipment, limiting the comparability of results. The aim was to test if Z-scores can be used to compare the results of MOLLI T1 mapping from different cardiovascular magnetic resonance (CMR) platforms. METHODS: First, healthy subjects (n = 15) underwent 11 combinations of native short-axis T1 mapping (four CMR systems from two manufacturers at 1.5 T and 3 T, three MOLLI schemes). Mean and standard deviation (SD) of septal myocardial T1 were derived for each combination. T1 maps were transformed into Z-score maps based on mean and SD values using a prototype post-processing module. Second, Z-score mapping was applied to a validation sample of patients with cardiac amyloidosis at 1.5 T (n = 25) or 3 T (n = 13). RESULTS: In conventional T1 analysis, results were confounded by variations in field strength, MOLLI scheme, and manufacturer-specific system characteristics. Z-score-based analysis yielded consistent results without significant differences between any two of the combinations in part 1 of the study. In the validation sample, Z-score mapping differentiated between patients with cardiac amyloidosis and healthy subjects with the same diagnostic accuracy as standard T1 analysis regardless of field strength. CONCLUSIONS: T1 analysis based on Z-score mapping provides consistent results without significant differences due to field strengths, CMR systems, or MOLLI variants, and detects cardiac amyloidosis with the same diagnostic accuracy as conventional T1 analysis. Z-score mapping provides a means to compare native T1 results acquired with MOLLI across different CMR platforms.


Assuntos
Neuropatias Amiloides Familiares/diagnóstico por imagem , Cardiomiopatias/diagnóstico por imagem , Interpretação de Imagem Assistida por Computador , Imageamento por Ressonância Magnética/normas , Miocárdio/patologia , Adulto , Idoso , Neuropatias Amiloides Familiares/patologia , Neuropatias Amiloides Familiares/fisiopatologia , Cardiomiopatias/patologia , Cardiomiopatias/fisiopatologia , Estudos de Casos e Controles , Feminino , Alemanha , Humanos , Masculino , Pessoa de Meia-Idade , Variações Dependentes do Observador , Valor Preditivo dos Testes , Reprodutibilidade dos Testes , Função Ventricular Esquerda , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA