Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Synth Biol ; 11(10): 3182-3189, 2022 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-36223492

RESUMO

The heterodimeric transcription factor, hypoxia inducible factor-1 (HIF-1), is an important anticancer target as it supports the adaptation and response of tumors to hypoxia. Here, we optimized the repressed transactivator yeast two-hybrid system to further develop it as part of a versatile yeast-based drug discovery platform and validated it using HIF-1. We demonstrate both fluorescence-based and auxotrophy-based selections that could detect HIF-1α/HIF-1ß dimerization inhibition. The engineered genetic selection is tunable and able to differentiate between strong and weak interactions, shows a large dynamic range, and is stable over different growth phases. Furthermore, we engineered mechanisms to control for cellular activity and off-target drug effects. We thoroughly characterized all parts of the biosensor system and argue this tool will be generally applicable to a wide array of protein-protein interaction targets. We anticipate this biosensor will be useful as part of a drug discovery platform, particularly when screening DNA-encoded new modality drugs.


Assuntos
Técnicas Biossensoriais , Fator 1 Induzível por Hipóxia , Humanos , Hipóxia , Descoberta de Drogas , Transativadores
2.
Biochim Biophys Acta Biomembr ; 1862(3): 183174, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31887275

RESUMO

Receptor component protein (RCP) is a 148 amino acid intracellular peripheral membrane protein, previously identified as promoting the coupling of CGRP to cAMP production at the CGRP receptor, a heterodimer of calcitonin receptor like-receptor (CLR), a family B G protein-coupled receptor (GPCR) and receptor activity modifying protein 1 (RAMP1). We extend these observations to show that it selectively enhances CGRP receptor coupling to Gs but not Gq or pERK activation. At other family B GPCRs, it enhances cAMP production at the calcitonin, corticotrophin releasing factor type 1a and glucagon-like peptide type 2 receptors with their cognate ligands but not at the adrenomedullin type 1 (AM1), gastric inhibitory peptide and glucagon-like peptide type 1 receptors, all expressed in transfected HEK293S cells. However, there is also cell-line variability as RCP did not enhance cAMP production at the endogenous calcitonin receptor in HEK293T cells and it has previously been reported that it is active on the AM1 receptor expressed on NIH3T3 cells. RCP appears to behave as a positive allosteric modulator at coupling a number of family B GPCRs to Gs, albeit in a manner that is regulated by cell-specific factors. It may exert its effects at the interface between the 2nd intracellular loop of the GPCR and Gs, although there is likely to be some overlap between this location and that occupied by the C-terminus of RAMPs if they bind to the GPCRs.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Membrana/metabolismo , Proteína 1 Modificadora da Atividade de Receptores/metabolismo , Adrenomedulina/metabolismo , Animais , Peptídeo Relacionado com Gene de Calcitonina , Proteína Semelhante a Receptor de Calcitonina/química , Proteína Semelhante a Receptor de Calcitonina/metabolismo , AMP Cíclico/metabolismo , Células HEK293 , Humanos , Ligantes , Hormônios Peptídicos , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais
3.
Mol Pharmacol ; 74(3): 605-13, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18539702

RESUMO

Parathyroid hormone (PTH) and parathyroid hormone-related peptide (PTHrP) bind and activate the PTH/PTHrP receptor (PTH-1R). However, while the related receptor PTH-2R responds potently to PTH, it is not activated by PTHrP. Two hormone sites are known to be responsible for these different potencies. First, the absence of efficacy for PTHrP at PTH-2R is due to the presence of His-5 in PTHrP (Ile-5 in PTH), which interacts with the receptor's juxtamembrane domain. Second, PTHrP has lower affinity than PTH for PTH-2R because of the presence of Phe-23 (Trp-23 in PTH), which interacts with the receptor's N-terminal extracellular domain. We used these different receptor subtype properties to demonstrate that residue 41 in PTH-1R, when either the native Leu or substituted by Ile or Met, can accommodate either Phe or Trp at position 23 of the ligand. However, when Leu-41 is substituted by a smaller side chain, either Ala or Val (its equivalent residue in PTH-2R), the receptor becomes highly selective for those peptide ligands with Trp-23. Hence, despite the conservative nature of the substitutions found in the native ligands (Phe for Trp) and receptors (Leu for Val), they nevertheless enable a significant degree of selectivity to be achieved. Analysis of this functionally important ligand-receptor contact, within the context of the recent X-ray structure of the peptide-bound PTH-1R N domain, reveals the nature of the selectivity filter and how it is by-passed in PTH-1R.


Assuntos
Aminoácidos/metabolismo , Receptores de Hormônios Paratireóideos/química , Receptores de Hormônios Paratireóideos/metabolismo , Sequência de Aminoácidos , Ligação Competitiva , Linhagem Celular , Membrana Celular/metabolismo , Cristalografia por Raios X , Humanos , Ligantes , Dados de Sequência Molecular , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Peptídeos/química , Peptídeos/metabolismo , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/metabolismo , Alinhamento de Sequência , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA