Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Chem Biol ; 28(6): 848-854.e5, 2021 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-33567254

RESUMO

Phenotypic screening for bioactive small molecules is typically combined with affinity-based chemical proteomics to uncover the respective molecular targets. However, such assays and the explored bioactivity are biased toward the monitored phenotype, and target identification often requires chemical derivatization of the hit compound. In contrast, unbiased cellular profiling approaches record hundreds of parameters upon compound perturbation to map bioactivity in a broader biological context and may link a profile to the molecular target or mode of action. Herein we report the discovery of the diaminopyrimidine DP68 as a Sigma 1 (σ1) receptor antagonist by combining morphological profiling using the Cell Painting assay and thermal proteome profiling. Our results highlight that integration of complementary profiling approaches may enable both detection of bioactivity and target identification for small molecules.


Assuntos
Compostos de Anilina/farmacologia , Descoberta de Drogas , Compostos Heterocíclicos com 2 Anéis/farmacologia , Proteoma/genética , Receptores sigma/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/farmacologia , Temperatura , Compostos de Anilina/química , Animais , Feminino , Perfilação da Expressão Gênica , Compostos Heterocíclicos com 2 Anéis/química , Humanos , Camundongos , Estrutura Molecular , Bibliotecas de Moléculas Pequenas/química , Células Tumorais Cultivadas , Receptor Sigma-1
2.
Biosci Biotechnol Biochem ; 84(12): 2484-2490, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32867616

RESUMO

Discovery of small-molecule inducers of unique phenotypic changes combined with subsequent target identification often provides new insights into cellular functions. Here, we applied integrated profiling based on cellular morphological and proteomic changes to compound screening. We identified an indane derivative, NPD9055, which is mechanistically distinct from reference compounds with known modes of action. Employing a chemical proteomics approach, we then showed that NPD9055 binds subunits of heterotrimeric G-protein Gi. An in vitro [35S]GTPγS-binding assay revealed that NPD9055 inhibited GDP/GTP exchange on a Gαi subunit induced by a G-protein-coupled receptor agonist, but not on another G-protein from the Gαs family. In intact HeLa cells, NPD9055 induced an increase in intracellular Ca2+ levels and ERK/MAPK phosphorylation, both of which are regulated by Gßγ, following its dissociation from Gαi. Our observations suggest that NPD9055 targets Gαi and thus regulates Gßγ-dependent cellular processes, most likely by causing the dissociation of Gßγ from Gαi.


Assuntos
Descoberta de Drogas , Proteínas Heterotriméricas de Ligação ao GTP/metabolismo , Fenótipo , Proteômica , Bibliotecas de Moléculas Pequenas/farmacologia , Linhagem Celular Tumoral , Humanos
3.
Angew Chem Int Ed Engl ; 59(14): 5721-5729, 2020 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-31769920

RESUMO

Chemical proteomics is widely applied in small-molecule target identification. However, in general it does not identify non-protein small-molecule targets, and thus, alternative methods for target identification are in high demand. We report the discovery of the autophagy inhibitor autoquin and the identification of its molecular mode of action using image-based morphological profiling in the cell painting assay. A compound-induced fingerprint representing changes in 579 cellular parameters revealed that autoquin accumulates in lysosomes and inhibits their fusion with autophagosomes. In addition, autoquin sequesters Fe2+ in lysosomes, resulting in an increase of lysosomal reactive oxygen species and ultimately cell death. Such a mechanism of action would have been challenging to unravel by current methods. This work demonstrates the potential of the cell painting assay to deconvolute modes of action of small molecules, warranting wider application in chemical biology.


Assuntos
Autofagia , Ferro/metabolismo , Lisossomos/metabolismo , Autofagossomos/metabolismo , Autofagia/efeitos dos fármacos , Linhagem Celular Tumoral , Alcaloides de Cinchona/química , Alcaloides de Cinchona/farmacologia , Humanos , Microscopia de Fluorescência , Espécies Reativas de Oxigênio/metabolismo , Relação Estrutura-Atividade
4.
Angew Chem Int Ed Engl ; 58(47): 17016-17025, 2019 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-31469221

RESUMO

Bioactive compound design based on natural product (NP) structure may be limited because of partial coverage of NP-like chemical space and biological target space. These limitations can be overcome by combining NP-centered strategies with fragment-based compound design through combination of NP-derived fragments to afford structurally unprecedented "pseudo-natural products" (pseudo-NPs). The design, synthesis, and biological evaluation of a collection of indomorphan pseudo-NPs that combine biosynthetically unrelated indole- and morphan-alkaloid fragments are described. Indomorphane derivative Glupin was identified as a potent inhibitor of glucose uptake by selectively targeting and upregulating glucose transporters GLUT-1 and GLUT-3. Glupin suppresses glycolysis, reduces the levels of glucose-derived metabolites, and attenuates the growth of various cancer cell lines. Our findings underscore the importance of dual GLUT-1 and GLUT-3 inhibition to efficiently suppress tumor cell growth and the cellular rescue mechanism, which counteracts glucose scarcity.


Assuntos
Produtos Biológicos/farmacologia , Proliferação de Células , Transportador de Glucose Tipo 1/antagonistas & inibidores , Transportador de Glucose Tipo 3/antagonistas & inibidores , Glucose/metabolismo , Morfinanos/síntese química , Neoplasias/tratamento farmacológico , Transporte Biológico , Ciclo Celular , Glicólise , Humanos , Células Tumorais Cultivadas
5.
Chem Sci ; 9(11): 3014-3022, 2018 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-29732085

RESUMO

Macroautophagy is a conserved eukaryotic process for degradation of cellular components in response to lack of nutrients. It is involved in the development of diseases, notably cancer and neurological disorders including Parkinson's disease. Small molecule autophagy modulators have proven to be valuable tools to dissect and interrogate this crucial metabolic pathway and are in high demand. Phenotypic screening for autophagy inhibitors led to the discovery of the novel autophagy inhibitor aumitin. Target identification and confirmation revealed that aumitin inhibits mitochondrial respiration by targeting complex I. We show that inhibition of autophagy by impairment of mitochondrial respiration is general for several mitochondrial inhibitors that target different mitochondrial complexes. Our findings highlight the importance of mitochondrial respiration for autophagy regulation.

6.
Bioorg Med Chem ; 26(8): 1453-1461, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29170028

RESUMO

Reactive oxygen species (ROS) play an essential role in the survival and progression of cancer. Moderate oxidative stress drives proliferation, whereas high levels of ROS induce cytotoxicity. Compared to cancer cells, healthy cells often exhibit lower levels of oxidative stress. Elevation of cellular ROS levels by small molecules could therefore induce cancer-specific cytotoxicity. We have employed high-throughput phenotypic screening to identify inducers of ROS accumulation. We found 4,5-dihalo-2-methylpyridazin-3-one (DHMP) and 2,3,4,5(6)-tetrachloro-6(5)-methylpyridine (TCMP) moieties to strongly deplete GSH, to cause ROS accumulation and to induce cell death. Small molecules containing these fragments will most likely share the same properties and should therefore be carefully considered in the development of bioactive molecules.


Assuntos
Antineoplásicos/farmacologia , Glutationa/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Células HeLa , Ensaios de Triagem em Larga Escala , Humanos , Estrutura Molecular , Estresse Oxidativo/efeitos dos fármacos , Relação Estrutura-Atividade , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA