Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Org Biomol Chem ; 22(14): 2749-2753, 2024 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-38502038

RESUMO

Fluorescent chemosensors offer a direct means of measuring enzyme activity for cancer diagnosis, predicting drug resistance, and aiding in the discovery of new anticancer drugs. O6-methylguanine DNA methyltransferase (MGMT) is a predictor of resistance towards anticancer alkylating agents such as temozolomide. Using the fluorescent molecular rotor, 9-(2-carboxy-2-cyanovinyl)julolidine (CCVJ), we synthesized, and evaluated a MGMT fluorescent chemosensor derived from a chloromethyl-triazole covalent inhibitor, AA-CW236, a non-pseudosubstrate of MGMT. Our fluorescence probe covalently labelled the MGMT active site C145, producing a 18-fold increase in fluorescence. Compared to previous fluorescent probes derived from a substrate-based inhibitor, our probe had improved binding and reaction rate. Overall, our chloromethyl triazole-based fluorescence MGMT probe is a promising tool for measuring MGMT activity to predict temozolomide resistance.


Assuntos
Antineoplásicos , Guanina/análogos & derivados , Temozolomida , O(6)-Metilguanina-DNA Metiltransferase/genética , DNA , Antineoplásicos Alquilantes/farmacologia
2.
Mol Pharm ; 17(10): 3979-3989, 2020 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-32852957

RESUMO

Gene therapy holds great promise for the treatment of acquired genetic disorders such as cancer with reduced side effects compared to chemotherapy. For gene therapy to be successful, it is crucial to develop efficient and nontoxic gene carriers to overcome the poor in vivo stability and low cellular uptake of nucleic acid-based therapeutic agents. Here, we report a new and versatile approach exploring a combination of hydrophobic modifications and dual-stimuli-responsive degradation (SRD) for controlled gene delivery with amphiphilic block copolymer-based nanocarriers. The block copolymer, synthesized by atom transfer radical polymerization, is designed with an acid-labile acetal linkage at the block junction and a pendant disulfide group in the hydrophobic block. The incorporation of labile linkages enables both disulfide-core-cross-linking and dual-location dual-acid/reduction-responsive degradation (DL-DSRD). Furthermore, the disulfide linkages integrated as hydrophobic moieties facilitate the nucleic acids to condense into nanometer-sized micelleplexes through electrostatic interactions of pendant dimethylamino groups with the anionic phosphate groups of the nucleic acids. Our preliminary results demonstrate that the DL-DSRD approach through hydrophobic modification is a robust platform in the development of gene delivery systems with enhanced colloidal stability, reduced cytotoxicity, and improved gene transfection efficiency.


Assuntos
Inativação Gênica , Técnicas de Transferência de Genes , Terapia Genética/métodos , Nanopartículas/química , Polímeros/química , Cátions/química , Genes Reporter , Glutationa/química , Proteínas de Fluorescência Verde/genética , Células HeLa , Humanos , Interações Hidrofóbicas e Hidrofílicas , Micelas , Neoplasias/genética , Neoplasias/terapia
3.
Chemistry ; 26(65): 14802-14806, 2020 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-32543755

RESUMO

Tetrahedron DNA structures were formed by the assembly of three-way junction (TWJ) oligonucleotides containing O6 -2'-deoxyguanosine-alkylene-O6 -2'-deoxyguanosine (butylene and heptylene linked) intrastrand cross-links (IaCLs) lacking a phosphodiester group between the 2'-deoxyribose residues. The DNA tetrahedra containing TWJs were shown to undergo an unhooking reaction by the human DNA repair protein O6 -alkylguanine DNA alkyltransferase (hAGT) resulting in structure disassembly. The unhooking reaction of hAGT towards the DNA tetrahedra was observed to be moderate to virtually complete depending on the protein equivalents. DNA tetrahedron structures have been explored as drug delivery platforms that release their payload in response to triggers, such as light, chemical agents or hybridization of release strands. The dismantling of DNA tetrahedron structures by a DNA repair protein contributes to the armamentarium of approaches for drug release employing DNA nanostructures.


Assuntos
Reparo do DNA , O(6)-Metilguanina-DNA Metiltransferase/metabolismo , DNA , Humanos , O(6)-Metilguanina-DNA Metiltransferase/farmacocinética
4.
Org Biomol Chem ; 16(46): 9053-9058, 2018 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-30430154

RESUMO

O 6-Alkylguanine DNA alkyltransferases (AGTs) are proteins found in most organisms whose role is to remove alkylation damage from the O6- and O4-positions of 2'-deoxyguanosine (dG) and thymidine (dT), respectively. Variations in active site residues between AGTs from different organisms leads to differences in repair proficiency: The human variant (hAGT) has a proclivity for removal of alkyl groups at the O6-position of guanine and the E. coli OGT protein has activity towards the O4-position of thymine. A chimeric protein (hOGT) that our laboratory has engineered with twenty of the active site residues mutated in hAGT to those found in OGT, exhibited activity towards a broader range of substrates relative to native OGT. Among the substrates that the hOGT protein was found to act upon was interstrand cross-linked DNA connected by an alkylene linkage at the O6-position of dG to the complementary strand. In the present study the activity of hOGT towards DNA containing alkylene intrastrand cross-links (IaCL) at the O6- and O4-positions respectively of dG and dT, which lack a phosphodiester linkage between the connected residues, was evaluated. The hOGT protein exhibited proficiency at removal of an alkylene linkage at the O6-atom of dG but the O4-position of dT was refractory to protein activity. The activity of the chimeric hOGT protein towards these IaCLs to prepare well defined DNA-protein cross-linked conjugates will enable mechanistic and high resolution structural studies to address the differences observed in the repair adeptness of O4-alkylated dT by the OGT protein relative to other AGT variants.


Assuntos
DNA/metabolismo , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Metiltransferases/genética , O(6)-Metilguanina-DNA Metiltransferase/genética , Engenharia de Proteínas/métodos , Domínio Catalítico , Reparo do DNA , Escherichia coli/química , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Humanos , Metiltransferases/química , Metiltransferases/metabolismo , Modelos Moleculares , Mutação , O(6)-Metilguanina-DNA Metiltransferase/química , O(6)-Metilguanina-DNA Metiltransferase/metabolismo , Especificidade por Substrato
5.
Chembiochem ; 19(6): 575-582, 2018 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-29243336

RESUMO

Oligonucleotides containing various adducts, including ethyl, benzyl, 4-hydroxybutyl and 7-hydroxyheptyl groups, at the O4 atom of 5-fluoro-O4 -alkyl-2'-deoxyuridine were prepared by solid-phase synthesis. UV thermal denaturation studies demonstrated that these modifications destabilised the duplex by approximately 10 °C, relative to the control containing 5-fluoro-2'-deoxyuridine. Circular dichroism spectroscopy revealed that these modified duplexes all adopted a B-form DNA structure. O6 -Alkylguanine DNA alkyltransferase (AGT) from humans (hAGT) was most efficient at repair of the 5-fluoro-O4 -benzyl-2'-deoxyuridine adduct, whereas the thymidine analogue was refractory to repair. The Escherichia coli AGT variant (OGT) was also efficient at removing O4 -ethyl and benzyl adducts of 5-fluoro-2-deoxyuridine. Computational assessment of N1-methyl analogues of the O4 -alkylated nucleobases revealed that the C5-fluorine modification had an influence on reducing the electron density of the O4 -Cα bond, relative to thymine (C5-methyl) and uracil (C5-hydrogen). These results reveal the positive influence of the C5-fluorine atom on the repair of larger O4 -alkyl adducts to expand knowledge of the range of substrates able to be repaired by AGT.


Assuntos
Desoxiuridina/metabolismo , Flúor/metabolismo , O(6)-Metilguanina-DNA Metiltransferase/metabolismo , Alquilação , Humanos , Conformação Molecular , Teoria Quântica
6.
Chembiochem ; 18(23): 2351-2357, 2017 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-28980757

RESUMO

DNA oligomers containing dimethylene and trimethylene intrastrand crosslinks (IaCLs) between the O4 and O6 atoms of neighboring thymidine (T) and 2'-deoxyguanosine (dG) residues were prepared by solid-phase synthesis. UV thermal denaturation (Tm ) experiments revealed that these IaCLs had a destabilizing effect on the DNA duplex relative to the control. Circular dichroism spectroscopy suggested these IaCLs induced minimal structural distortions. Susceptibility to dealkylation by reaction with various O6 -alkylguanine DNA alkyltransferases (AGTs) from human and Escherichia coli was evaluated. It was revealed that only human AGT displayed activity towards the IaCL DNA, with reduced efficiency as the IaCL shortened (from four to two methylene linkages). Changing the site of attachment of the ethylene linkage at the 5'-end of the IaCL to the N3 atom of T had minimal influence on duplex stability and structure, and was refractory to AGT activity.


Assuntos
DNA/metabolismo , O(6)-Metilguanina-DNA Metiltransferase/metabolismo , Dicroísmo Circular , DNA/síntese química , DNA/química , Reparo do DNA , Desoxiguanosina/química , Desoxiguanosina/metabolismo , Escherichia coli/enzimologia , Humanos , Cinética , Modelos Moleculares , Desnaturação de Ácido Nucleico/efeitos da radiação , Técnicas de Síntese em Fase Sólida , Especificidade por Substrato , Timidina/química , Timidina/metabolismo , Raios Ultravioleta
7.
Chem Res Toxicol ; 29(11): 1872-1882, 2016 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-27768841

RESUMO

DNA interstrand cross-links (ICLs) are cytotoxic DNA lesions derived from reactions of DNA with a number of anti-cancer reagents as well as endogenous bifunctional electrophiles. Deciphering the DNA repair mechanisms of ICLs is important for understanding the toxicity of DNA cross-linking agents and for developing effective chemotherapies. Previous research has focused on ICLs cross-linked with the N7 and N2 atoms of guanine as well as those formed at the N6 atom of adenine; however, little is known about the mutagenicity of O6-dG-derived ICLs. Although less abundant, O6-alkylated guanine DNA lesions are chemically stable and highly mutagenic. Here, O6-2'-deoxyguanosine-butylene-O6-2'-deoxyguanosine (O6-dG-C4-O6-dG) is designed as a chemically stable ICL, which can be induced by the action of bifunctional alkylating agents. We investigate the DNA replication-blocking and mutagenic properties of O6-dG-C4-O6-dG ICLs during an important step in ICL repair, translesion DNA synthesis (TLS). The model replicative DNA polymerase (pol) Sulfolobus solfataricus P2 DNA polymerase B1 (Dpo1) is able to incorporate a correct nucleotide opposite the cross-linked template guanine of ICLs with low efficiency and fidelity but cannot extend beyond the ICLs. Translesion synthesis by human pol κ is completely inhibited by O6-dG-C4-O6-dG ICLs. Moderate bypass activities are observed for human pol Î· and S. solfataricus P2 DNA polymerase IV (Dpo4). Among the pols tested, pol Î· exhibits the highest bypass activity; however, 70% of the bypass products are mutagenic containing substitutions or deletions. The increase in the size of unhooked repair intermediates elevates the frequency of deletion mutation. Lastly, the importance of pol Î· in O6-dG-derived ICL bypass is demonstrated using whole cell extracts of Xeroderma pigmentosum variant patient cells and those complemented with pol Î·. Together, this study provides the first set of biochemical evidence for the mutagenicity of O6-dG-derived ICLs.


Assuntos
Alcenos/química , Dano ao DNA , Replicação do DNA , Desoxiguanosina/química , Mutagênicos/toxicidade , Alcenos/toxicidade , Células Cultivadas , Cromatografia Líquida , Reparo do DNA , DNA Polimerase Dirigida por DNA/metabolismo , Desoxiguanosina/toxicidade , Humanos , Espectrometria de Massas , Mutação
8.
Nucleic Acids Res ; 44(12): 5849-60, 2016 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-27220465

RESUMO

RecBCD is a multifunctional enzyme that possesses both helicase and nuclease activities. To gain insight into the mechanism of its helicase function, RecBCD unwinding at low adenosine triphosphate (ATP) (2-4 µM) was measured using an optical-trapping assay featuring 1 base-pair (bp) precision. Instead of uniformly sized steps, we observed forward motion convolved with rapid, large-scale (∼4 bp) variations in DNA length. We interpret this motion as conformational dynamics of the RecBCD-DNA complex in an unwinding-competent state, arising, in part, by an enzyme-induced, back-and-forth motion relative to the dsDNA that opens and closes the duplex. Five observations support this interpretation. First, these dynamics were present in the absence of ATP. Second, the onset of the dynamics was coupled to RecBCD entering into an unwinding-competent state that required a sufficiently long 5' strand to engage the RecD helicase. Third, the dynamics were modulated by the GC-content of the dsDNA. Fourth, the dynamics were suppressed by an engineered interstrand cross-link in the dsDNA that prevented unwinding. Finally, these dynamics were suppressed by binding of a specific non-hydrolyzable ATP analog. Collectively, these observations show that during unwinding, RecBCD binds to DNA in a dynamic mode that is modulated by the nucleotide state of the ATP-binding pocket.


Assuntos
DNA Bacteriano/química , DNA/química , Proteínas de Escherichia coli/química , Escherichia coli/genética , Exodesoxirribonuclease V/química , Difosfato de Adenosina/análogos & derivados , Difosfato de Adenosina/química , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Adenilil Imidodifosfato/química , Adenilil Imidodifosfato/metabolismo , Sítios de Ligação , DNA/genética , DNA/metabolismo , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Exodesoxirribonuclease V/genética , Exodesoxirribonuclease V/metabolismo , Expressão Gênica , Cinética , Conformação de Ácido Nucleico , Ligação Proteica , Conformação Proteica
9.
Chem Asian J ; 11(4): 576-83, 2016 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-26692563

RESUMO

Oligonucleotides containing an alkylene intrastrand cross-link (IaCL) between the O(6) -atoms of two consecutive 2'-deoxyguanosines (dG) were prepared by solid-phase synthesis. UV thermal denaturation studies of duplexes containing butylene and heptylene IaCL revealed a 20 °C reduction in stability compared to the unmodified duplexes. Circular dichroism profiles of these IaCL DNA duplexes exhibited signatures consistent with B-form DNA. Human O(6) -alkylguanine DNA alkyltransferase (hAGT) was capable of repairing both IaCL containing duplexes with slightly greater efficiency towards the heptylene analog. Interestingly, repair efficiencies of hAGT towards these IaCL were lower compared to O(6) -alkylene linked IaCL lacking the 5'-3'-phosphodiester linkage between the connected 2'-deoxyguanosine residues. These results demonstrate that the proficiency of hAGT activity towards IaCL at the O(6) -atom of dG is influenced by the backbone phosphodiester linkage between the cross-linked residues.


Assuntos
Adutos de DNA/metabolismo , Reparo do DNA , O(6)-Metilguanina-DNA Metiltransferase/metabolismo , Sequência de Bases , DNA/química , DNA/metabolismo , Adutos de DNA/química , Dano ao DNA , Humanos , Desnaturação de Ácido Nucleico/efeitos da radiação , Temperatura , Raios Ultravioleta
10.
Chemistry ; 21(29): 10522-9, 2015 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-26075346

RESUMO

Oligonucleotides tethered by an alkylene linkage between the O(6) -atoms of two consecutive 2'-deoxyguanosines, which lack a phosphodiester linkage between these residues, have been synthesized as a model system of intrastrand cross-linked (IaCL) DNA. UV thermal denaturation studies of duplexes formed between these butylene- and heptylene-linked oligonucleotides with their complementary DNA sequences revealed about 20 °C reduction in stability relative to the unmodified duplex. Circular dichroism spectra of the model IaCL duplexes displayed a signature characteristic of B-form DNA, suggesting minimal global perturbations are induced by the lesion. The model IaCL containing duplexes were investigated as substrates of O(6) -alkylguanine DNA alkyltransferase (AGT) proteins from human and E. coli (Ada-C and OGT). Human AGT was found to repair both model IaCL duplexes with greater efficiency towards the heptylene versus butylene analog adding to our knowledge of substrates this protein can repair.


Assuntos
Alquilantes/química , Adutos de DNA/química , DNA/metabolismo , Desoxiguanosina/análogos & derivados , Desoxiguanosina/química , Desoxiguanosina/metabolismo , O(6)-Metilguanina-DNA Metiltransferase/química , O(6)-Metilguanina-DNA Metiltransferase/metabolismo , Oligonucleotídeos/química , Oligonucleotídeos/metabolismo , Sequência de Bases , Dicroísmo Circular , DNA/química , Reparo do DNA , Humanos
11.
Colloids Surf B Biointerfaces ; 126: 178-87, 2015 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-25561416

RESUMO

The development of a versatile strategy to synthesize cationic nanocarriers capable of co-delivery and enhanced release of drugs and oligonucleotides is promising for synergic dual chemotherapy and gene therapy. Herein, we report a novel cationic amphiphilic diblock copolymer having a single reduction-responsive disulfide linkage at a junction between a FDA-approved polylactide (PLA) block and a cationic methacrylate block (C-ssABP). The amphiphilic design of the C-ssABP enables the formation of cationic micellar aggregates possessing hydrophobic PLA cores, encapsulating anticancer drugs; cationic coronas, ensuring complementary complexation with negatively-charged oligonucleotides through electrostatic interactions; and disulfides at interfaces, leading to enhanced release of both encapsulated drugs and complexed oligonucleotides. The reduction-responsive intracellular trafficking results from flow cytometry, confocal laser scanning microscopy, and cell viability, as well as in vitro gene transfection assay suggest that C-ssABP offers versatility as an effective nanocarrier platform for dual chemotherapy and gene therapy.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/química , Portadores de Fármacos/química , Terapia Genética , Nanoestruturas/química , Cátions/síntese química , Cátions/química , Interações Hidrofóbicas e Hidrofílicas , Metacrilatos/química , Estrutura Molecular , Oxirredução , Tamanho da Partícula , Poliésteres/síntese química , Poliésteres/química , Propriedades de Superfície , Tensoativos/síntese química , Tensoativos/química
12.
Chembiochem ; 15(13): 1966-77, 2014 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-25087488

RESUMO

O(6) -Alkylguanine-DNA alkyltransferases (AGTs) are responsible for the removal of O(6) -alkyl 2'-deoxyguanosine (dG) and O(4) -alkyl thymidine (dT) adducts from the genome. Unlike the E. coli OGT (O(6) -alkylguanine-DNA-alkyltransferase) protein, which can repair a range of O(4) -alkyl dT lesions, human AGT (hAGT) only removes methyl groups poorly. To uncover the influence of the C5 methyl group of dT on AGT repair, oligonucleotides containing O(4) -alkyl 2'-deoxyuridines (dU) were prepared. The ability of E. coli AGTs (Ada-C and OGT), human AGT, and an OGT/hAGT chimera to remove O(4) -methyl and larger adducts (4-hydroxybutyl and 7-hydroxyheptyl) from dU were examined and compared to those relating to the corresponding dT species. The absence of the C5 methyl group resulted in an increase in repair observed for the O(4) -methyl adducts by hAGT and the chimera. The chimera was proficient at repairing larger adducts at the O(4) atom of dU. There was no observed correlation between the binding affinities of the AGT homologues to adduct-containing oligonucleotides and the amounts of repair measured.


Assuntos
Reparo do DNA/fisiologia , Desoxiuridina/química , O(6)-Metilguanina-DNA Metiltransferase/metabolismo , Alquilação , Quimera , Adutos de DNA/efeitos dos fármacos , Sequências Hélice-Alça-Hélice , Humanos , Desnaturação de Ácido Nucleico , Oligonucleotídeos/síntese química , Pirimidinas/química , Raios Ultravioleta
13.
ChemMedChem ; 9(9): 2099-103, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24931822

RESUMO

The bisalkylating agent 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU), used in cancer chemotherapy to hinder cellular proliferation, forms lethal interstrand cross-links (ICLs) in DNA. BCNU generates an ethylene linkage connecting the two DNA strands at the N1 atom of 2'-deoxyguanosine and N3 atom of 2'-deoxycytidine, which is a synthetically challenging probe to prepare. To this end, an ICL duplex linking the N1 atom of 2'-deoxyinosine to the N3 atom of thymidine via an ethylene linker was devised as a mimic. We have solved the structure of this ICL duplex by a combination of molecular dynamics and high-field NMR experiments. The ethylene linker is well-accommodated in the duplex with minimal global and local perturbations relative to the unmodified duplex. These results may account for the substantial stabilization of the ICL duplex observed by UV thermal denaturation experiments and provides structural insights of a probe that may be useful for DNA repair studies.


Assuntos
Antineoplásicos Alquilantes/síntese química , Antineoplásicos Alquilantes/farmacologia , Carmustina/farmacologia , DNA/química , DNA/farmacologia , Etilenos/química , Reagentes de Ligações Cruzadas , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Termodinâmica
14.
Bioconjug Chem ; 24(2): 224-33, 2013 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-23347328

RESUMO

O(6)-alkylguanine-DNA alkyltransferases (AGT) are responsible for the removal of alkylation at both the O(6) atom of guanine and O(4) atom of thymine. AGT homologues show vast substrate differences with respect to the size of the adduct and which alkylated atoms they can restore. The human AGT (hAGT) has poor capabilities for removal of methylation at the O(4) atom of thymidine, which is not the case in most homologues. No structural data are available to explain this poor hAGT repair. We prepared and characterized O(6)G-butylene-O(4)T (XLGT4) and O(6)G-heptylene-O(4)T (XLGT7) interstrand cross-linked (ICL) DNA as probes for hAGT and the Escherichia coli homologues, OGT and Ada-C, for the formation of DNA-AGT covalent complexes. XLGT7 reacted only with hAGT and did so with a cross-linking efficiency of 25%, while XLGT4 was inert to all AGT tested. The hAGT mediated repair of XLGT7 occurred slowly, on the order of hours as opposed to the repair of O(6)-methyl-2'-deoxyguanosine which requires seconds. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis of the repair reaction revealed the formation of a covalent complex with an observed migration in accordance with a DNA-AGT complex. The identity of this covalent complex, as determined by mass spectrometry, was composed of a heptamethylene bridge between the O(4) atom of thymidine (in an 11-mer DNA strand) to residue Cys145 of hAGT. This procedure can be applied to produce well-defined covalent complexes between AGT with DNA.


Assuntos
Reagentes de Ligações Cruzadas/química , DNA/química , O(6)-Metilguanina-DNA Metiltransferase/química , Sequência de Bases , Reparo do DNA , Desoxiguanosina/análogos & derivados , Desoxiguanosina/metabolismo , Escherichia coli/química , Escherichia coli/enzimologia , Humanos , Modelos Moleculares , Conformação de Ácido Nucleico , Desnaturação de Ácido Nucleico , O(6)-Metilguanina-DNA Metiltransferase/metabolismo
15.
Org Biomol Chem ; 10(35): 7078-90, 2012 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-22850722

RESUMO

DNA duplexes containing a directly opposed O(4)-2'-deoxythymidine-alkyl-O(4)-2'-deoxythymidine (O(4)-dT-alkyl-O(4)-dT) interstrand cross-link (ICL) have been prepared by the synthesis of cross-linked nucleoside dimers which were converted to phosphoramidites to produce site specific ICL. ICL duplexes containing alkyl chains of four and seven methylene groups were prepared and characterized by mass spectrometry and nuclease digests. Thermal denaturation experiments revealed four and seven methylene containing ICL increased the T(m) of the duplex with respect to the non-cross-linked control with an observed decrease in enthalpy based on thermodynamic analysis of the denaturation curves. Circular dichroism experiments on the ICL duplexes indicated minimal difference from B-form DNA structure. These ICL were used for DNA repair studies with O(6)-alkylguanine DNA alkyltransferase (AGT) proteins from human (hAGT) and E. coli (Ada-C and OGT), whose purpose is to remove O(6)-alkylguanine and in some cases O(4)-alkylthymine lesions. It has been previously shown that hAGT can repair O(6)-2'-deoxyguanosine-alkyl-O(6)-2'-deoxyguanosine ICL. The O(4)-dT-alkyl-O(4)-dT ICL prepared in this study were found to evade repair by hAGT, OGT and Ada-C. Electromobility shift assay (EMSA) results indicated that the absence of any repair by hAGT was not a result of binding. OGT was the only AGT to show activity in the repair of oligonucleotides containing the mono-adducts O(4)-butyl-4-ol-2'-deoxythymidine and O(4)-heptyl-7-ol-2'-deoxythymidine. Binding experiments conducted with hAGT demonstrated that the protein bound O(4)-alkylthymine lesions with similar affinities to O(6)-methylguanine, which hAGT repairs efficiently, suggesting the lack of O(4)-alkylthymine repair by hAGT is not a function of recognition.


Assuntos
Reparo do DNA , DNA/metabolismo , O(6)-Metilguanina-DNA Metiltransferase/metabolismo , Timidina/análogos & derivados , Domínio Catalítico , DNA/química , Escherichia coli/química , Escherichia coli/enzimologia , Escherichia coli/metabolismo , Humanos , Modelos Moleculares , Desnaturação de Ácido Nucleico , O(6)-Metilguanina-DNA Metiltransferase/química
16.
Org Biomol Chem ; 8(19): 4414-26, 2010 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-20714665

RESUMO

O(6)-2'-Deoxyguanosine-alkyl-O(6)-2'-deoxyguanosine interstrand DNA cross-links (ICLs) with a four and seven methylene linkage in a 5'-GNC- motif have been synthesized and their repair by human O6-alkylguanine-DNA alkyltransferase (hAGT) investigated. Duplexes containing 11 base-pairs with the ICLs in the center were assembled by automated DNA solid-phase synthesis using a cross-linked 2'-deoxyguanosine dimer phosphoramidite, prepared via a seven step synthesis which employed the Mitsunobu reaction to introduce the alkyl lesion at the O(6) atom of guanine. Introduction of the four and seven carbon ICLs resulted in no change in duplex stability based on UV thermal denaturation experiments compared to a non-cross-linked control. Circular dichroism spectra of these ICL duplexes exhibited features of a B-form duplex, similar to the control, suggesting that these lesions induce little overall change in structure. The efficiency of repair by hAGT was examined and it was shown that hAGT repairs both ICL containing duplexes, with the heptyl ICL repaired more efficiently relative to the butyl cross-link. These results were reproducible with various hAGT mutants including one that contains a novel V148L mutation. The ICL duplexes displayed similar binding affinities to a C145S hAGT mutant compared to the unmodified duplex with the seven carbon containing ICLs displaying slightly higher binding. Experiments with CHO cells to investigate the sensitivity of these cells to busulfan and hepsulfam demonstrate that hAGT reduces the cytotoxicity of hepsulfam suggesting that the O(6)-2'-deoxyguanosine-alkyl-O(6)-2'-deoxyguanosine interstrand DNA cross-link may account for at least part of the cytotoxicity of this agent.


Assuntos
Reparo do DNA , Desoxiguanosina/análogos & derivados , Desoxiguanosina/metabolismo , O(6)-Metilguanina-DNA Metiltransferase/metabolismo , Alquilantes/farmacologia , Animais , Bussulfano/farmacologia , Células CHO , Sobrevivência Celular/efeitos dos fármacos , Cricetinae , Cricetulus , DNA/química , DNA/metabolismo , Desoxiguanosina/síntese química , Humanos , Mutação , Desnaturação de Ácido Nucleico , O(6)-Metilguanina-DNA Metiltransferase/genética , Ácidos Sulfônicos/farmacologia
17.
Biochemistry ; 49(18): 3977-88, 2010 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-20373772

RESUMO

DNA interstrand cross-links (ICLs) are cytotoxic products of common anticancer drugs and cellular metabolic processes, whose mechanism(s) of repair remains poorly understood. In this study, we show that cross-link structure affects ICL repair in nonreplicating reporter plasmids that contain a mispaired N(4)C-ethyl-N(4)C (C-C), N3T-ethyl-N3T (T-T), or N1I-ethyl-N3T (I-T) ICL. The T-T and I-T cross-links obstruct the hydrogen bond face of the base and mimic the N1G-ethyl-N3C ICL created by bis-chloroethylnitrosourea, whereas the C-C cross-link does not interfere with base pair formation. Host-cell reactivation (HCR) assays in human and hamster cells showed that repair of these ICLs primarily involves the transcription-coupled nucleotide excision repair (TC-NER) pathway. Repair of the C-C ICL was 5-fold more efficient than repair of the T-T or I-T ICLs, suggesting the latter cross-links hinder lesion bypass following initial ICL unhooking. The level of luciferase expression from plasmids containing a C-C cross-link remnant on either the transcribed or nontranscribed strand increased in NER-deficient cells, indicating NER involvement occurs at a step prior to remnant removal, whereas expression from similar T-T remnant plasmids was inhibited in NER-deficient cells, demonstrating NER is required for remnant removal. Sequence analysis of repaired plasmids showed a high proportion of C residues inserted at the site of the T-T and I-T cross-links, and HCR assays showed that Rev1 was likely responsible for these insertions. In contrast, both C and G residues were inserted at the C-C cross-link site, and Rev1 was not required for repair, suggesting replicative or other translesion polymerases can bypass the C-C remnant.


Assuntos
Reparo do DNA , Replicação do DNA , DNA/química , Animais , Protocolos de Quimioterapia Combinada Antineoplásica , Cricetinae , Ciclofosfamida , DNA/genética , Quebras de DNA de Cadeia Dupla , Dano ao DNA , Doxorrubicina , Células HeLa , Humanos , Conformação de Ácido Nucleico , Recombinação Genética , Vincristina
18.
Chem Res Toxicol ; 22(7): 1285-97, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19580249

RESUMO

DNA interstrand cross-links (ICLs) are products of chemotherapeutic agents and cellular metabolic processes that block both replication and transcription. If left unrepaired, ICLs are extremely toxic to cells, and ICL repair mechanisms contribute to the survival of certain chemotherapeutic resistance tumors. A critical step in ICL repair involves unhooking the cross-link. In the absence of a homologous donor sequence, the resulting gap can be filled in by a repair synthesis step involving bypass of the cross-link remnant. Here, we examine the effect of cross-link structure on the ability of unhooked DNA substrates to undergo repair synthesis in mammalian whole cell extracts. Using 32P incorporation assays, we found that repair synthesis occurs efficiently past the site of damage when a DNA substrate containing a single N4C-ethyl-N4C cross-link is incubated in HeLa or Chinese hamster ovary cell extracts. This lesion, which can base pair with deoxyguanosine, is readily bypassed by both Escherichia coli DNA polymerase I and T7 DNA polymerase in a primer extension assay. In contrast, bypass was not observed in the primer extension assay or in mammalian cell extracts when DNA substrates containing a N3T-ethyl-N3T or N1I-ethyl-N3T cross-link, whose linkers obstruct the hydrogen bond face of the bases, were used. A modified phosphorothioate sequencing method was used to analyze the ICL repair patches created in the mammalian cell extracts. In the case of the N4C-ethyl-N4C substrate, the repair patch spanned the site of the cross-link, and the lesion was bypassed in an error-free manner. However, although the N3T-ethyl-N3T and N1I-ethyl-N3T substrates were unhooked in the extracts, bypass was not detected. These and our previous results suggest that although the chemical structure of an ICL may not affect initial cross-link unhooking, it can play a significant role in subsequent processing of the cross-link. Understanding how the physical and chemical differences of ICLs affect repair may provide a better understanding of the cytotoxic and mutagenic potential of specific ICLs.


Assuntos
Reagentes de Ligações Cruzadas/química , Reparo do DNA , DNA/química , Animais , Sequência de Bases , Células CHO , Cricetinae , Cricetulus , Reagentes de Ligações Cruzadas/metabolismo , DNA Polimerase Dirigida por DNA/metabolismo , Células HeLa , Humanos , Oligonucleotídeos Fosforotioatos/química , Oligonucleotídeos Fosforotioatos/metabolismo , Análise de Sequência de DNA
19.
J Mass Spectrom ; 44(8): 1241-8, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19536795

RESUMO

Benzo[a]pyrene is a major carcinogen implicated in human lung cancer. Almost 60% of human lung cancers have a mutation in the p53 tumor suppressor gene at several specific codons. An on-line nanoLC/MS/MS method using a monolithic nanocolumn was applied to investigate the chemoselectivity of the carcinogenic diol epoxide metabolite, (+/-)-(7R,8S,9S,10R)-benzo[a]pyrene 7,8-diol 9,10-epoxide [(+/-)-anti-benzo[a]pyrene diol epoxide (BPDE)], which was reacted in vitro with a synthesized 14-mer double stranded oligonucleotide (5'-ACCCG5CG7TCCG11CG13C-3'/5'-GCGCGGGCGCGGGT-3') derived from the p53 gene. This sequence contained codons 157 and 158, which are considered mutational 'hot spots' and have also been reported as chemical 'hot spots' for the formation of BPDE-DNA adducts. In evaluating the effect of cytosine methylation on BPDE-DNA adduct binding, it was found that codon 156, containing the nucleobase G5 instead of the mutational hot spot codons 157 (G7) and 158 (G11), was the preferential chemoselective binding site for BPDE. In all permethylated cases studied, the relative ratio for adduction was found to be G5 >> G11 > G13 > G7. Permethylation of CpG dinucleotide sites on either the nontranscribed or complementary strand did not change the order of sequence preference but did enhance the relative adduction level of the G11 CpG site (codon 158) approximately two-fold versus the unmethylated oligomer. Permethylation of all CpG dinucleotide sites on the duplex changed the order of relative adduction to G5 >> G7 > G11 > G13. The three- to four-fold increase in adduction at the mutational hot spot codon 157 (G(7)) relative to the unmethylated or single-stranded permethylated cases suggests a possible relationship between the state of methylation and adduct formation for a particular mutation site in the p53 gene. Using this method, only 125 ng (30 pmol) of adducted oligonucleotide was analyzed with minimal sample cleanup and high chromatographic resolution of positional isomers in a single chromatographic run.


Assuntos
7,8-Di-Hidro-7,8-Di-Hidroxibenzo(a)pireno 9,10-óxido/química , Benzo(a)pireno/química , Cromatografia Líquida de Alta Pressão/métodos , Citosina/metabolismo , Adutos de DNA/química , Metilação de DNA , Oligonucleotídeos/química , Espectrometria de Massas em Tandem/métodos , 5-Metilcitosina/metabolismo , Métodos Analíticos de Preparação de Amostras , Benzo(a)pireno/análogos & derivados , Carcinógenos/química , Códon , DNA/química , Genes p53 , Guanina/análogos & derivados , Guanina/química , Humanos , Microquímica , Mutagênicos/química , Espectrometria de Massas por Ionização por Electrospray
20.
Nucleic Acids Symp Ser (Oxf) ; (52): 431-2, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18776438

RESUMO

DNA duplexes containing a directly opposed O(6)- alkyl-2'-deoxyguanosine interstrand cross-link were synthesized to serve as structural mimics of lesions formed by the bifunctional chemotherapeutic alkylating agents busulfan and hepsulfam. One of the key steps to prepare the necessary bis-phosphoramidites involved the Mitsunobu reaction between a diol linking two protected 2'-deoxyguanosine nucleosides at the O(6) position. These bis-phosphoramidites were incorporated into 11-bp DNA duplexes by solid phase synthesis to produce cross-linked DNA probes in high yields. UV thermal denaturation studies revealed that these interstrand cross-linked containing oligonucleotides were stabilized compared to a DNA duplex containing a central 2'-deoxyguanosine mismatch. The duplex containing the four carbon cross-link was stabilized by 10 degrees C relative to the seven carbon linker. Molecular models of these duplexes that were geometry optimized by the AMBER force field suggest that the seven carbon cross-link was less efficiently accommodated in the major groove of the duplex relative to the four carbon linker, accounting for the observed destabilization.


Assuntos
Antineoplásicos Alquilantes/toxicidade , Pareamento Incorreto de Bases , Dano ao DNA , DNA/química , Desoxiguanosina/química , Desnaturação de Ácido Nucleico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA