Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Matrix Biol ; 132: 72-86, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39009171

RESUMO

Post-mitotic, non-proliferative dermal fibroblasts have crucial functions in maintenance and restoration of tissue homeostasis. They are involved in essential processes such as wound healing, pigmentation and hair growth, but also tumor development and aging-associated diseases. These processes are energetically highly demanding and error prone when mitochondrial damage occurs. However, mitochondrial function in fibroblasts and the influence of mitochondrial dysfunction on fibroblast-specific demands are still unclear. To address these questions, we created a mouse model in which accelerated cell-specific mitochondrial DNA (mtDNA) damage accumulates. We crossed mice carrying a dominant-negative mutant of the mitochondrial replicative helicase Twinkle (RosaSTOP system) with mice that express fibroblast-specific Cre Recombinase (Collagen1A2 CreERT) which can be activated by Tamoxifen (TwinkleFIBRO). Thus, we are able to induce mtDNA deletions and duplications in specific cells, a process which resembles the physiological aging process in humans, where this damage accumulates in all tissues. Upon proliferation in vitro, Tamoxifen induced Twinkle fibroblasts deplete most of their mitochondrial DNA which, although not disturbing the stoichiometry of the respiratory chain complexes, leads to reduced ROS production and mitochondrial membrane potential as well as an anti-inflammatory and anti-fibrotic profile of the cells. In Sodium Azide treated wildtype fibroblasts, without a functioning respiratory chain, we observe the opposite, a rather pro-inflammatory and pro-fibrotic signature. Upon accumulation of mitochondrial DNA mutations in vivo the TwinkleFIBRO mice are protected from fibrosis development induced by intradermal Bleomycin injections. This is due to dampened differentiation of the dermal fibroblasts into α-smooth-muscle-actin positive myofibroblasts in TwinkleFIBRO mice. We thus provide evidence for striking differences of the impact that mtDNA mutations have in contrast to blunted mitochondrial function in dermal fibroblasts and skin homeostasis. These data contribute to improved understanding of mitochondrial function and dysfunction in skin and provide mechanistic insight into potential targets to treat skin fibrosis in the future.


Assuntos
Bleomicina , Diferenciação Celular , DNA Mitocondrial , Fibrose , Mutação , Miofibroblastos , Animais , Bleomicina/efeitos adversos , Bleomicina/toxicidade , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Camundongos , Miofibroblastos/metabolismo , Miofibroblastos/patologia , Miofibroblastos/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , DNA Helicases/genética , DNA Helicases/metabolismo , Fibroblastos/metabolismo , Fibroblastos/efeitos dos fármacos , Fibroblastos/patologia , Tamoxifeno/farmacologia , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/patologia , Modelos Animais de Doenças , Espécies Reativas de Oxigênio/metabolismo , Humanos , Pele/patologia , Pele/metabolismo , Pele/efeitos dos fármacos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Colágeno Tipo I
2.
J Cachexia Sarcopenia Muscle ; 13(4): 2132-2145, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35765148

RESUMO

BACKGROUND: Mitochondrial dysfunction caused by mitochondrial (mtDNA) deletions have been associated with skeletal muscle atrophy and myofibre loss. However, whether such defects occurring in myofibres cause sarcopenia is unclear. Also, the contribution of mtDNA alterations in muscle stem cells (MuSCs) to sarcopenia remains to be investigated. METHODS: We expressed a dominant-negative variant of the mitochondrial helicase, which induces mtDNA alterations, specifically in differentiated myofibres (K320Eskm mice) and MuSCs (K320Emsc mice), respectively, and investigated their impact on muscle structure and function by immunohistochemistry, analysis of mtDNA and respiratory chain content, muscle transcriptome and functional tests. RESULTS: K320Eskm mice at 24 months of age had higher levels of mtDNA deletions compared with controls in soleus (SOL, 0.07673% vs. 0.00015%, P = 0.0167), extensor digitorum longus (EDL, 0.0649 vs. 0.000925, P = 0.0015) and gastrocnemius (GAS, 0.09353 vs. 0.000425, P = 0.0004). K320Eskm mice revealed a progressive increase in the proportion of cytochrome c oxidase deficient (COX- ) fibres in skeletal muscle cross sections, reaching a maximum of 3.03%, 4.36%, 13.58%, and 17.08% in EDL, SOL, tibialis anterior (TA) and GAS, respectively. However, mice did not show accelerated loss of muscle mass, muscle strength or physical performance. Histological analyses revealed ragged red fibres but also stimulated regeneration, indicating activation of MuSCs. RNAseq demonstrated enhanced expression of genes associated with protein synthesis, but also degradation, as well as muscle fibre differentiation and cell proliferation. In contrast, 7 days after destruction by cardiotoxin, regenerating TA of K320Emsc mice showed 30% of COX- fibres. Notably, regenerated muscle showed dystrophic changes, increased fibrosis (2.5% vs. 1.6%, P = 0.0003), increased abundance of fat cells (2.76% vs. 0.23%, P = 0.0144) and reduced muscle mass (regenerated TA: 40.0 mg vs. 60.2 mg, P = 0.0171). In contrast to muscles from K320Eskm mice, freshly isolated MuSCs from aged K320Emsc mice were completely devoid of mtDNA alterations. However, after passaging, mtDNA copy number as well as respiratory chain subunits and p62 levels gradually decreased. CONCLUSIONS: Taken together, accumulation of large-scale mtDNA alterations in myofibres alone is not sufficient to cause sarcopenia. Expression of K320E-Twinkle is tolerated in quiescent MuSCs, but progressively leads to mtDNA and respiratory chain depletion upon activation, in vivo and in vitro, possibly caused by an increased mitochondrial removal. Altogether, our results suggest that the accumulation of mtDNA alterations in myofibres activates regeneration during aging, which leads to sarcopenia if such alterations have expanded in MuSCs as well.


Assuntos
Sarcopenia , Animais , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Camundongos , Mitocôndrias/metabolismo , Músculo Esquelético/patologia , Regeneração , Sarcopenia/patologia
3.
Neurol Genet ; 8(2): e660, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35252560

RESUMO

BACKGROUND AND OBJECTIVES: We report the pathogenic sequence variant m.5789T>C in the anticodon stem of the mitochondrial tRNA for cysteine as a novel cause of neuropathy, ataxia, and retinitis pigmentosa (NARP), which is usually associated with pathogenic variants in the MT-ATP6 gene. METHODS: To address the correlation of oxidative phosphorylation deficiency with mutation loads, we performed genotyping on single laser-dissected skeletal muscle fibers. Stability of the mitochondrial tRNACys was investigated by Northern blotting. Accompanying deletions of the mitochondrial genome were detected by long-range PCR and their breakpoints were determined by sequencing of single-molecule amplicons. RESULTS: The sequence variant m.5789T>C, originating from the patient's mother, decreases the stability of the mitochondrial tRNA for cysteine by disrupting the anticodon stem, which subsequently leads to a combined oxidative phosphorylation deficiency. In parallel, we observed a prominent cluster of low-abundance somatic deletions with breakpoints in the immediate vicinity of the m.5789T>C variant. Strikingly, all deletion-carrying mitochondrial DNA (mtDNA) species, in which the corresponding nucleotide position was not removed, harbored the mutant allele, and none carried the wild-type allele. DISCUSSION: In addition to providing evidence for the novel association of a tRNA sequence alteration with NARP syndrome, our observations support the hypothesis that single nucleotide changes can lead to increased occurrence of site-specific mtDNA deletions through the formation of an imperfect repeat. This finding might be relevant for understanding mechanisms of deletion generation in the human mitochondrial genome.

4.
Sci Rep ; 10(1): 22037, 2020 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-33328493

RESUMO

The formation of dentin and enamel matrix depends on reciprocal interactions between epithelial-mesenchymal cells. To assess the role of mitochondrial function in amelogenesis and dentinogenesis, we studied postnatal incisor development in K320E-TwinkleEpi mice. In these mice, a loss of mitochondrial DNA (mtDNA), followed by a severe defect in the oxidative phosphorylation system is induced specifically in Keratin 14 (K14+) expressing epithelial cells. Histochemical staining showed severe reduction of cytochrome c oxidase activity only in K14+ epithelial cells. In mutant incisors, H&E staining showed severe defects in the ameloblasts, in the epithelial cells of the stratum intermedium and the papillary cell layer, but also a disturbed odontoblast layer. The lack of amelogenin in the enamel matrix of K320E-TwinkleEpi mice indicated that defective ameloblasts are not able to form extracellular enamel matrix proteins. In comparison to control incisors, von Kossa staining showed enamel biomineralization defects and dentin matrix impairment. In mutant incisor, TUNEL staining and ultrastructural analyses revealed differentiation defects, while in hair follicle cells apoptosis is prevalent. We concluded that mitochondrial oxidative phosphorylation in epithelial cells of the developed incisor is required for Ca2+ homeostasis to regulate the formation of enamel matrix and induce the differentiation of ectomesenchymal cells into odontoblasts.


Assuntos
Esmalte Dentário/metabolismo , Dentina/metabolismo , Células Epiteliais/metabolismo , Incisivo/crescimento & desenvolvimento , Incisivo/metabolismo , Mitocôndrias/metabolismo , Fosforilação Oxidativa , Amelogenina/metabolismo , Animais , Animais Recém-Nascidos , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Incisivo/ultraestrutura , Camundongos Transgênicos , Mutação/genética , Succinato Desidrogenase/metabolismo
5.
PLoS Genet ; 16(12): e1009242, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33315859

RESUMO

Deletions and duplications in mitochondrial DNA (mtDNA) cause mitochondrial disease and accumulate in conditions such as cancer and age-related disorders, but validated high-throughput methodology that can readily detect and discriminate between these two types of events is lacking. Here we establish a computational method, MitoSAlt, for accurate identification, quantification and visualization of mtDNA deletions and duplications from genomic sequencing data. Our method was tested on simulated sequencing reads and human patient samples with single deletions and duplications to verify its accuracy. Application to mouse models of mtDNA maintenance disease demonstrated the ability to detect deletions and duplications even at low levels of heteroplasmy.


Assuntos
DNA Mitocondrial/genética , Deleção de Genes , Duplicação Gênica , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Análise de Sequência de DNA/métodos , Animais , DNA Mitocondrial/química , Sequenciamento de Nucleotídeos em Larga Escala/normas , Camundongos , Reprodutibilidade dos Testes , Análise de Sequência de DNA/normas
6.
Carcinogenesis ; 41(12): 1735-1745, 2020 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-32255484

RESUMO

Functioning mitochondria are crucial for cancer metabolism, but aerobic glycolysis is still considered to be an important pathway for energy production in many tumor cells. Here we show that two well established, classic Hodgkin lymphoma (cHL) cell lines harbor deleterious variants within mitochondrial DNA (mtDNA) and thus exhibit reduced steady-state levels of respiratory chain complexes. However, instead of resulting in the expected bioenergetic defect, these mtDNA variants evoke a retrograde signaling response that induces mitochondrial biogenesis and ultimately results in increased mitochondrial mass as well as function and enhances proliferation in vitro as well as tumor growth in mice in vivo. When complex I assembly was impaired by knockdown of one of its subunits, this led to further increased mitochondrial mass and function and, consequently, further accelerated tumor growth in vivo. In contrast, inhibition of mitochondrial respiration in vivo by the mitochondrial complex I inhibitor metformin efficiently slowed down growth. We conclude that, as a new mechanism, mildly deleterious mtDNA variants in cHL cancer cells cause an increase of mitochondrial mass and enhanced function as a compensatory effect using a retrograde signaling pathway, which provides an obvious advantage for tumor growth.


Assuntos
Carcinogênese/patologia , DNA Mitocondrial/genética , Doença de Hodgkin/patologia , Mutação , Biogênese de Organelas , Animais , Apoptose , Carcinogênese/genética , Carcinogênese/metabolismo , Proliferação de Células , Doença de Hodgkin/genética , Doença de Hodgkin/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Fosforilação Oxidativa , Células de Reed-Sternberg , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Diabetes ; 68(5): 918-931, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30833469

RESUMO

Low 25-hydroxyvitamin D levels correlate with the prevalence of diabetes; however, the mechanisms remain uncertain. Here, we show that nutritional deprivation-responsive mechanisms regulate vitamin D metabolism. Both fasting and diabetes suppressed hepatic cytochrome P450 (CYP) 2R1, the main vitamin D 25-hydroxylase responsible for the first bioactivation step. Overexpression of coactivator peroxisome proliferator-activated receptor γ coactivator 1-α (PGC-1α), induced physiologically by fasting and pathologically in diabetes, resulted in dramatic downregulation of CYP2R1 in mouse hepatocytes in an estrogen-related receptor α (ERRα)-dependent manner. However, PGC-1α knockout did not prevent fasting-induced suppression of CYP2R1 in the liver, indicating that additional factors contribute to the CYP2R1 repression. Furthermore, glucocorticoid receptor (GR) activation repressed the liver CYP2R1, suggesting GR involvement in the regulation of CYP2R1. GR antagonist mifepristone partially prevented CYP2R1 repression during fasting, suggesting that glucocorticoids and GR contribute to the CYP2R1 repression during fasting. Moreover, fasting upregulated the vitamin D catabolizing CYP24A1 in the kidney through the PGC-1α-ERRα pathway. Our study uncovers a molecular mechanism for vitamin D deficiency in diabetes and reveals a novel negative feedback mechanism that controls crosstalk between energy homeostasis and the vitamin D pathway.


Assuntos
Diabetes Mellitus/metabolismo , Jejum/sangue , Fatores de Transcrição/sangue , Fatores de Transcrição/metabolismo , Deficiência de Vitamina D/metabolismo , Vitamina D/sangue , Vitamina D/metabolismo , Animais , Colestanotriol 26-Mono-Oxigenase/metabolismo , Diabetes Mellitus/sangue , Jejum/fisiologia , Fígado/metabolismo , Camundongos , Mifepristona/farmacologia , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Receptores de Estrogênio/metabolismo , Receptores de Glucocorticoides/antagonistas & inibidores , Receptores de Glucocorticoides/metabolismo , Deficiência de Vitamina D/sangue , Receptor ERRalfa Relacionado ao Estrogênio
8.
Oncotarget ; 6(34): 36172-84, 2015 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-26452026

RESUMO

A hallmark of solid tumors is the consumption of large amounts of glucose and production of lactate, also known as Warburg-like metabolism. This metabolic phenotype is typical for aggressive tumor growth, and can be visualized by 18F-fluorodeoxyglucose (18F-FDG) uptake detected by positron emission tomography (PET). High 18F-FDG uptake inversely correlates with survival and goes along with reduced expression of the catalytic beta-subunit of the H+-ATP synthase (ß-F1-ATPase) in several tumor entities analyzed so far.For this study we characterized a series of 15 head and neck squamous cell carcinoma (HNSCC) by (i) determining 18F-FDG-uptake; (ii) quantitative expression analysis of ß-F1-ATPase (Complex V), NDUF-S1 (Complex I) and COX1 (Complex IV) of the mitochondrial electron transport chain (ETC), as well as Hsp60 (mitochondrial mass) and GAPDH (glycolysis) in tumor cells; (iii) sequencing of the mtDNA of representative tumor samples.Whereas high 18F-FDG-uptake also correlates with poor prognosis in HNSCC, it surprisingly is accompanied by high levels of ß-F1-ATPase, but not by any of the other analyzed proteins.In conclusion, we here describe a completely new phenotype of metabolic adaptation possibly enabling those tumors with highest levels of ß-F1-ATPase to rapidly proliferate even in hypoxic zones, which are typical for HNSCC.


Assuntos
Carcinoma de Células Escamosas/metabolismo , Glucose/metabolismo , Neoplasias de Cabeça e Pescoço/metabolismo , Mitocôndrias/metabolismo , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Carcinoma de Células Escamosas/diagnóstico por imagem , Carcinoma de Células Escamosas/enzimologia , Feminino , Fluordesoxiglucose F18/análise , Fluordesoxiglucose F18/farmacocinética , Neoplasias de Cabeça e Pescoço/diagnóstico por imagem , Neoplasias de Cabeça e Pescoço/enzimologia , Humanos , Masculino , Pessoa de Meia-Idade , Mitocôndrias/enzimologia , Tomografia por Emissão de Pósitrons/métodos , Carcinoma de Células Escamosas de Cabeça e Pescoço
9.
EMBO Mol Med ; 6(5): 624-39, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24648500

RESUMO

In the normal quiescent vasculature, only 0.01% of endothelial cells (ECs) are proliferating. However, this proportion increases dramatically following the angiogenic switch during tumor growth or wound healing. Recent evidence suggests that this angiogenic switch is accompanied by a metabolic switch. Here, we show that proliferating ECs increasingly depend on mitochondrial oxidative phosphorylation (OxPhos) for their increased energy demand. Under growth conditions, ECs consume three times more oxygen than quiescent ECs and work close to their respiratory limit. The increased utilization of the proton motif force leads to a reduced mitochondrial membrane potential in proliferating ECs and sensitizes to mitochondrial uncoupling. The benzoquinone embelin is a weak mitochondrial uncoupler that prevents neoangiogenesis during tumor growth and wound healing by exhausting the low respiratory reserve of proliferating ECs without adversely affecting quiescent ECs. We demonstrate that this can be exploited therapeutically by attenuating tumor growth in syngenic and xenograft mouse models. This novel metabolic targeting approach might be clinically valuable in controlling pathological neoangiogenesis while sparing normal vasculature and complementing cytostatic drugs in cancer treatment.


Assuntos
Benzoquinonas/farmacologia , Respiração Celular/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Neovascularização Patológica , Neovascularização Fisiológica/efeitos dos fármacos , Desacopladores/farmacologia , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Modelos Animais de Doenças , Camundongos , Mitocôndrias/metabolismo , Neoplasias/tratamento farmacológico , Desacopladores/uso terapêutico , Cicatrização/efeitos dos fármacos
10.
Brain ; 137(Pt 2): 354-65, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24163249

RESUMO

Accumulation of mitochondrial DNA deletions is observed especially in dopaminergic neurons of the substantia nigra during ageing and even more in Parkinson's disease. The resulting mitochondrial dysfunction is suspected to play an important role in neurodegeneration. However, the molecular mechanisms involved in the preferential generation of mitochondrial DNA deletions in dopaminergic neurons are still unknown. To study this phenomenon, we developed novel polymerase chain reaction strategies to detect distinct mitochondrial DNA deletions and monitor their accumulation patterns. Applying these approaches in in vitro and in vivo models, we show that catecholamine metabolism drives the generation and accumulation of these mitochondrial DNA mutations. As in humans, age-related accumulation of mitochondrial DNA deletions is most prominent in dopaminergic areas of mouse brain and even higher in the catecholaminergic adrenal medulla. Dopamine treatment of terminally differentiated neuroblastoma cells, as well as stimulation of dopamine turnover in mice over-expressing monoamine oxidase B both induce multiple mitochondrial DNA deletions. Our results thus identify catecholamine metabolism as the driving force behind mitochondrial DNA deletions, probably being an important factor in the ageing-associated degeneration of dopaminergic neurons.


Assuntos
Catecolaminas/metabolismo , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Neurônios Dopaminérgicos/metabolismo , Deleção de Genes , Animais , Linhagem Celular Tumoral , Humanos , Camundongos , Camundongos Endogâmicos C57BL
11.
Nucleic Acids Res ; 41(21): 9848-57, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23982517

RESUMO

Mitochondrial topoisomerase I is a genetically distinct mitochondria-dedicated enzyme with a crucial but so far unknown role in the homeostasis of mitochondrial DNA metabolism. Here, we present data suggesting a negative regulatory function in mitochondrial transcription or transcript stability. Deficiency or depletion of mitochondrial topoisomerase I increased mitochondrial transcripts, whereas overexpression lowered mitochondrial transcripts, depleted respiratory complexes I, III and IV, decreased cell respiration and raised superoxide levels. Acute depletion of mitochondrial topoisomerase I triggered neither a nuclear mito-biogenic stress response nor compensatory topoisomerase IIß upregulation, suggesting the concomitant increase in mitochondrial transcripts was due to release of a local inhibitory effect. Mitochondrial topoisomerase I was co-immunoprecipitated with mitochondrial RNA polymerase. It selectively accumulated and rapidly exchanged at a subset of nucleoids distinguished by the presence of newly synthesized RNA and/or mitochondrial RNA polymerase. The inactive Y559F-mutant behaved similarly without affecting mitochondrial transcripts. In conclusion, mitochondrial topoisomerase I dampens mitochondrial transcription and thereby alters respiratory capacity. The mechanism involves selective association of the active enzyme with transcriptionally active nucleoids and a direct interaction with mitochondrial RNA polymerase. The inhibitory role of topoisomerase I in mitochondrial transcription is strikingly different from the stimulatory role of topoisomerase I in nuclear transcription.


Assuntos
DNA Topoisomerases Tipo I/metabolismo , Regulação da Expressão Gênica , Mitocôndrias/enzimologia , Mitocôndrias/genética , Transcrição Gênica , Animais , Linhagem Celular Tumoral , Células Cultivadas , Humanos , Camundongos , Mitocôndrias/metabolismo , RNA/metabolismo , RNA Mitocondrial
12.
EMBO J ; 31(5): 1293-307, 2012 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-22252130

RESUMO

Respiratory chain (RC) complexes are organized into supercomplexes forming 'respirasomes'. The mechanism underlying the interdependence of individual complexes is still unclear. Here, we show in human patient cells that the presence of a truncated COX1 subunit leads to destabilization of complex IV (CIV) and other RC complexes. Surprisingly, the truncated COX1 protein is integrated into subcomplexes, the holocomplex and even into supercomplexes, which however are all unstable. Depletion of the m-AAA protease AFG3L2 increases stability of the truncated COX1 and other mitochondrially encoded proteins, whereas overexpression of wild-type AFG3L2 decreases their stability. Both full-length and truncated COX1 proteins physically interact with AFG3L2. Expression of a dominant negative AFG3L2 variant also promotes stabilization of CIV proteins as well as the assembled complex and rescues the severe phenotype in heteroplasmic cells. Our data indicate that the mechanism underlying pathogenesis in these patients is the rapid clearance of unstable respiratory complexes by quality control pathways, rather than their impaired assembly.


Assuntos
Proteases Dependentes de ATP/metabolismo , Códon sem Sentido , Ciclo-Oxigenase 1/genética , Ciclo-Oxigenase 1/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , ATPases Associadas a Diversas Atividades Celulares , Células Cultivadas , Ciclo-Oxigenase 1/química , Transporte de Elétrons , Complexo IV da Cadeia de Transporte de Elétrons/química , Estabilidade Enzimática , Humanos , Ligação Proteica , Mapeamento de Interação de Proteínas , Multimerização Proteica
13.
Mutat Res ; 662(1-2): 28-32, 2009 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-19114048

RESUMO

In search of tumor-specific mitochondrial DNA (mtDNA) mutations in head and neck squamous cell cancer, we found heteroplasmy in the blood of two individuals, i.e., these individuals carried two alleles of mtDNA. In both cases, the tumor was found to be homoplasmic, i.e., it contained only one of the two mtDNA alleles present in blood. More interestingly, in one case the tumor had acquired the wild-type allele, while in the other case it contained the mutant allele only. Sequencing of the whole 16.5 kb mtDNA showed that the observed heteroplasmic positions in the D-loop region, nucleotides 152 and 16187, respectively, were the only differences between tumor and blood mtDNA genotypes in these individuals. Our findings thus strongly support the hypothesis that accumulation of mtDNA mutations in solid tumors occurs by clonal and random expansion of pre-existing alleles and is not necessary for the metabolic changes generally associated with tumor formation, the Warburg effect.


Assuntos
DNA Mitocondrial/genética , Neoplasias de Cabeça e Pescoço/genética , Mutação/genética , Idoso , Sequência de Bases , Análise Mutacional de DNA , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Dados de Sequência Molecular , Linhagem , Polimorfismo Genético
14.
Exp Cell Res ; 313(14): 3076-89, 2007 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-17509565

RESUMO

Energy-producing pathways, adenine nucleotide levels, oxidative stress response and Ca(2+) homeostasis were investigated in cybrid cells incorporating two pathogenic mitochondrial DNA point mutations, 3243A>G and 3302A>G in tRNA(Leu(UUR)), as well as Rho(0) cells and compared to their parental 143B osteosarcoma cell line. All cells suffering from a severe respiratory chain deficiency were able to proliferate as fast as controls. The major defect in oxidative phosphorylation was efficiently compensated by a rise in anaerobic glycolysis, so that the total ATP production rate was preserved. This enhancement of glycolysis was enabled by a considerable decrease of cellular total adenine nucleotide pools and a concomitant shift in the AMP+ADP/ATP ratios, while the energy charge potential was still in the normal range. Further important consequences were an increased production of superoxide which, however, was neither escorted by major changes in the antioxidative defence systems nor was it leading to substantial oxidative damage. Most interestingly, the lowered mitochondrial membrane potential led to a disturbed intramitochondrial calcium homeostasis, which most likely is a major pathomechanism in mitochondrial diseases.


Assuntos
Trifosfato de Adenosina/metabolismo , Cálcio/metabolismo , Transporte de Elétrons/fisiologia , Glicólise/fisiologia , Mitocôndrias/metabolismo , Aminoácidos/metabolismo , Antioxidantes/metabolismo , Linhagem Celular , Homeostase , Humanos , Concentração de Íons de Hidrogênio , Ácido Láctico/metabolismo , Potenciais da Membrana/fisiologia , Oxirredução , Estresse Oxidativo , Fenótipo , Espécies Reativas de Oxigênio/metabolismo
15.
J Invest Dermatol ; 127(5): 1084-93, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17185981

RESUMO

The energy metabolism of the epidermis has been the subject of controversy; thus we characterized the mitochondrial phenotype of human primary keratinocytes and fibroblasts, in cell culture and in human skin sections. We found that keratinocytes respire as much as fibroblasts, however, maximal activities of the respiratory chain (RC) complexes were 2- to 5-fold lower, whereas expression levels of RC proteins were similar. Maximal activities of aconitase and isocitrate dehydrogenase, two mitochondrial enzymes especially vulnerable to superoxide, were lower than in fibroblasts. Indeed, superoxide anion levels were much higher in keratinocytes, and keratinocytes displayed higher lipid peroxidation levels and a lower reduced glutathione/oxidized glutathione ratio, indicating enhanced oxidative stress. Although superoxide dismutase activity and especially expression of the mitochondrial superoxide dismutase, Mn-SOD, were drastically lower in keratinocytes, explaining the high superoxide levels, glutathione peroxidase activity and protein were almost undetectable in fibroblasts. Catalase activity and hydrogen peroxide levels were similar. In summary, we could show that keratinocytes actively use the mitochondrial RC not only for adenosine 5' triphosphate synthesis but also for the accumulation of superoxide anions, even at the expense of mitochondrial functional capacity, indicating that superoxide-driven mitochondrial impairment might be a prerequisite for keratinocyte differentiation.


Assuntos
Queratinócitos/metabolismo , Mitocôndrias/fisiologia , Superóxido Dismutase/fisiologia , Superóxidos/metabolismo , Aconitato Hidratase/metabolismo , Diferenciação Celular/fisiologia , Células Cultivadas , Criança , Transporte de Elétrons/fisiologia , Metabolismo Energético/fisiologia , Células Epidérmicas , Epiderme/metabolismo , Fibroblastos/citologia , Fibroblastos/metabolismo , Humanos , Isocitrato Desidrogenase/metabolismo , Queratinócitos/citologia , Peroxidação de Lipídeos/fisiologia , Masculino , Estresse Oxidativo/fisiologia
16.
J Cell Physiol ; 209(1): 103-12, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16775840

RESUMO

We have used HeLa cells without mitochondrial DNA (rho0-cells) and transient rho0-phenocopies, obtained from wild-type cells by short-term treatment with ethidium bromide, to analyze how the absence of a functional mitochondrial respiratory chain slows down proliferation. We ruled out an energetic problem (ATP/ADP content) as well as defective synthesis of pyrimidine, iron-sulfur clusters or heme as important causes for the proliferative defect. Flow cytometric analysis revealed that reactive oxygen species were reduced in rho0-cells and in rho0-phenocopies, and that, quite unusually, all stages of the cell cycle were slowed down. Specific quenching of mitochondrial ROS with the ubiquinone analog MitoQ also resulted in slower growth. Some important cell-cycle regulators were reduced in rho0-cells: cyclin D3, cdk6, p18INK4C, p27KIP1, and p21CIP1/WAF1. In the rho0-phenocopies, the expression pattern did not fully duplicate the complex response observed in rho0-cells, and mainly p21CIP1/WAF1 was downregulated. Activities of the growth regulatory PKB/Akt and MAPK/ERK-signaling pathways did not correlate with proliferation rates of rho0-cells and rho0-phenocopies. Our study demonstrates that loss of a functional mitochondrial electron transport chain inhibits cell-cycle progression, and we postulate that this occurs through the decreased concentration of reactive oxygen species, leading to downregulation of p21CIP1/WAF1.


Assuntos
Ciclo Celular , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Doenças Mitocondriais/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Proteínas de Ciclo Celular/metabolismo , Crescimento Celular , Proliferação de Células , Regulação para Baixo , Etídio/farmacologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Células HeLa , Heme/biossíntese , Humanos , Doenças Mitocondriais/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Uridina/farmacologia , Uridina Trifosfato/metabolismo
17.
Hum Mol Genet ; 14(24): 3857-64, 2005 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-16278235

RESUMO

We have disrupted expression of the mitochondrial Friedreich ataxia protein frataxin specifically in murine hepatocytes to generate mice with impaired mitochondrial function and decreased oxidative phosphorylation. These animals have a reduced life span and develop multiple hepatic tumors. Livers also show increased oxidative stress, impaired respiration and reduced ATP levels paralleled by reduced activity of iron-sulfur cluster (Fe/S) containing proteins (ISP), which all leads to increased hepatocyte turnover by promoting both apoptosis and proliferation. Accordingly, phosphorylation of the stress-inducible p38 MAP kinase was found to be specifically impaired following disruption of frataxin. Taken together, these findings indicate that frataxin may act as a mitochondrial tumor suppressor protein in mammals.


Assuntos
Proteínas de Ligação ao Ferro/genética , Neoplasias Hepáticas/genética , Fígado/fisiologia , Longevidade/genética , Mitocôndrias/metabolismo , Animais , Apoptose/genética , Proliferação de Células , Hepatócitos/metabolismo , Hepatócitos/patologia , Proteínas de Ligação ao Ferro/metabolismo , Proteínas Ferro-Enxofre/metabolismo , Fígado/patologia , Neoplasias Hepáticas/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/genética , Estresse Oxidativo , Fosforilação , Espécies Reativas de Oxigênio/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Frataxina
18.
Nucleic Acids Res ; 33(17): 5647-58, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16199753

RESUMO

We have studied the consequences of two homoplasmic, pathogenic point mutations (T7512C and G7497A) in the tRNA(Ser(UCN)) gene of mitochondrial (mt) DNA using osteosarcoma cybrids. We identified a severe reduction of tRNA(Ser(UCN)) to levels below 10% of controls for both mutations, resulting in a 40% reduction in mitochondrial protein synthesis rate and in a respiratory chain deficiency resembling that in the patients muscle. Aminoacylation was apparently unaffected. On non-denaturating northern blots we detected an altered electrophoretic mobility for G7497A containing tRNA molecules suggesting a structural impact of this mutation, which was confirmed by structural probing. By comparing in vitro transcribed molecules with native RNA in such gels, we also identified tRNA(Ser(UCN)) being present in two isoforms in vivo, probably corresponding to the nascent, unmodified transcripts co-migrating with the in vitro transcripts and a second, faster moving isoform corresponding to the mature tRNA. In cybrids containing either mutations the unmodified isoforms were severely reduced. We hypothesize that both mutations lead to an impairment of post-transcriptional modification processes, ultimately leading to a preponderance of degradation by nucleases over maturation by modifying enzymes, resulting in severely reduced tRNA(Ser(UCN)) steady state levels. We infer that an increased degradation rate, caused by disturbance of tRNA maturation and, in the case of the G7497A mutant, alteration of tRNA structure, is a new pathogenic mechanism of mt tRNA point mutations.


Assuntos
DNA Mitocondrial/genética , Doenças Mitocondriais/genética , Mutação Puntual , Processamento Pós-Transcricional do RNA , RNA de Transferência de Serina/metabolismo , RNA/metabolismo , Aminoacilação , Sequência de Bases , Linhagem Celular , Criança , Pré-Escolar , Complexo I de Transporte de Elétrons/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Humanos , Masculino , Doenças Mitocondriais/metabolismo , Proteínas Mitocondriais/biossíntese , Dados de Sequência Molecular , RNA/química , RNA/genética , Precursores de RNA/metabolismo , Estabilidade de RNA , RNA Mitocondrial , RNA de Transferência de Serina/química , RNA de Transferência de Serina/genética
19.
FASEB J ; 18(11): 1300-2, 2004 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15180963

RESUMO

During development of the heart, mitochondria proliferate within cardiomyocytes. It is unclear whether this is a response to the increasing energy demand or whether it is part of the developmental program. To investigate the role of the electron transport chain (ETC) in this process, we used transgenic murine embryonic stem (ES) cells in which the green fluorescent protein gene is under control of the alpha-myosin heavy chain promoter (alpha-MHC), allowing easy monitoring of cardiomyocyte differentiation. Spontaneous contraction of these cells within embryoid bodies (EBs) was not affected by inhibition of the ETC, suggesting that early heart cell function is sufficiently supported by anaerobic ATP production. However, heart cell development was completely blocked when adding antimycin A, an inhibitor of ETC complex III, before initiation of differentiation, whereas KCN did not block differentiation, strongly suggesting that specifically complex III function rather than mitochondrial ATP production is necessary for early heart cell development. When the underlying mechanism was examined, we noticed that antimycin A but not KCN lead to inhibition of spontaneous intracellular Ca++ oscillations, whereas both substances decreased mitochondrial membrane potential, as expected. We postulate that mitochondrial complex III activity is necessary for these Ca++ oscillations, which in turn are a prerequisite for cardiomyocyte differentiation.


Assuntos
Complexo III da Cadeia de Transporte de Elétrons/fisiologia , Transporte de Elétrons/fisiologia , Coração Fetal/citologia , Mitocôndrias Cardíacas/fisiologia , Miocárdio/citologia , Miócitos Cardíacos/fisiologia , Trifosfato de Adenosina/metabolismo , Animais , Antimicina A/farmacologia , Sinalização do Cálcio/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Genes Reporter , Idade Gestacional , Potenciais da Membrana , Camundongos , Camundongos Transgênicos , Contração Miocárdica/efeitos dos fármacos , Miócitos Cardíacos/ultraestrutura , Cadeias Pesadas de Miosina/genética , Cianeto de Potássio/farmacologia , Regiões Promotoras Genéticas/genética , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Fatores de Transcrição/biossíntese , Fatores de Transcrição/genética , Miosinas Ventriculares/genética
20.
Kidney Int ; 62(5): 1582-90, 2002 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-12371958

RESUMO

BACKGROUND: Previous studies have suggested a neuroendocrine defect underlying uremic hypogonadism, characterized by a reduced secretion of gonadotropin-releasing hormone (GnRH) and luteinizing hormone (LH). METHODS: We studied the GnRH-producing GT1-7 cell line and the LH-producing LbetaT-2 pituitary cell line under uremic conditions to investigate whether substances circulating in uremic plasma directly affect hypothalamic or pituitary hormone secretion. The cells were incubated with serum from 5/6-nephrectomized or sham-nephrectomized castrated rats, respectively. Furthermore, GT1 cells were incubated with delipidated sera, serum subfractions separated by molecular weight, or several peptide hormones. Cellular viability, apoptosis rate and extracellular hormone degradation were assessed separately. GnRH and LH were measured by RIA in supernatants and cell lysates. GnRH gene expression was assessed by Northern blot. RESULTS: Uremic serum caused a reduction of extracellular GnRH concentration by 31%, whereas intracellular GnRH increased by 12%. This effect was independent of serum lipids and enzymatic GnRH degradation but was abolished by trypsin digestion. Cellular viability, apoptosis rates and GnRH gene expression did not differ between the two groups. The inhibitory activity was recovered from the high-molecular weight fraction, whereas the fraction <5 kD had stimulatory activity. In contrast, uremic serum did not affect LH secretion from LbetaT-2 cells, indicating that the hypoactivity of the hypothalamo-pituitary gonadotrope unit results from an inhibition at the hypothalamic rather than the pituitary level. CONCLUSIONS: Our results suggest that uremic serum contains macromolecular and hydrophilic peptide(s) able to specifically suppress the neurosecretion of GnRH from GT1-7 cells.


Assuntos
Proteínas Sanguíneas/metabolismo , Hormônio Liberador de Gonadotropina/metabolismo , Hipotálamo/citologia , Neurônios/metabolismo , Uremia/metabolismo , Animais , Linhagem Celular , Creatinina/sangue , Relação Dose-Resposta a Droga , Eritropoetina/farmacologia , Expressão Gênica/fisiologia , Hormônio Liberador de Gonadotropina/genética , Hormônio do Crescimento/farmacologia , Temperatura Alta , Fator de Crescimento Insulin-Like I/farmacologia , Leptina/farmacologia , Hormônio Luteinizante/farmacologia , Masculino , Neurônios/citologia , Neurônios/efeitos dos fármacos , Hormônio Paratireóideo/farmacologia , Hipófise/citologia , Prolactina/farmacologia , Ratos , Ratos Sprague-Dawley , Ureia/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA