Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
BMC Genomics ; 25(1): 619, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38898442

RESUMO

Plant genomics plays a pivotal role in enhancing global food security and sustainability by offering innovative solutions for improving crop yield, disease resistance, and stress tolerance. As the number of sequenced genomes grows and the accuracy and contiguity of genome assemblies improve, structural annotation of plant genomes continues to be a significant challenge due to their large size, polyploidy, and rich repeat content. In this paper, we present an overview of the current landscape in crop genomics research, highlighting the diversity of genomic characteristics across various crop species. We also assessed the accuracy of popular gene prediction tools in identifying genes within crop genomes and examined the factors that impact their performance. Our findings highlight the strengths and limitations of BRAKER2 and Helixer as leading structural genome annotation tools and underscore the impact of genome complexity, fragmentation, and repeat content on their performance. Furthermore, we evaluated the suitability of the predicted proteins as a reliable search space in proteomics studies using mass spectrometry data. Our results provide valuable insights for future efforts to refine and advance the field of structural genome annotation.


Assuntos
Produtos Agrícolas , Genoma de Planta , Anotação de Sequência Molecular , Proteômica , Produtos Agrícolas/genética , Proteômica/métodos , Genômica/métodos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
2.
Nat Commun ; 15(1): 3956, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38730277

RESUMO

Immunopeptidomics is crucial for immunotherapy and vaccine development. Because the generation of immunopeptides from their parent proteins does not adhere to clear-cut rules, rather than being able to use known digestion patterns, every possible protein subsequence within human leukocyte antigen (HLA) class-specific length restrictions needs to be considered during sequence database searching. This leads to an inflation of the search space and results in lower spectrum annotation rates. Peptide-spectrum match (PSM) rescoring is a powerful enhancement of standard searching that boosts the spectrum annotation performance. We analyze 302,105 unique synthesized non-tryptic peptides from the ProteomeTools project on a timsTOF-Pro to generate a ground-truth dataset containing 93,227 MS/MS spectra of 74,847 unique peptides, that is used to fine-tune the deep learning-based fragment ion intensity prediction model Prosit. We demonstrate up to 3-fold improvement in the identification of immunopeptides, as well as increased detection of immunopeptides from low input samples.


Assuntos
Aprendizado Profundo , Peptídeos , Espectrometria de Massas em Tandem , Humanos , Peptídeos/química , Peptídeos/imunologia , Espectrometria de Massas em Tandem/métodos , Bases de Dados de Proteínas , Proteômica/métodos , Antígenos HLA/imunologia , Antígenos HLA/genética , Software , Íons
4.
Methods Mol Biol ; 2758: 457-483, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38549030

RESUMO

Liquid chromatography-coupled mass spectrometry (LC-MS/MS) is the primary method to obtain direct evidence for the presentation of disease- or patient-specific human leukocyte antigen (HLA). However, compared to the analysis of tryptic peptides in proteomics, the analysis of HLA peptides still poses computational and statistical challenges. Recently, fragment ion intensity-based matching scores assessing the similarity between predicted and observed spectra were shown to substantially increase the number of confidently identified peptides, particularly in use cases where non-tryptic peptides are analyzed. In this chapter, we describe in detail three procedures on how to benefit from state-of-the-art deep learning models to analyze and validate single spectra, single measurements, and multiple measurements in mass spectrometry-based immunopeptidomics. For this, we explain how to use the Universal Spectrum Explorer (USE), online Oktoberfest, and offline Oktoberfest. For intensity-based scoring, Oktoberfest uses fragment ion intensity and retention time predictions from the deep learning framework Prosit, a deep neural network trained on a very large number of synthetic peptides and tandem mass spectra generated within the ProteomeTools project. The examples shown highlight how deep learning-assisted analysis can increase the number of identified HLA peptides, facilitate the discovery of confidently identified neo-epitopes, or provide assistance in the assessment of the presence of cryptic peptides, such as spliced peptides.


Assuntos
Aprendizado Profundo , Humanos , Cromatografia Líquida , Espectrometria de Massas em Tandem/métodos , Peptídeos/análise , Antígenos de Histocompatibilidade Classe I , Antígenos HLA
5.
Nat Commun ; 15(1): 151, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38167372

RESUMO

Unlike for DNA and RNA, accurate and high-throughput sequencing methods for proteins are lacking, hindering the utility of proteomics in applications where the sequences are unknown including variant calling, neoepitope identification, and metaproteomics. We introduce Spectralis, a de novo peptide sequencing method for tandem mass spectrometry. Spectralis leverages several innovations including a convolutional neural network layer connecting peaks in spectra spaced by amino acid masses, proposing fragment ion series classification as a pivotal task for de novo peptide sequencing, and a peptide-spectrum confidence score. On spectra for which database search provided a ground truth, Spectralis surpassed 40% sensitivity at 90% precision, nearly doubling state-of-the-art sensitivity. Application to unidentified spectra confirmed its superiority and showcased its applicability to variant calling. Altogether, these algorithmic innovations and the substantial sensitivity increase in the high-precision range constitute an important step toward broadly applicable peptide sequencing.


Assuntos
Aprendizado Profundo , Algoritmos , Análise de Sequência de Proteína/métodos , Peptídeos/química , Sequência de Aminoácidos
6.
Proteomics ; 24(8): e2300112, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37672792

RESUMO

Machine learning (ML) and deep learning (DL) models for peptide property prediction such as Prosit have enabled the creation of high quality in silico reference libraries. These libraries are used in various applications, ranging from data-independent acquisition (DIA) data analysis to data-driven rescoring of search engine results. Here, we present Oktoberfest, an open source Python package of our spectral library generation and rescoring pipeline originally only available online via ProteomicsDB. Oktoberfest is largely search engine agnostic and provides access to online peptide property predictions, promoting the adoption of state-of-the-art ML/DL models in proteomics analysis pipelines. We demonstrate its ability to reproduce and even improve our results from previously published rescoring analyses on two distinct use cases. Oktoberfest is freely available on GitHub (https://github.com/wilhelm-lab/oktoberfest) and can easily be installed locally through the cross-platform PyPI Python package.


Assuntos
Proteômica , Software , Proteômica/métodos , Peptídeos , Algoritmos
7.
Nat Chem Biol ; 2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37904048

RESUMO

Medicinal chemistry has discovered thousands of potent protein and lipid kinase inhibitors. These may be developed into therapeutic drugs or chemical probes to study kinase biology. Because of polypharmacology, a large part of the human kinome currently lacks selective chemical probes. To discover such probes, we profiled 1,183 compounds from drug discovery projects in lysates of cancer cell lines using Kinobeads. The resulting 500,000 compound-target interactions are available in ProteomicsDB and we exemplify how this molecular resource may be used. For instance, the data revealed several hundred reasonably selective compounds for 72 kinases. Cellular assays validated GSK986310C as a candidate SYK (spleen tyrosine kinase) probe and X-ray crystallography uncovered the structural basis for the observed selectivity of the CK2 inhibitor GW869516X. Compounds targeting PKN3 were discovered and phosphoproteomics identified substrates that indicate target engagement in cells. We anticipate that this molecular resource will aid research in drug discovery and chemical biology.

8.
Anal Chem ; 95(37): 13746-13749, 2023 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-37676919

RESUMO

Mass spectrometry coupled to liquid chromatography is one of the most powerful technologies for proteome quantification in biomedical samples. In peptide-centric workflows, protein mixtures are enzymatically digested to peptides prior their analysis. However, proteome-wide quantification studies rarely identify all potential peptides for any given protein, and targeted proteomics experiments focus on a set of peptides for the proteins of interest. Consequently, proteomics relies on the use of a limited subset of all possible peptides as proxies for protein quantitation. In this work, we evaluated the stability of the human proteotypic peptides during 21 days and trained a deep learning model to predict peptide stability directly from tryptic sequences, which together constitute a resource of broad interest to prioritize and select peptides in proteome quantification experiments.


Assuntos
Proteoma , Proteômica , Humanos , Peptídeos , Cromatografia Líquida , Espectrometria de Massas
9.
Nat Commun ; 14(1): 4632, 2023 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-37532709

RESUMO

Systemic pan-tumor analyses may reveal the significance of common features implicated in cancer immunogenicity and patient survival. Here, we provide a comprehensive multi-omics data set for 32 patients across 25 tumor types for proteogenomic-based discovery of neoantigens. By using an optimized computational approach, we discover a large number of tumor-specific and tumor-associated antigens. To create a pipeline for the identification of neoantigens in our cohort, we combine DNA and RNA sequencing with MS-based immunopeptidomics of tumor specimens, followed by the assessment of their immunogenicity and an in-depth validation process. We detect a broad variety of non-canonical HLA-binding peptides in the majority of patients demonstrating partially immunogenicity. Our validation process allows for the selection of 32 potential neoantigen candidates. The majority of neoantigen candidates originates from variants identified in the RNA data set, illustrating the relevance of RNA as a still understudied source of cancer antigens. This study underlines the importance of RNA-centered variant detection for the identification of shared biomarkers and potentially relevant neoantigen candidates.


Assuntos
Neoplasias , Proteogenômica , Humanos , Neoplasias/genética , Antígenos de Neoplasias/genética , Peptídeos
10.
J Proteome Res ; 22(9): 2836-2846, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37557900

RESUMO

Sample multiplexed quantitative proteomics assays have proved to be a highly versatile means to assay molecular phenotypes. Yet, stochastic precursor selection and precursor coisolation can dramatically reduce the efficiency of data acquisition and quantitative accuracy. To address this, intelligent data acquisition (IDA) strategies have recently been developed to improve instrument efficiency and quantitative accuracy for both discovery and targeted methods. Toward this end, we sought to develop and implement a new real-time spectral library searching (RTLS) workflow that could enable intelligent scan triggering and peak selection within milliseconds of scan acquisition. To ensure ease of use and general applicability, we built an application to read in diverse spectral libraries and file types from both empirical and predicted spectral libraries. We demonstrate that RTLS methods enable improved quantitation of multiplexed samples, particularly with consideration for quantitation from chimeric fragment spectra. We used RTLS to profile proteome responses to small molecule perturbations and were able to quantify up to 15% more significantly regulated proteins in half the gradient time compared to traditional methods. Taken together, the development of RTLS expands the IDA toolbox to improve instrument efficiency and quantitative accuracy for sample multiplexed analyses.


Assuntos
Peptídeos , Proteômica , Proteômica/métodos , Peptídeos/análise , Proteoma/análise , Biblioteca Gênica , Fluxo de Trabalho , Biblioteca de Peptídeos
11.
Science ; 380(6640): 93-101, 2023 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-36926954

RESUMO

Although most cancer drugs modulate the activities of cellular pathways by changing posttranslational modifications (PTMs), little is known regarding the extent and the time- and dose-response characteristics of drug-regulated PTMs. In this work, we introduce a proteomic assay called decryptM that quantifies drug-PTM modulation for thousands of PTMs in cells to shed light on target engagement and drug mechanism of action. Examples range from detecting DNA damage by chemotherapeutics, to identifying drug-specific PTM signatures of kinase inhibitors, to demonstrating that rituximab kills CD20-positive B cells by overactivating B cell receptor signaling. DecryptM profiling of 31 cancer drugs in 13 cell lines demonstrates the broad applicability of the approach. The resulting 1.8 million dose-response curves are provided as an interactive molecular resource in ProteomicsDB.


Assuntos
Antineoplásicos , Apoptose , Processamento de Proteína Pós-Traducional , Proteômica , Antígenos CD20/metabolismo , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Linfócitos B/efeitos dos fármacos , Linhagem Celular Tumoral , Dano ao DNA , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Proteômica/métodos , Receptores de Antígenos de Linfócitos B/metabolismo , Transdução de Sinais , Humanos
12.
Mol Cell Proteomics ; 21(12): 100437, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36328188

RESUMO

Estimating false discovery rates (FDRs) of protein identification continues to be an important topic in mass spectrometry-based proteomics, particularly when analyzing very large datasets. One performant method for this purpose is the Picked Protein FDR approach which is based on a target-decoy competition strategy on the protein level that ensures that FDRs scale to large datasets. Here, we present an extension to this method that can also deal with protein groups, that is, proteins that share common peptides such as protein isoforms of the same gene. To obtain well-calibrated FDR estimates that preserve protein identification sensitivity, we introduce two novel ideas. First, the picked group target-decoy and second, the rescued subset grouping strategies. Using entrapment searches and simulated data for validation, we demonstrate that the new Picked Protein Group FDR method produces accurate protein group-level FDR estimates regardless of the size of the data set. The validation analysis also uncovered that applying the commonly used Occam's razor principle leads to anticonservative FDR estimates for large datasets. This is not the case for the Picked Protein Group FDR method. Reanalysis of deep proteomes of 29 human tissues showed that the new method identified up to 4% more protein groups than MaxQuant. Applying the method to the reanalysis of the entire human section of ProteomicsDB led to the identification of 18,000 protein groups at 1% protein group-level FDR. The analysis also showed that about 1250 genes were represented by ≥2 identified protein groups. To make the method accessible to the proteomics community, we provide a software tool including a graphical user interface that enables merging results from multiple MaxQuant searches into a single list of identified and quantified protein groups.


Assuntos
Peptídeos , Espectrometria de Massas em Tandem , Humanos , Espectrometria de Massas em Tandem/métodos , Bases de Dados de Proteínas , Software , Proteoma , Algoritmos
13.
Nat Methods ; 19(7): 803-811, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35710609

RESUMO

The laboratory mouse ranks among the most important experimental systems for biomedical research and molecular reference maps of such models are essential informational tools. Here, we present a quantitative draft of the mouse proteome and phosphoproteome constructed from 41 healthy tissues and several lines of analyses exemplify which insights can be gleaned from the data. For instance, tissue- and cell-type resolved profiles provide protein evidence for the expression of 17,000 genes, thousands of isoforms and 50,000 phosphorylation sites in vivo. Proteogenomic comparison of mouse, human and Arabidopsis reveal common and distinct mechanisms of gene expression regulation and, despite many similarities, numerous differentially abundant orthologs that likely serve species-specific functions. We leverage the mouse proteome by integrating phenotypic drug (n > 400) and radiation response data with the proteomes of 66 pancreatic ductal adenocarcinoma (PDAC) cell lines to reveal molecular markers for sensitivity and resistance. This unique atlas complements other molecular resources for the mouse and can be explored online via ProteomicsDB and PACiFIC.


Assuntos
Arabidopsis , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Animais , Arabidopsis/genética , Carcinoma Ductal Pancreático/metabolismo , Espectrometria de Massas , Camundongos , Neoplasias Pancreáticas/genética , Proteoma/análise
14.
Proteomics ; 22(19-20): e2100257, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35578405

RESUMO

Isobaric labeling increases the throughput of proteomics by enabling the parallel identification and quantification of peptides and proteins. Over the past decades, a variety of isobaric tags have been developed allowing the multiplexed analysis of up to 18 samples. However, experiments utilizing such tags often exhibit reduced identification rates and thus show decreased analytical depth. Re-scoring has been shown to rescue otherwise missed identifications but was not yet systematically applied on isobarically labeled data. Because iTRAQ 4/8-plex and the recently released TMTpro 16/18-plex share similar characteristics with TMT 6/10/11-plex, we hypothesized that Prosit-TMT, trained exclusively on 6/10/11-plex labeled peptides, may be applicable to these isobaric labeling strategies as well. To investigate this, we re-analyzed nine publicly available datasets covering iTRAQ and TMTpro labeling for samples with human and mouse origin. We highlight that Prosit-TMT shows remarkably good performance when comparing experimentally acquired and predicted fragmentation spectra (R of 0.84 - 0.9) and retention times (ΔRT95% of 3% - 10% gradient time) of peptides. Furthermore, re-scoring substantially increases the number of confidently identified spectra, peptides, and proteins.


Assuntos
Peptídeos , Proteômica , Humanos , Camundongos , Animais , Peptídeos/análise , Proteínas , Indicadores e Reagentes
15.
Anal Chem ; 94(20): 7181-7190, 2022 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-35549156

RESUMO

The prediction of fragment ion intensities and retention time of peptides has gained significant attention over the past few years. However, the progress shown in the accurate prediction of such properties focused primarily on unlabeled peptides. Tandem mass tags (TMT) are chemical peptide labels that are coupled to free amine groups usually after protein digestion to enable the multiplexed analysis of multiple samples in bottom-up mass spectrometry. It is a standard workflow in proteomics ranging from single-cell to high-throughput proteomics. Particularly for TMT, increasing the number of confidently identified spectra is highly desirable as it provides identification and quantification information with every spectrum. Here, we report on the generation of an extensive resource of synthetic TMT-labeled peptides as part of the ProteomeTools project and present the extension of the deep learning model Prosit to accurately predict the retention time and fragment ion intensities of TMT-labeled peptides with high accuracy. Prosit-TMT supports CID and HCD fragmentation and ion trap and Orbitrap mass analyzers in a single model. Reanalysis of published TMT data sets show that this single model extracts substantial additional information. Applying Prosit-TMT, we discovered that the expression of many proteins in human breast milk follows a distinct daily cycle which may prime the newborn for nutritional or environmental cues.


Assuntos
Aprendizado Profundo , Espectrometria de Massas em Tandem , Humanos , Recém-Nascido , Peptídeos/química , Proteólise , Proteômica/métodos , Espectrometria de Massas em Tandem/métodos
16.
Mol Cell Proteomics ; 21(8): 100238, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35462064

RESUMO

Isobaric stable isotope labeling techniques such as tandem mass tags (TMTs) have become popular in proteomics because they enable the relative quantification of proteins with high precision from up to 18 samples in a single experiment. While missing values in peptide quantification are rare in a single TMT experiment, they rapidly increase when combining multiple TMT experiments. As the field moves toward analyzing ever higher numbers of samples, tools that reduce missing values also become more important for analyzing TMT datasets. To this end, we developed SIMSI-Transfer (Similarity-based Isobaric Mass Spectra 2 [MS2] Identification Transfer), a software tool that extends our previously developed software MaRaCluster (© Matthew The) by clustering similar tandem MS2 from multiple TMT experiments. SIMSI-Transfer is based on the assumption that similarity-clustered MS2 spectra represent the same peptide. Therefore, peptide identifications made by database searching in one TMT batch can be transferred to another TMT batch in which the same peptide was fragmented but not identified. To assess the validity of this approach, we tested SIMSI-Transfer on masked search engine identification results and recovered >80% of the masked identifications while controlling errors in the transfer procedure to below 1% false discovery rate. Applying SIMSI-Transfer to six published full proteome and phosphoproteome datasets from the Clinical Proteomic Tumor Analysis Consortium led to an increase of 26 to 45% of identified MS2 spectra with TMT quantifications. This significantly decreased the number of missing values across batches and, in turn, increased the number of peptides and proteins identified in all TMT batches by 43 to 56% and 13 to 16%, respectively.


Assuntos
Proteômica , Espectrometria de Massas em Tandem , Análise por Conglomerados , Marcação por Isótopo , Peptídeos , Proteoma , Software
17.
Nat Chem Biol ; 18(8): 812-820, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35484434

RESUMO

Drugs that target histone deacetylase (HDAC) entered the pharmacopoeia in the 2000s. However, some enigmatic phenotypes suggest off-target engagement. Here, we developed a quantitative chemical proteomics assay using immobilized HDAC inhibitors and mass spectrometry that we deployed to establish the target landscape of 53 drugs. The assay covers 9 of the 11 human zinc-dependent HDACs, questions the reported selectivity of some widely-used molecules (notably for HDAC6) and delineates how the composition of HDAC complexes influences drug potency. Unexpectedly, metallo-ß-lactamase domain-containing protein 2 (MBLAC2) featured as a frequent off-target of hydroxamate drugs. This poorly characterized palmitoyl-CoA hydrolase is inhibited by 24 HDAC inhibitors at low nanomolar potency. MBLAC2 enzymatic inhibition and knockdown led to the accumulation of extracellular vesicles. Given the importance of extracellular vesicle biology in neurological diseases and cancer, this HDAC-independent drug effect may qualify MBLAC2 as a target for drug discovery.


Assuntos
Histona Desacetilases , Neoplasias , Descoberta de Drogas , Inibidores de Histona Desacetilases/química , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/metabolismo , Humanos , Ácidos Hidroxâmicos/química
18.
Nat Commun ; 13(1): 165, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-35013197

RESUMO

Proteome-wide measurements of protein turnover have largely ignored the impact of post-translational modifications (PTMs). To address this gap, we employ stable isotope labeling and mass spectrometry to measure the turnover of >120,000 peptidoforms including >33,000 phosphorylated, acetylated, and ubiquitinated peptides for >9,000 native proteins. This site-resolved protein turnover (SPOT) profiling discloses global and site-specific differences in turnover associated with the presence or absence of PTMs. While causal relationships may not always be immediately apparent, we speculate that PTMs with diverging turnover may distinguish states of differential protein stability, structure, localization, enzymatic activity, or protein-protein interactions. We show examples of how the turnover data may give insights into unknown functions of PTMs and provide a freely accessible online tool that allows interrogation and visualisation of all turnover data. The SPOT methodology is applicable to many cell types and modifications, offering the potential to prioritize PTMs for future functional investigations.


Assuntos
Processamento de Proteína Pós-Traducional , Proteínas/metabolismo , Proteoma/metabolismo , Software , Acetilação , Linfócitos B/citologia , Linfócitos B/metabolismo , Linhagem Celular Tumoral , Meia-Vida , Células HeLa , Humanos , Fosforilação , Ligação Proteica , Mapeamento de Interação de Proteínas , Estabilidade Proteica , Proteínas/genética , Proteólise , Proteoma/classificação , Proteoma/genética , Proteômica/métodos , Ubiquitinação
19.
Nat Commun ; 12(1): 3346, 2021 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-34099720

RESUMO

Characterizing the human leukocyte antigen (HLA) bound ligandome by mass spectrometry (MS) holds great promise for developing vaccines and drugs for immune-oncology. Still, the identification of non-tryptic peptides presents substantial computational challenges. To address these, we synthesized and analyzed >300,000 peptides by multi-modal LC-MS/MS within the ProteomeTools project representing HLA class I & II ligands and products of the proteases AspN and LysN. The resulting data enabled training of a single model using the deep learning framework Prosit, allowing the accurate prediction of fragment ion spectra for tryptic and non-tryptic peptides. Applying Prosit demonstrates that the identification of HLA peptides can be improved up to 7-fold, that 87% of the proposed proteasomally spliced HLA peptides may be incorrect and that dozens of additional immunogenic neo-epitopes can be identified from patient tumors in published data. Together, the provided peptides, spectra and computational tools substantially expand the analytical depth of immunopeptidomics workflows.


Assuntos
Aprendizado Profundo , Peptídeos/imunologia , Espectrometria de Massas em Tandem/métodos , Linhagem Celular , Epitopos , Proteínas da Matriz Extracelular/metabolismo , Antígenos HLA/imunologia , Antígenos de Histocompatibilidade Classe I/metabolismo , Antígenos de Histocompatibilidade Classe II/metabolismo , Humanos , Ligantes , Espectrometria de Massas , Medicina Molecular , Peptídeos/metabolismo , Proteômica
20.
Anal Chem ; 93(25): 8687-8692, 2021 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-34124897

RESUMO

A current trend in proteomics is to acquire data in a "single-shot" by LC-MS/MS because it simplifies workflows and promises better throughput and quantitative accuracy than schemes that involve extensive sample fractionation. However, single-shot approaches can suffer from limited proteome coverage when performed by data dependent acquisition (ssDDA) on nanoflow LC systems. For applications where sample quantities are not scarce, this study shows that high proteome coverage can be obtained using a microflow LC-MS/MS system operating a 1 mm i.d. × 150 mm column, at a flow-rate of 50 µL/min and coupled to an Orbitrap HF-X mass spectrometer. The results demonstrate the identification of ∼9 000 proteins from 50 µg of protein digest from Arabidopsis roots, 7 500 from mouse thymus, and 7 300 from human breast cancer cells in 3 h of analysis time in a single run. The dynamic range of protein quantification measured by the iBAQ approach spanned 5 orders of magnitude and replicate analysis showed that the median coefficient of variation was below 20%. Together, this study shows that ssDDA by µLC-MS/MS is a robust method for comprehensive and large-scale proteome analysis and which may be further extended to more rapid chromatography and data independent acquisition approaches in the future.̀.


Assuntos
Cromatografia Líquida , Proteômica , Espectrometria de Massas em Tandem , Animais , Arabidopsis , Linhagem Celular , Humanos , Camundongos , Proteoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA