Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
JOR Spine ; 7(2): e1324, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38633662

RESUMO

Background: Surgical treatment of adolescent idiopathic scoliosis (AIS) is very complex and modern instrumentation techniques offer multiple possibilities. Despite numerous publications, there is no clear consensus on the optimal strategy for the correction of scoliotic deformities. The goal of this study was to summarize the current surgical strategies for specific AIS cases within various countries. Method: Thirty-two experienced scoliosis surgeons from 15 countries were asked to plan surgeries on 12 representative AIS cases. All AIS cases had an indication for surgery. A questionnaire was provided to document surgical planning. The surgeons were provided with the patients' age and sex, together with radiographs in the lateral and sagittal planes during upright standing and in lateral bending to the left and right, as well as with clinical images. The angles of the main spinal curvatures were specified in the questionnaire. The surgeons were asked to specify their preferred classification system, their surgical approach, the planned fusion length, the type of implants, the rod type, and the resection steps. The data were analyzed with respect to the inter-rater variability, which was quantified using the Fleiss-Kappa Method. Results: There was a good agreement (k = 0.61) between the surgeons in choosing the Lenke curve type, and a moderate agreement for the lumbar (0.41) and sagittal (0.56) modifiers. The most frequently planned resection procedure was complete facetectomy (67%). The posterior approach was the most commonly (91%) selected strategy to treat AIS. Anterior approaches were chosen most for Lenke 5 type with a rate of 20%. The upper instrumented vertebra (UIV) varied most for Lenke 1, 5, and 6 cases, with a vertebral level discrepancy of up to 10 levels at Lenke 6. The lowest instrumented vertebra varied most for Lenke 1 and 4 by up to five levels. Polyaxial screws were chosen most (56%), followed by monoaxial (20%) and uniplanar (19%) screws and hooks (5%). Conclusions: The results highlight the commonalities and discrepancy in the surgical treatment of AIS in between surgeons. The selected LIV and UIV can vary depending on the curve type and surgeon. Hook constructs appear to be generally replaced by transpedicular screws. The survey indicates open questions in the AIS treatment and in the understanding of scoliosis biomechanics.

2.
J Biomech ; 163: 111929, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38218695

RESUMO

Reliable and timely assessment of bone union between vertebrae is considered a key challenge after spinal fusion surgery. Recently, a novel sensor concept demonstrated the ability to objectively assess posterolateral fusion based on continuous implant load monitoring. The aim of this study was to investigate systematically the concept in a mono-segmental fusion model using an updated sensor setup. Three sheep underwent bilateral facetectomy at level L2-L3 and L4-L5. The segments were stabilized using two unconnected pedicle-screw-rod constructs per level. Sensing devices were attached to the rods between each pedicle screw pair and the loads were continuously monitored over 16 weeks. After euthanasia, the spines were biomechanically tested for their range of motion and high-resolution CT scans were performed to confirm the fusion success. After an initial increase in implant load until reaching a maximum (100 %) at approximately week 4, eleven out of twelve sensors measured a constant decrease in implant load to 52 ± 9 % at euthanasia. One sensor measurement was compromised by newly forming bone growing against the sensor clamp. Bridging bone at each facet and minor remnant segmental motion (<0.7°) confirmed the fusion of all motion segments. Data obtained by continuous measurement of implant loading of spinal screw-rod constructs enables objective monitoring of spinal fusion progression. The sensor concept provides valuable real-time information, offering quantifiable data as an alternative to traditional imaging techniques. However, the design of the current sensor concept needs to be matured, tailored to, and validated for the human spine.


Assuntos
Parafusos Pediculares , Fusão Vertebral , Humanos , Animais , Ovinos , Vértebras Lombares/cirurgia , Fenômenos Biomecânicos , Amplitude de Movimento Articular
3.
Spine Deform ; 12(1): 35-46, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37639186

RESUMO

PURPOSE: Surgical treatment of adolescent idiopathic scoliosis (AIS) is very complex, involves many critical decisions and modern instrumentation techniques, and offers multiple possibilities. It is known that the surgical strategy may vary strongly between surgeons for AIS cases. The goal of this study was to document, summarize, and analyse the current biomechanical relevant variabilities in the surgical treatments of individual AIS patient cases. METHODS: Eight experienced scoliosis surgeons from different hospitals were asked to plan surgeries on 12 representative patients with AIS. The surgeons were provided with radiographs during upright standing in the coronal and sagittal plane, as well as lateral bending images to the left and right. The surgeons were asked to specify the Lenke type, their surgical approach, the resection steps, the planned fusion length, and the type of implants. The data were analysed with respect to the inter-rater variability, which was quantified using the Fleiss Kappa method. RESULTS: In the selection of the surgical approach, the surgeons concurred most with Lenke curve types 2 (κ = 0.88) and 4 (κ = 0.75). The largest differences were shown at Lenke 1 (κ = 0.39) and 5 (κ = 0.32). Anterior approaches were selected in the majority of cases at Lenke types 5, with an average of 50%. The strongest deviation in fusion length was documented at Lenke curve type 6. CONCLUSION: The survey highlighted differences in the surgical strategy depending on the Lenke curve type, the direction of the surgical approach, and the surgeon. The main discrepancies between the surgeons were found for Lenke 1, 5, and 6 curves, and consistencies for Lenke 2, 3, and 4. The documented discrepancies indicate the remaining open questions in the surgical treatment and understanding of scoliosis biomechanics.


Assuntos
Escoliose , Cirurgiões , Humanos , Adolescente , Escoliose/diagnóstico por imagem , Escoliose/cirurgia , Radiografia
4.
PLoS One ; 18(8): e0282346, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37603539

RESUMO

In patients presenting with low back pain (LBP), once specific causes are excluded (fracture, infection, inflammatory arthritis, cancer, cauda equina and radiculopathy) many clinicians pose a diagnosis of non-specific LBP. Accordingly, current management of non-specific LBP is generic. There is a need for a classification of non-specific LBP that is both data- and evidence-based assessing multi-dimensional pain-related factors in a large sample size. The "PRedictive Evidence Driven Intelligent Classification Tool for Low Back Pain" (PREDICT-LBP) project is a prospective cross-sectional study which will compare 300 women and men with non-specific LBP (aged 18-55 years) with 100 matched referents without a history of LBP. Participants will be recruited from the general public and local medical facilities. Data will be collected on spinal tissue (intervertebral disc composition and morphology, vertebral fat fraction and paraspinal muscle size and composition via magnetic resonance imaging [MRI]), central nervous system adaptation (pain thresholds, temporal summation of pain, brain resting state functional connectivity, structural connectivity and regional volumes via MRI), psychosocial factors (e.g. depression, anxiety) and other musculoskeletal pain symptoms. Dimensionality reduction, cluster validation and fuzzy c-means clustering methods, classification models, and relevant sensitivity analyses, will classify non-specific LBP patients into sub-groups. This project represents a first personalised diagnostic approach to non-specific LBP, with potential for widespread uptake in clinical practice. This project will provide evidence to support clinical trials assessing specific treatments approaches for potential subgroups of patients with non-specific LBP. The classification tool may lead to better patient outcomes and reduction in economic costs.


Assuntos
Dor Lombar , Masculino , Humanos , Feminino , Dor Lombar/diagnóstico por imagem , Inteligência Artificial , Estudos Transversais , Estudos Prospectivos , Coluna Vertebral
5.
J Orthop Res ; 41(1): 206-214, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35398932

RESUMO

Modic changes (MC) and endplate abnormalities (EA) have been shown to impact preoperative symptoms and outcomes following spinal surgery. However, little is known about how these phenotypes impact cervical alignment. This study aimed to evaluate the impact that these phenotypes have on preoperative, postoperative, and changes in cervical alignment in patients undergoing anterior cervical discectomy and fusion (ACDF). We performed a retrospective study of prospectively collected data of ACDF patients at a single institution. Preoperative magnetic resonance imagings (MRIs) were used to assess for the MC and EA. Patients were subdivided into four groups: MC-only, EA-only, the combined Modic-Endplate-Complex (MEC), and patients without either phenotype. Pre and postoperative MRIs were used to assess alignment parameters. Associations with imaging phenotypes and alignment parameters were assessed, and statistical significance was set at p < 0.5. A total of 512 patients were included, with 84 MC-only patients, 166 EA-only patients, and 71 patients with MEC. Preoperative MC (p = 0.031) and the MEC (p = 0.039) had significantly lower preoperative T1 slope compared to controls. Lower preoperative T1 slope was a risk factor for MC (p = 0.020) and MEC (p = 0.029) and presence of MC (Type II) and the MEC (Type III) was predictive of lower preoperative T1 slope. There were no differences in postoperative alignment measures or patient reported outcome measures. MC and endplate pathologies such as the MEC appear to be associated with worse cervical alignment at baseline relative to patients without these phenotypes. Poor alignment may be an adaptive response to these degenerative findings or may be a risk factor for their development.


Assuntos
Vértebras Cervicais , Vértebras Cervicais/diagnóstico por imagem , Vértebras Cervicais/cirurgia , Estudos Retrospectivos , Resultado do Tratamento , Humanos , Imageamento por Ressonância Magnética
6.
Medicina (Kaunas) ; 58(7)2022 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-35888618

RESUMO

Background and Objectives: Spinal fusion is an effective and widely accepted intervention. However, complications such as non-unions and hardware failures are frequently observed. Radiologic imaging and physical examination are still the gold standards in the assessment of spinal fusion, despite multiple limitations including radiation exposure and subjective image interpretation. Furthermore, current diagnostic methods only allow fusion assessment at certain time points and require the patient's presence at the hospital or medical practice. A recently introduced implantable sensor system for continuous and wireless implant load monitoring in trauma applications carries the potential to overcome these drawbacks, but transferability of the principle to the spine has not been demonstrated yet. Materials and Methods: The existing trauma sensor was modified for attachment to a standard pedicle-screw-rod system. Two lumbar segments (L2 to L4) of one Swiss white alpine sheep were asymmetrically instrumented. After facetectomy, three sensors were attached to the rods between each screw pair and activated for measurement. The sheep was euthanized 16 weeks postoperatively. After radiological assessment the spine was explanted and loaded in flexion-extension to determine the range of motion of the spinal segments. Sensor data were compared with mechanical test results and radiologic findings. Results: The sensors measured physiological rod loading autonomously over the observation period and delivered the data daily to bonded smartphones. At euthanasia the relative rod load dropped to 67% of the respective maximum value for the L23 segment and to 30% for the L34 segment. In agreement, the total range of motion of both operated segments was lower compared to an intact reference segment (L23: 0.57°; L34: 0.49°; intact L45: 4.17°). Radiologic assessment revealed fusion mass in the facet joint gaps and bilateral bridging bone around the joints at both operated segments. Conclusions: Observations of this single-case study confirm the basic ability of continuous rod load measurement to resolve the spinal fusion process as indicated by a declining rod load with progressing bone fusion. A strong clinical potential of such technology is eminent, but further data must be collected for final proof of principle.


Assuntos
Doenças da Coluna Vertebral , Fusão Vertebral , Animais , Fenômenos Biomecânicos , Parafusos Ósseos , Vértebras Lombares/diagnóstico por imagem , Vértebras Lombares/cirurgia , Amplitude de Movimento Articular/fisiologia , Ovinos , Fusão Vertebral/métodos
7.
Eur Spine J ; 31(8): 2057-2081, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35347425

RESUMO

PURPOSE: The field of artificial intelligence is ever growing and the applications of machine learning in spine care are continuously advancing. Given the advent of the intelligence-based spine care model, understanding the evolution of computation as it applies to diagnosis, treatment, and adverse event prediction is of great importance. Therefore, the current review sought to synthesize findings from the literature at the interface of artificial intelligence and spine research. METHODS: A narrative review was performed based on the literature of three databases (MEDLINE, CINAHL, and Scopus) from January 2015 to March 2021 that examined historical and recent advancements in the understanding of artificial intelligence and machine learning in spine research. Studies were appraised for their role in, or description of, advancements within image recognition and predictive modeling for spinal research. Only English articles that fulfilled inclusion criteria were ultimately incorporated in this review. RESULTS: This review briefly summarizes the history and applications of artificial intelligence and machine learning in spine. Three basic machine learning training paradigms: supervised learning, unsupervised learning, and reinforced learning are also discussed. Artificial intelligence and machine learning have been utilized in almost every facet of spine ranging from localization and segmentation techniques in spinal imaging to pathology specific algorithms which include but not limited to; preoperative risk assessment of postoperative complications, screening algorithms for patients at risk of osteoporosis and clustering analysis to identify subgroups within adolescent idiopathic scoliosis. The future of artificial intelligence and machine learning in spine surgery is also discussed with focusing on novel algorithms, data collection techniques and increased utilization of automated systems. CONCLUSION: Improvements to modern-day computing and accessibility to various imaging modalities allow for innovative discoveries that may arise, for example, from management. Given the imminent future of AI in spine surgery, it is of great importance that practitioners continue to inform themselves regarding AI, its goals, use, and progression. In the future, it will be critical for the spine specialist to be able to discern the utility of novel AI research, particularly as it continues to pervade facets of everyday spine surgery.


Assuntos
Inteligência Artificial , Aprendizado de Máquina , Adolescente , Algoritmos , Humanos
8.
PLoS One ; 16(6): e0252672, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34081754

RESUMO

BACKGROUND: Collagen cross-links contribute to the mechanical resilience of the intervertebral disc (IVD). UVA-light-activated riboflavin-induced collagen crosslinking (UVA-CXL) is a well-established and effective ophthalmological intervention that increases the mechanical rigidity of the collagen-rich corneal matrix in Keratoconus. This study explores the feasibility, safety and efficacy of translating this intervention in reinforcing the IVD. METHODS: Annulus fibrosus (AF) cells were isolated from bovine IVDs and treated with different combinations of riboflavin (RF) concentrations (0.05-8 mM) and UVA light intensities (0.3-4 mW/cm2). Metabolic activity (resazurin assay), cell viability (TUNEL assay), and gene expression of apoptosis regulators C-FOS and PT5 were assessed immediately and 24 hours after treatment. Biomechanical effects of UVA-CXL on IVDs were measured by indentation analysis of changes in the instantaneous modulus and by peel-force delamination strength analysis of the AF prior and after treatment. RESULTS: Different intensities of UVA did not impair the metabolic activity of AF cells. However, RF affected metabolic activity (p < 0.001). PT53 expression was similar in all RF conditions tested while C-FOS expression decreased 24 hours after treatment. Twenty-four hours after treatment, no apoptotic cells were observed in any condition tested. Biomechanical characterizations showed a significant increase in the annular peel strength of the UVA-CXL group, when compared to controls of UVA and RF alone (p < 0.05). UVA-CXL treated IVDs showed up to 152% higher (p < 0.001) instantaneous modulus values compared to the untreated control. CONCLUSION: This is the first study on UVA-CXL treatment of IVD. It induced significantly increased delamination strength and instantaneous modulus indentation values in intact IVD samples in a structure-function relationship. RF concentrations and UVA intensities utilized in ophthalmological clinical protocols were well tolerated by the AF cells. Our findings suggest that UVA-CXL may be a promising tool to reinforce the IVD matrix.


Assuntos
Colágeno/metabolismo , Riboflavina/química , Raios Ultravioleta , Animais , Anel Fibroso/citologia , Anel Fibroso/efeitos dos fármacos , Anel Fibroso/metabolismo , Anel Fibroso/efeitos da radiação , Bovinos , Sobrevivência Celular/efeitos da radiação , Colágeno/química , Estudos de Viabilidade , Expressão Gênica/efeitos da radiação , Disco Intervertebral/citologia , Mitocôndrias/metabolismo , Mitocôndrias/efeitos da radiação , Proteínas Proto-Oncogênicas c-fos/genética , Proteínas Proto-Oncogênicas c-fos/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
9.
Eur Spine J ; 30(5): 1117-1124, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33730216

RESUMO

PURPOSE: Prevention of implant subsidence in osteoporotic (thoraco)lumbar spines is still a major challenge in spinal surgery. In this study, a new biomechanical in vitro test method was developed to simulate patient activities in order to determine the subsidence risk of vertebral body replacements during physiologic loading conditions. METHODS: The study included 12 (thoraco)lumbar (T11-L1, L2-L4) human specimens. After dorsal stabilisation and corpectomy, vertebral body replacements (VBR) with (a) round centrally located and (b) lateral end pieces with apophyseal support were implanted, equally distributed regarding segment, sex, mean BMD ((a) 64.2 mgCaHA/cm3, (b) 66.7 mgCaHA/cm3) and age ((a) 78 years, (b) 73.5 years). The specimens were then subjected to everyday activities (climbing stairs, tying shoes, lifting 20 kg) simulated by a custom-made dynamic loading simulator combining corresponding axial loads with flexion-extension and lateral bending movements. They were applied in oscillating waves at 0.5 Hz and raised every 100 cycles phase-shifted to each other by 50 N or 0.25°, respectively. The range of motion (ROM) of the specimens was determined in all three motion planes under pure moments of 3.75 Nm prior to and after implantation as well as subsequently following activities. Simultaneously, subsidence depth was quantified from fluoroscope films. A mixed model (significance level: 0.05) was established to relate subsidence risk to implant geometries and patients' activities. RESULTS: With this new test method, simulating everyday activities provoked clinically relevant subsidence schemes. Generally, severe everyday activities caused deeper subsidence which resulted in increased ROM. Subsidence of lateral end pieces was remarkably less pronounced which was accompanied by a smaller ROM in flexion-extension and higher motion possibilities in axial rotation (p = 0.05). CONCLUSION: In this study, a new biomechanical test method was developed that simulates physiologic activities to examine implant subsidence. It appears that the highest risk of subsidence occurs most when lifting heavy weights, and into the ventral part of the caudal vertebra. The results indicate that lateral end pieces may better prevent from implant subsidence because of the additional cortical support. Generally, patients that are treated with a VBR should avoid activities that create high loading on the spine.


Assuntos
Distinções e Prêmios , Fusão Vertebral , Idoso , Fenômenos Biomecânicos , Humanos , Técnicas In Vitro , Vértebras Lombares , Amplitude de Movimento Articular , Corpo Vertebral
10.
Sci Rep ; 11(1): 3595, 2021 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-33574504

RESUMO

Pedicle subtraction osteotomy (PSO) is an invasive surgical technique allowing the restoration of a well-balanced sagittal profile, however, the risks of pseudarthrosis and instrumentation breakage are still high. Literature studied primary stability and posterior instrumentation loads, neglecting the load shared by the anterior column, which is fundamental to promote fusion early after surgery. The study aimed at quantifying the load-sharing occurring after PSO procedure across the ventral spinal structures and the posterior instrumentation, as affected by simple bilateral fixation alone, with interbody cages adjacent to PSO level and supplementary accessory rods. Lumbar spine segments were loaded in vitro under flexion-extension, lateral bending, and torsion using an established spine tester. Digital image correlation (DIC) and strain-gauge (SG) analyses measured, respectively, the full-field strain distribution on the ventral surface of the spine and the local strain on posterior primary rods. Ventral strains considerably decreased following PSO and instrumentation, confirming the effectiveness of posterior load-sharing. Supplemental accessory rods considerably reduced the posterior rod strains only with interbody cages, but the ventral strains were unaffected: this indicates that the load transfer across the osteotomy could be promoted, thus explaining the higher fusion rate with decreased rod fracture risk reported in clinical literature.


Assuntos
Lordose/cirurgia , Vértebras Lombares/cirurgia , Região Lombossacral/cirurgia , Osteotomia/métodos , Fenômenos Biomecânicos , Biofísica , Feminino , Humanos , Lordose/patologia , Vértebras Lombares/patologia , Região Lombossacral/patologia , Masculino , Pessoa de Meia-Idade , Parafusos Pediculares , Amplitude de Movimento Articular/fisiologia , Fusão Vertebral
11.
J Orthop Res ; 39(3): 657-670, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32159238

RESUMO

Degenerative spine imaging findings have been extensively studied in the lumbar region and are associated with pain and adverse clinical outcomes after surgery. However, few studies have investigated the significance of these imaging "phenotypes" in the cervical spine. Patients with degenerative cervical spine pathology undergoing anterior cervical discectomy and fusion (ACDF) from 2008 to 2015 were retrospectively and prospectively assessed using preoperative MRI for disc degeneration, narrowing, and displacement, high-intensity zones, endplate abnormalities, Modic changes, and osteophyte formation from C2-T1. Points were assigned for these phenotypes to generate a novel Cervical Phenotype Index (CPI). Demographics were evaluated for association with phenotypes and the CPI using forward stepwise regression. Bootstrap sampling and multiple imputations assessed phenotypes and the CPI in association with patient-reported outcomes (Neck Disability Index [NDI], Visual Analog Scale [VAS]-neck, VAS-arm) and adjacent segment degeneration (ASDeg) and disease (ASDz). Of 861 patients, disc displacement was the most common (99.7%), followed by osteophytes (92.0%) and endplate abnormalities (57.3%). Most findings were associated with age and were identified at similar cervical vertebral levels; at C5-C7. Imaging phenotypes demonstrated both increased and decreased associations with adverse patient-reported outcomes and ASDeg/Dz. However, the CPI consistently predicted worse NDI (P = .012), VAS-neck (P = .007), and VAS-arm (P = .013) scores, in addition to higher odds of ASDeg (P = .002) and ASDz (P = .004). The CPI was significantly predictive of postoperative symptoms of pain/disability and ASDeg/Dz after ACDF, suggesting that the totality of degenerative findings may be more clinically relevant than individual phenotypes and that this tool may help prognosticate outcomes after surgery.


Assuntos
Vértebras Cervicais/diagnóstico por imagem , Degeneração do Disco Intervertebral/diagnóstico por imagem , Deslocamento do Disco Intervertebral/diagnóstico por imagem , Dor Pós-Operatória/diagnóstico por imagem , Adulto , Idoso , Vértebras Cervicais/cirurgia , Discotomia , Feminino , Humanos , Degeneração do Disco Intervertebral/cirurgia , Deslocamento do Disco Intervertebral/cirurgia , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Medidas de Resultados Relatados pelo Paciente , Estudos Retrospectivos , Fusão Vertebral
13.
Spine (Phila Pa 1976) ; 45(15): E917-E926, 2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32675603

RESUMO

STUDY DESIGN: A retrospective study with prospectively-collected data. OBJECTIVE: To determine how type, location, and size of endplate lesions on magnetic resonance imaging (MRI) may be associated with symptoms and clinical outcomes after anterior cervical discectomy and fusion (ACDF). SUMMARY OF BACKGROUND DATA: Structural endplate abnormalities are important, yet understudied, phenomena in the cervical spine. ACDF is a common surgical treatment for degenerative disc disease; however, adjacent segment degeneration/disease (ASD) may develop. METHODS: Assessed the imaging, symptoms and clinical outcomes of 861 patients who underwent ACDF at a single center. MRI and plain radiographs of the cervical spine were evaluated. Endplate abnormalities on MRI were identified and stratified by type (atypical, typical), location, relation to operative levels, presence at the adjacent level, and size. These strata were assessed for association with presenting symptoms, patient-reported, and postoperative outcomes. RESULTS: Of 861 patients (mean follow-up: 17.4 months), 57.3% had evidence of endplate abnormalities, 39.0% had typical abnormalities, while 18.2% had atypical abnormalities. Patients with any endplate abnormality had greater odds of myelopathy irrespective of location or size, while sensory deficits were associated with atypical lesions (P = 0.016). Typical and atypical abnormalities demonstrated differences in patient-reported outcomes based on location relative to the fused segment. Typical variants were not associated with adverse surgical outcomes, while atypical lesions were associated with ASD (irrespective of size/location; P = 0.004) and reoperations, when a large abnormality was present at the proximal adjacent level (P = 0.025). CONCLUSION: This is the first study to examine endplate abnormalities on MRI of the cervical spine, demonstrating distinct risk profiles for symptoms, patient-reported, and surgical outcomes after ACDF. Patients with typical lesions reported worsening postoperative pain/disability, while those with atypical abnormalities experienced greater rates of ASD and reoperation. This highlights the relevance of a degenerative spine phenotypic assessment, and suggests endplate abnormalities may prognosticate clinical outcomes after surgery. LEVEL OF EVIDENCE: 3.


Assuntos
Vértebras Cervicais/anormalidades , Vértebras Cervicais/diagnóstico por imagem , Pessoas com Deficiência , Discotomia/efeitos adversos , Degeneração do Disco Intervertebral/diagnóstico por imagem , Dor Pós-Operatória/diagnóstico por imagem , Fusão Vertebral/efeitos adversos , Adulto , Vértebras Cervicais/cirurgia , Discotomia/tendências , Feminino , Seguimentos , Humanos , Degeneração do Disco Intervertebral/etiologia , Degeneração do Disco Intervertebral/cirurgia , Imageamento por Ressonância Magnética/tendências , Masculino , Pessoa de Meia-Idade , Dor Pós-Operatória/etiologia , Dor Pós-Operatória/cirurgia , Estudos Prospectivos , Reoperação/tendências , Estudos Retrospectivos , Fusão Vertebral/tendências
14.
Artigo em Inglês | MEDLINE | ID: mdl-32582680

RESUMO

Spinal tumors and unstable vertebral body fractures usually require surgical treatment including vertebral body replacement. Regarding primary stability, however, the best possible treatment depends on the spinal region. The purpose of this in vitro study was to evaluate the effects of instrumentation length and approach size on thoracic spinal stability including the entire rib cage. Six fresh frozen human thoracic spine specimens with intact rib cages (C7-L1) were loaded with pure moments of 5 Nm in flexion/extension, lateral bending, and axial rotation, while monitoring the relative motions of all spinal segments using optical motion tracking. The specimens were tested (1) in the intact condition, followed by testing after vertebral body replacement at T6 level using a unilateral approach combined with (2) long instrumentation (T4-T8) and (3) short instrumentation (T5-T7) as well as a bilateral approach combined with (4) long and (5) short instrumentation. Significant increases of the range of motion (p < 0.05) were found in the entire thoracic spine (T1-T12) using the bilateral approach and short instrumentation in primary flexion/extension and in secondary axial rotation during primary lateral bending compared to both conditions with long instrumentation, as well as in secondary lateral bending during primary axial rotation compared to unilateral approach and long instrumentation. Compared to the intact condition, the range of motion was significantly decreased using unilateral approach and long instrumentation in flexion extension and secondary lateral bending during primary axial rotation, as well as using bilateral approach and long instrumentation in lateral bending. On the segmental level, the range of motion was significantly increased at T4-T5 level in lateral bending using unilateral approach and short instrumentation and significantly decreased using bilateral approach and long instrumentation compared to their respective previous conditions. Regardless of the approach type, which did not affect thoracic spinal stability in the present study, short instrumentation overall shows sufficient primary stability in the mid-thoracic spine with intact rib cage, while creating considerably more instability compared to long instrumentation, potentially being of importance regarding long-term implant failure. Moreover, short instrumentation could affect adjacent segment disease due to increased motion at the upper segmental level.

15.
J Biophotonics ; 13(10): e202000110, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32589779

RESUMO

The tensile strength of the intervertebral disc (IVD) is mainly maintained by collagen cross-links. Loss of collagen cross-linking combined with other age-related degenerative processes contributes to tissue weakening, biomechanical failure, disc herniation and pain. Exogenous collagen cross-linking has been identified as an effective therapeutic approach for restoring IVD tensile strength. The current state-of-the-art method to assess the extent of collagen cross-linking in tissues requires destructive procedures and high-performance liquid chromatography. In this study, we investigated the utility of infrared attenuated total reflection (IR-ATR) spectroscopy as a nondestructive analytical strategy to rapidly evaluate the extent of UV-light-activated riboflavin (B2)-induced collagen cross-linking in bovine IVD samples. Thirty-five fresh bovine-tail IVD samples were equally divided into five treatment groups: (a) untreated, (b) cell culture medium Dulbecco's Modified Eagle's Medium only, (c) B2 only, (d) UV-light only and (e) UV-light-B2. A total of 674 measurements have been acquired, and were analyzed via partial least squares discriminant analysis. This classification scheme unambiguously identified individual classes with a sensitivity >91% and specificity >92%. The obtained results demonstrate that IR-ATR spectroscopy reliably differentiates between different treatment categories, and promises an excellent tool for potential in vivo, nondestructive and real-time assessment of exogenous IVD cross-linking.


Assuntos
Disco Intervertebral , Cauda , Animais , Bovinos , Colágeno , Reagentes de Ligações Cruzadas , Fármacos Fotossensibilizantes , Riboflavina/farmacologia , Raios Ultravioleta
16.
Eur Spine J ; 29(1): 36-44, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31414289

RESUMO

PURPOSE: To investigate the biomechanical effects of anterior column realignment (ACR) and pedicle subtraction osteotomy (PSO) on local lordosis correction, primary stability and rod strains. METHODS: Seven cadaveric spine segments (T12-S1) underwent ACR at L1-L2. A stand-alone hyperlordotic cage was initially tested and then supplemented with posterior bilateral fixation. The same specimens already underwent a PSO at L4 stabilized by two rods, a supplemental central rod (three rods) and accessory rods (four rods) with and without adjacent interbody cages (La Barbera in Eur Spine J 27(9):2357-2366, 2018). In vitro flexibility tests were performed under pure moments in flexion/extension (FE), lateral bending (LB) and axial rotation (AR) to determine the range of motion (RoM), while measuring the rod strains with strain gauge rosettes. RESULTS: Local lordosis correction with ACR (24.7° ± 3.7°) and PSO (25.1° ± 3.9°) was similar. Bilateral fixation significantly reduced the RoM (FE: 31%, LB: 2%, AR: 18%), providing a stability consistent with PSO constructs (p > 0.05); however, it demonstrates significantly higher rod strains compared to PSO constructs with lateral accessory rods and interbody cages in FE and AR (p < 0.05), while being comparable in FE or slightly higher in AR compared to PSO constructs with two and three rods. CONCLUSION: Bilateral posterior fixation is highly recommended following ACR to provide adequate primary stability. However, primary rod strains in ACR were found comparable or higher than weak PSO construct associated with frequent rod failure; therefore, caution is recommended. These slides can be retrieved under Electronic Supplementary Material.


Assuntos
Osteotomia , Curvaturas da Coluna Vertebral/cirurgia , Coluna Vertebral/cirurgia , Fenômenos Biomecânicos , Humanos , Osteotomia/instrumentação , Osteotomia/métodos , Amplitude de Movimento Articular/fisiologia , Fusão Vertebral
17.
Eur Spine J ; 29(1): 179-185, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31664565

RESUMO

PURPOSE: The aim of this study was to quantify the stabilizing effect of the passive structures in thoracic spinal motion segments by stepwise resections. These data can be used to calibrate finite element models of the thoracic spine, which are needed to explore novel surgical treatments of spinal deformities, fractures, and tumours. METHOD: Six human thoracic spinal motion segments from three segmental levels (T2-T3, T6-T7, and T10-T11) were loaded with pure moments of 1 and 2.5 Nm in flexion/extension, lateral bending, and axial rotation. After each loading step, the ligaments, facet capsules, and the nucleus pulposus were stepwise resected from posterior to anterior direction, while the segmental relative motions were measured using an optical motion tracking system. RESULTS: Significant increases (p < 0.05) in the range of motion were detected after resecting the anterior spinal structures depending on loading magnitude, motion direction, and segmental level. The highest relative increases in the range of motion were observed after nucleotomy in all motion directions. The vertebral arch mostly stabilized the thoracic spinal motion segments in flexion and extension, while the facet joint capsules mainly affected the segmental stability in axial rotation. Coupled motions were not observed. CONCLUSIONS: The anulus fibrosus defines the motion characteristics qualitatively, while the ligaments and the presence of the nucleus pulposus restrict the mobility of a thoracic spinal motion segment solely in a quantitative manner. The posterior ligaments do not predominantly serve for primary stability but for the prevention of hyperflexion. These slides can be retrieved under Electronic Supplementary Material.


Assuntos
Disco Intervertebral/fisiologia , Ligamentos Articulares/fisiologia , Amplitude de Movimento Articular/fisiologia , Vértebras Torácicas/fisiologia , Humanos , Disco Intervertebral/cirurgia , Ligamentos Articulares/cirurgia , Rotação , Vértebras Torácicas/cirurgia , Articulação Zigapofisária/fisiologia , Articulação Zigapofisária/cirurgia
18.
Eur Spine J ; 28(5): 922-933, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30689044

RESUMO

PURPOSE: The pathomechanism of annulus fibrosus (AF) failure is still unknown. We hypothesise that mechanical overload and an inflammatory microenvironment contribute to AF structural weakening. Therefore, the objective of this study was to investigate the influence of these factors on the AF, particularly the translamellar bridging network (TLBN) which connects the AF lamellae. METHODS: A bovine AF organ culture (AF-OC) model of standardised AF rings was used to study the individual and combined effects of cyclic tensile strain (CTS) and IL-1ß (1 ng/mL) culture medium supplementation. AF-OCs were analysed for PGE2 production (ELISA) and deposition of IL-6, COX-2, fibrillin, and MMP3 in the tissue (immunohistochemistry, IHC). The mechanical strength of the TLBN was evaluated using a peel test to measure the strength required to separate an AF segment along a lamellar bound. RESULTS: The combination of CTS + IL-1ß led to a significant increase in PGE2 production compared to Control (p < 0.01). IHC evaluations showed that the CTS + IL-1ß group exhibited higher production of COX-2 and MMP3 within the TLBN regions compared to the adjacent lamellae and a significant increase in IL-6 ratio compared to Control (p < 0.05). A significant decrease in the annular peel strength was observed in the CTS + IL1ß group compared to Control (p < 0.05). CONCLUSION: Our findings suggest that CTS and IL-1ß act synergistically to increase pro-inflammatory and catabolic molecules within the AF, particularly the TLBN, leading to a weakening of the tissue. This standardised model enables the investigation of AF/TLBN structure-function relationship and is a platform to test AF-focused therapeutics. These slides can be retrieved under Electronic Supplementary Material.


Assuntos
Anel Fibroso/metabolismo , Anel Fibroso/patologia , Estresse Mecânico , Animais , Bovinos , Sobrevivência Celular , Ciclo-Oxigenase 2/metabolismo , Dinoprostona/metabolismo , Fibrilinas/metabolismo , Imuno-Histoquímica , Interleucina-1beta/farmacologia , Interleucina-6/metabolismo , Metaloproteinase 3 da Matriz/metabolismo , Microscopia , Modelos Animais
19.
Transl Oncol ; 11(3): 639-646, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29604509

RESUMO

Vertebral fractures associated with the loss of structural integrity of neoplastic vertebrae are common, and determined to the deterioration of the bone quality in the lesion area. The prediction of the fracture risk in metastatically involved spines can guide in deciding if preventive solutions, such as medical prophylaxis, bracing, or surgery are indicated for the patient. In this study, finite element models of 22 thoracolumbar vertebrae were built based on CT scans of three spines, covering a wide spectrum of possible clinical scenarios in terms of age, bone quality and degenerative features, taking into account the local material properties of bone tissue. Simulations were performed in order to investigate the effect of the size and location of the tumoral lesion, the bone quality and the vertebral level in determining the structural stability of the neoplastic vertebrae. Tumors with random size and positions were added to the models, for a total of 660 simulations in which a compressive load was simulated. Results highlighted the fundamental role of the tumor size, whereas the other parameters had a lower, but non-negligible impact on the axial collapse of the vertebra, the vertebral bulge in the transverse plane and the canal narrowing under the application of the load. All the considered parameters are radiologically measurable, and can therefore be translated in a straightforward way to the clinical practice to support decisions about preventive treatment of metastatic fractures.

20.
Am J Pathol ; 187(8): 1686-1699, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28618255

RESUMO

Osteoporosis induction in a sheep model by steroid administration combined with ovariectomy recapitulates decreased bone formation and substandard matrix mineralization in patients. Recently, the role of osteocytes has been frequently addressed, with focus on their role in osteoclastogenesis. However, the quantification of receptor activator of NF-κB ligand (RANKL) and osteoprotegerin (OPG) signaling in osteocytes was not studied in sheep. The current study reproduced the sheep model of osteoporosis to study the RANKL/OPG ratio correlation to the method of osteoporosis induction. We investigated the induction of osteoporosis after 8 months using 31 female merino land sheep divided into four groups: control, ovariectomy, ovariectomy with dietary limitation, and ovariectomy with dietary limitation and steroid injection. In accordance to previous reports, the present study showed trabecular thinning, higher numbers of apoptotic osteocytes, and imbalanced metabolism, leading to defective mineralization. The global RANKL/OPG ratio in the spine after 8 months of steroid and dietary treatment was not different from that of the control. Interestingly, assessment of the osteocyte-specific RANKL/OPG ratio showed that the steroid-induced osteoporosis in its late progressive phase stimulates RANKL expression in osteocytes. Sclerostin is suggested to induce RANKL expression in osteocytes. The findings of this study can contribute to further explain the success of sclerostin antibodies in treating osteoporotic patients despite increased osteocyte-expressed RANKL.


Assuntos
NF-kappa B/metabolismo , Osteócitos/metabolismo , Osteoporose/metabolismo , Osteoprotegerina/metabolismo , Ligante RANK/metabolismo , Animais , Densidade Óssea/efeitos dos fármacos , Densidade Óssea/fisiologia , Modelos Animais de Doenças , Feminino , Metilprednisolona/farmacologia , Osteócitos/efeitos dos fármacos , Ovariectomia , Ovinos , Transdução de Sinais/efeitos dos fármacos , Coluna Vertebral/efeitos dos fármacos , Coluna Vertebral/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA