Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; : 107542, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38992436

RESUMO

Diamond Blackfan Anemia (DBA) is a rare macrocytic red blood cell aplasia that usually presents within the first year of life. The vast majority of patients carry a mutation in one of approximately 20 genes that results in ribosomal insufficiency with the most significant clinical manifestations being anemia and a predisposition to cancers. Nemo-like Kinase (NLK) is hyperactivated in the erythroid progenitors of DBA patients and inhibition of this kinase improves erythropoiesis, but how NLK contributes to the pathogenesis of the disease is unknown. Here we report that activated NLK suppresses the critical upregulation of mitochondrial biogenesis required in early erythropoiesis. During normal erythropoiesis, mTORC1 facilitates the translational upregulation of Transcription factor A, mitochondrial (TFAM) and Prohibin 2 (PHB2) to increase mitochondrial biogenesis. In our models of DBA, active NLK phosphorylates the regulatory component of mTORC1, thereby suppressing mTORC1 activity and preventing mTORC1-mediated TFAM and PHB2 upregulation and subsequent mitochondrial biogenesis. Improvement of erythropoiesis that accompanies NLK inhibition is negated when TFAM and PHB2 upregulation is prevented. These data demonstrate that a significant contribution of NLK on the pathogenesis of DBA is through loss of mitochondrial biogenesis.

2.
Stem Cells ; 41(6): 560-569, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-36987811

RESUMO

Diamond Blackfan anemia (DBA) is an inherited bone marrow failure syndrome associated with severe anemia, congenital malformations, and an increased risk of developing cancer. The chromatin-binding special AT-rich sequence-binding protein-1 (SATB1) is downregulated in megakaryocyte/erythroid progenitors (MEPs) in patients and cell models of DBA, leading to a reduction in MEP expansion. Here we demonstrate that SATB1 expression is required for the upregulation of the critical erythroid factors heat shock protein 70 (HSP70) and GATA1 which accompanies MEP differentiation. SATB1 binding to specific sites surrounding the HSP70 genes promotes chromatin loops that are required for the induction of HSP70, which, in turn, promotes GATA1 induction. This demonstrates that SATB1, although gradually downregulated during myelopoiesis, maintains a biological function in early myeloid progenitors.


Assuntos
Anemia de Diamond-Blackfan , Proteínas de Ligação à Região de Interação com a Matriz , Humanos , Proteínas de Ligação à Região de Interação com a Matriz/genética , Proteínas de Ligação à Região de Interação com a Matriz/metabolismo , Megacariócitos/metabolismo , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Diferenciação Celular/genética , Fatores de Transcrição/metabolismo , Anemia de Diamond-Blackfan/metabolismo , Cromatina/metabolismo , Fator de Transcrição GATA1/genética , Fator de Transcrição GATA1/metabolismo
3.
Haematologica ; 108(5): 1222-1231, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36384250

RESUMO

Diamond-Blackfan anemia (DBA) is a ribosomopathy that is characterized by macrocytic anemia, congenital malformations, and early onset during childhood. Genetic studies have demonstrated that most patients carry mutations in one of the 20 related genes, most of which encode ribosomal proteins (RP). Treatment of DBA includes corticosteroid therapy, chronic red blood cell transfusion, and other forms of immunosuppression. Currently, hematopoietic stem cell transplantation is the only cure for DBA. Interestingly, spontaneous remissions occur in 10-20% of transfusion-dependent DBA patients. However, there is no consistent association between specific mutations and clinical manifestations. In the past decades, researchers have made significant progress in understanding the pathogenesis of DBA, but it remains unclear how the ubiquitous RP haploinsufficiency causes the erythroid-specific defect in hematopoiesis in DBA patients, and why there is a difference in penetrance and spontaneous remission among individuals who carry identical mutations. In this paper, we provide a comprehensive review of the development of DBA animal models and discuss the future research directions for these important experimental systems.


Assuntos
Anemia de Diamond-Blackfan , Animais , Anemia de Diamond-Blackfan/genética , Proteínas Ribossômicas/genética , Mutação , Modelos Animais , Hematopoese
4.
Exp Hematol ; 111: 66-78, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35460833

RESUMO

Diamond-Blackfan Anemia (DBA) is an inherited bone marrow failure syndrome that is associated with anemia, congenital anomalies, and cancer predisposition. It is categorized as a ribosomopathy, because more than 80% or patients have haploinsufficiency of either a small or large subunit-associated ribosomal protein (RP). The erythroid pathology is due predominantly to a block and delay in early committed erythropoiesis with reduced megakaryocyte/erythroid progenitors (MEPs). To understand the molecular pathways leading to pathogenesis of DBA, we performed RNA sequencing on mRNA and miRNA from RPS19-deficient human hematopoietic stem and progenitor cells (HSPCs) and compared existing database documenting transcript fluctuations across stages of early normal erythropoiesis. We determined the chromatin regulator, SATB1 was prematurely downregulated through the coordinated action of upregulated miR-34 and miR-30 during differentiation in ribosomal insufficiency. Restoration of SATB1 rescued MEP expansion, leading to a modest improvement in erythroid and megakaryocyte expansion in RPS19 insufficiency. However, SATB1 expression did not affect expansion of committed erythroid progenitors, indicating ribosomal insufficiency affects multiple stages during erythroid differentiation.


Assuntos
Anemia de Diamond-Blackfan , Eritropoese , Proteínas de Ligação à Região de Interação com a Matriz , MicroRNAs , Anemia de Diamond-Blackfan/patologia , Regulação para Baixo , Eritropoese/genética , Células-Tronco Hematopoéticas , Humanos , Proteínas de Ligação à Região de Interação com a Matriz/genética , Proteínas de Ligação à Região de Interação com a Matriz/metabolismo , Megacariócitos/citologia , MicroRNAs/genética , Proteínas Ribossômicas
5.
Genes (Basel) ; 12(10)2021 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-34681039

RESUMO

Blood cell development is regulated through intrinsic gene regulation and local factors including the microenvironment and cytokines. The differentiation of hematopoietic stem and progenitor cells (HSPCs) into mature erythrocytes is dependent on these cytokines binding to and stimulating their cognate receptors and the signaling cascades they initiate. Many of these pathways include kinases that can diversify signals by phosphorylating multiple substrates and amplify signals by phosphorylating multiple copies of each substrate. Indeed, synthesis of many of these cytokines is regulated by a number of signaling pathways including phosphoinositide 3-kinase (PI3K)-, extracellular signal related kinases (ERK)-, and p38 kinase-dependent pathways. Therefore, kinases act both upstream and downstream of the erythropoiesis-regulating cytokines. While many of the cytokines are well characterized, the nuanced members of the network of kinases responsible for appropriate induction of, and response to, these cytokines remains poorly defined. Here, we will examine the kinase signaling cascades required for erythropoiesis and emphasize the importance, complexity, enormous amount remaining to be characterized, and therapeutic potential that will accompany our comprehensive understanding of the erythroid kinome in both healthy and diseased states.


Assuntos
Diferenciação Celular/genética , Eritrócitos/citologia , Eritropoese/genética , MAP Quinases Reguladas por Sinal Extracelular/genética , Regulação da Expressão Gênica/genética , Humanos , Sistema de Sinalização das MAP Quinases/genética , Fosfatidilinositol 3-Quinases/genética , Fosforilação/genética
6.
J Biol Chem ; 297(3): 100988, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34298020

RESUMO

Nemo-like kinase (NLK) is a member of the mitogen-activated protein kinase family of kinases and shares a highly conserved kinase domain with other mitogen-activated protein kinase family members. The activation of NLK contributes to the pathogenesis of Diamond-Blackfan anemia (DBA), reducing c-myb expression and mechanistic target of rapamycin activity, and is therefore a potential therapeutic target. Unlike other anemias, the hematopoietic effects of DBA are largely restricted to the erythroid lineage. Mutations in ribosomal genes induce ribosomal insufficiency and reduced protein translation, dramatically impacting early erythropoiesis in the bone marrow of patients with DBA. We sought to identify compounds that suppress NLK and increases erythropoiesis in ribosomal insufficiency. We report that the active component of ginseng, ginsenoside Rb1, suppresses NLK expression and improves erythropoiesis in in vitro models of DBA. Ginsenoside Rb1-mediated suppression of NLK occurs through the upregulation of miR-208, which binds to the 3'-UTR of NLK mRNA and targets it for degradation. We also compare ginsenoside Rb1-mediated upregulation of miR-208 with metformin-mediated upregulation of miR-26. We conclude that targeting NLK expression through miRNA binding of the unique 3'-UTR is a viable alternative to the challenges of developing small-molecule inhibitors to target the highly conserved kinase domain of this specific kinase.


Assuntos
Anemia de Diamond-Blackfan/patologia , Eritropoese/efeitos dos fármacos , Ginsenosídeos/farmacologia , Panax/química , Proteínas Serina-Treonina Quinases/efeitos dos fármacos , Regiões 3' não Traduzidas , Animais , Humanos
7.
Exp Hematol ; 91: 65-77, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32926965

RESUMO

Diamond-Blackfan anemia (DBA) results from haploinsufficiency of ribosomal protein subunits in hematopoietic progenitors in the earliest stages of committed erythropoiesis. Nemo-like kinase (NLK) is chronically hyperactivated in committed erythroid progenitors and precursors in multiple human and murine models of DBA. Inhibition of NLK activity and suppression of NLK expression both improve erythroid expansion in these models. Metformin is a well-tolerated drug for type 2 diabetes with multiple cellular targets. Here we demonstrate that metformin improves erythropoiesis in human and zebrafish models of DBA. Our data indicate that the effects of metformin on erythroid proliferation and differentiation are mediated by suppression of NLK expression through induction of miR-26a, which recognizes a binding site within the NLK 3' untranslated region (3'UTR) to facilitate transcript degradation. We propose that induction of miR-26a is a potentially novel approach to treatment of DBA and could improve anemia in DBA patients without the potentially adverse side effects of metformin in a DBA patient population.


Assuntos
Anemia de Diamond-Blackfan/tratamento farmacológico , Eritropoese/efeitos dos fármacos , Hematínicos/uso terapêutico , Metformina/uso terapêutico , MicroRNAs/biossíntese , Proteínas Quinases Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Regiões 3' não Traduzidas/genética , Anemia de Diamond-Blackfan/genética , Animais , Células Cultivadas , Ensaio de Unidades Formadoras de Colônias , Modelos Animais de Doenças , Eritropoese/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Genes Reporter , Hematínicos/farmacologia , Humanos , Metformina/farmacologia , MicroRNAs/genética , Estabilidade de RNA , RNA Interferente Pequeno/farmacologia , Proteínas Recombinantes/metabolismo , Especificidade da Espécie , Regulação para Cima/efeitos dos fármacos , Peixe-Zebra
8.
Blood Adv ; 3(18): 2751-2763, 2019 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-31540902

RESUMO

The del(5q) myelodysplastic syndrome (MDS) is a distinct subtype of MDS, associated with deletion of the ribosomal protein S14 (RPS14) gene that results in macrocytic anemia. This study sought to identify novel targets for the treatment of patients with del(5q) MDS by performing an in vivo drug screen using an rps14-deficient zebrafish model. From this, we identified the secreted gelatinase matrix metalloproteinase 9 (MMP9). MMP9 inhibitors significantly improved the erythroid defect in rps14-deficient zebrafish. Similarly, treatment with MMP9 inhibitors increased the number of colony forming unit-erythroid colonies and the CD71+ erythroid population from RPS14 knockdown human BMCD34+ cells. Importantly, we found that MMP9 expression is upregulated in RPS14-deficient cells by monocyte chemoattractant protein 1. Double knockdown of MMP9 and RPS14 increased the CD71+ population compared with RPS14 single knockdown, suggesting that increased expression of MMP9 contributes to the erythroid defect observed in RPS14-deficient cells. In addition, transforming growth factor ß (TGF-ß) signaling is activated in RPS14 knockdown cells, and treatment with SB431542, a TGF-ß inhibitor, improved the defective erythroid development of RPS14-deficient models. We found that recombinant MMP9 treatment decreases the CD71+ population through increased SMAD2/3 phosphorylation, suggesting that MMP9 directly activates TGF-ß signaling in RPS14-deficient cells. Finally, we confirmed that MMP9 inhibitors reduce SMAD2/3 phosphorylation in RPS14-deficient cells to rescue the erythroid defect. In summary, these study results support a novel role for MMP9 in the pathogenesis of del(5q) MDS and the potential for the clinical use of MMP9 inhibitors in the treatment of patients with del(5q) MDS.


Assuntos
Eritropoese/fisiologia , Metaloproteinase 9 da Matriz/metabolismo , Fator de Crescimento Transformador beta/genética , Humanos
9.
FASEB J ; 27(11): 4444-54, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23913859

RESUMO

Transforming growth factor ß (TGFß) has significant profibrotic activity both in vitro and in vivo. This reflects its capacity to stimulate fibrogenic mediators and induce the expression of other profibrotic cytokines such as platelet-derived growth factor (PDGF) and epidermal growth factor (EGF/ErbB) ligands. Here we address both the mechanisms by which TGFß induced ErbB ligands and the physiological significance of inhibiting multiple TGFß-regulated processes. The data document that ErbB ligand induction requires PDGF receptor (PDGFR) mediation and engages a positive autocrine/paracrine feedback loop via ErbB receptors. Whereas PDGFRs are essential for TGFß-stimulated ErbB ligand up-regulation, TGFß-specific signals are also required for ErbB receptor activation. Subsequent profibrotic responses are shown to involve the cooperative action of PDGF and ErbB signaling. Moreover, using a murine treatment model of bleomycin-induced pulmonary fibrosis we found that inhibition of TGFß/PDGF and ErbB pathways with imatinib plus lapatinib, respectively, not only prevented myofibroblast gene expression to a greater extent than either drug alone, but also essentially stabilized gas exchange (oxygen saturation) as an overall measure of lung function. These observations provide important mechanistic insights into profibrotic TGFß signaling and indicate that targeting multiple cytokines represents a possible strategy to ameliorate organ fibrosis dependent on TGFß.


Assuntos
Receptores ErbB/metabolismo , Fibrose Pulmonar/metabolismo , Receptor ErbB-2/metabolismo , Receptores do Fator de Crescimento Derivado de Plaquetas/metabolismo , Fator de Crescimento Transformador beta/farmacologia , Animais , Benzamidas/administração & dosagem , Benzamidas/uso terapêutico , Bleomicina/toxicidade , Linhagem Celular , Interações Medicamentosas , Fator de Crescimento Epidérmico/genética , Fator de Crescimento Epidérmico/metabolismo , Retroalimentação Fisiológica , Mesilato de Imatinib , Lapatinib , Pulmão/fisiopatologia , Camundongos , Miofibroblastos/metabolismo , Comunicação Parácrina , Piperazinas/administração & dosagem , Piperazinas/uso terapêutico , Fator de Crescimento Derivado de Plaquetas/genética , Fator de Crescimento Derivado de Plaquetas/metabolismo , Inibidores de Proteínas Quinases/administração & dosagem , Inibidores de Proteínas Quinases/farmacologia , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/tratamento farmacológico , Troca Gasosa Pulmonar , Pirimidinas/administração & dosagem , Pirimidinas/uso terapêutico , Quinazolinas/administração & dosagem , Quinazolinas/uso terapêutico , Regulação para Cima
10.
J Biol Chem ; 286(20): 17841-50, 2011 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-21454615

RESUMO

TGF-ß modulates numerous diverse cellular phenotypes including growth arrest in epithelial cells and proliferation in fibroblasts. Although the Smad pathway is fundamental for the majority of these responses, recent evidence indicates that non-Smad pathways may also have a critical role. Here we report a novel mechanism whereby the nonreceptor tyrosine focal adhesion kinase (FAK) functions as an adaptor necessary for cell type-specific responses to TGF-ß. We show that in contrast to Smad actions, non-Smad pathways, including c-Abl, PAK2, and Akt, display an obligate requirement for FAK. Interestingly, this occurs in Src null SYF cells and is independent of FAK tyrosine phosphorylation, kinase activity, and/or proline-rich sequences in the C-terminal FAT domain. FAK binds the phosphatidylinositol 3-kinase (PI3K) p85 regulatory subunit following TGF-ß treatment in a subset of fibroblasts but not epithelial cells and has an obligate role in TGF-ß-stimulated anchorage-independent growth and migration. Together, these results uncover a new scaffolding role for FAK as the most upstream component regulating the profibrogenic action of TGF-ß and suggest that inhibiting this interaction may be useful in treating a number of fibrotic diseases.


Assuntos
Classe Ia de Fosfatidilinositol 3-Quinase/metabolismo , Quinase 1 de Adesão Focal/metabolismo , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo , Animais , Classe Ia de Fosfatidilinositol 3-Quinase/genética , Cães , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Fibroblastos/metabolismo , Fibroblastos/patologia , Fibrose/genética , Fibrose/metabolismo , Fibrose/patologia , Quinase 1 de Adesão Focal/genética , Células HeLa , Humanos , Camundongos , Células NIH 3T3 , Fosforilação , Proteínas Smad , Células Swiss 3T3 , Fator de Crescimento Transformador beta/genética
11.
Cancer Res ; 70(19): 7421-30, 2010 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-20841477

RESUMO

Engagement of the transforming growth factor-ß (TGF-ß) receptor complex activates multiple signaling pathways that play crucial roles in both health and disease. TGF-ß is a key regulator of fibrogenesis and cancer-associated desmoplasia; however, its exact mode of action in these pathologic processes has remained poorly defined. Here, we report a novel mechanism whereby signaling via members of the ERBB or epidermal growth factor family of receptors serves as a central requirement for the biological responses of fibroblasts to TGF-ß. We show that TGF-ß triggers upregulation of ERBB ligands and activation of cognate receptors via the canonical SMAD pathway in fibroblasts. Interestingly, activation of ERBB is commonly observed in a subset of fibroblast but not epithelial cells from different species, indicating cell type specificity. Moreover, using genetic and pharmacologic approaches, we show that ERBB activation by TGF-ß is essential for the induction of fibroblast cell morphologic transformation and anchorage-independent growth. Together, these results uncover important aspects of TGF-ß signaling that highlight the role of ERBB ligands/receptors as critical mediators in fibroblast responses to this pleiotropic cytokine.


Assuntos
Fibroblastos/efeitos dos fármacos , Fibroblastos/patologia , Proteínas Oncogênicas v-erbB/metabolismo , Fator de Crescimento Transformador beta/farmacologia , Animais , Adesão Celular/fisiologia , Processos de Crescimento Celular/fisiologia , Linhagem Celular , Transformação Celular Neoplásica/efeitos dos fármacos , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Cães , Fibroblastos/metabolismo , Técnicas de Inativação de Genes , Células HeLa , Humanos , Camundongos , Transdução de Sinais , Proteínas Smad/metabolismo , Células Swiss 3T3 , Fator de Crescimento Transformador beta/metabolismo
12.
Am J Physiol Renal Physiol ; 298(1): F142-9, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19846571

RESUMO

Renal interstitial fibrosis is a major determinant of renal failure in the majority of chronic renal diseases. Transforming growth factor-beta (TGF-beta) is the single most important cytokine promoting renal fibrogenesis. Recent in vitro studies identified novel non-smad TGF-beta targets including p21-activated kinase-2 (PAK2), the abelson nonreceptor tyrosine kinase (c-Abl), and the mammalian target of rapamycin (mTOR) that are activated by TGF-beta in mesenchymal cells, specifically in fibroblasts but less in epithelial cells. In the present studies, we show that non-smad effectors of TGF-beta including PAK2, c-Abl, Akt, tuberin (TSC2), and mTOR are activated in experimental unilateral obstructive nephropathy in rats. Treatment with c-Abl or mTOR inhibitors, imatinib mesylate and rapamycin, respectively, each blocks noncanonical (non-smad) TGF-beta pathways in the kidney in vivo and diminishes the number of interstitial fibroblasts and myofibroblasts as well as the interstitial accumulation of extracellular matrix proteins. These findings indicate that noncanonical TGF-beta pathways are activated during the early and rapid renal fibrogenesis of obstructive nephropathy. Moreover, the current findings suggest that combined inhibition of key regulators of these non-smad TGF-beta pathways even in dose-sparing protocols are effective treatments in renal fibrogenesis.


Assuntos
Nefropatias/metabolismo , Rim/metabolismo , Rim/patologia , Proteínas Proto-Oncogênicas c-abl/metabolismo , Transdução de Sinais/fisiologia , Fatores de Transcrição/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Animais , Benzamidas , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Fibroblastos/patologia , Fibrose , Mesilato de Imatinib , Nefropatias/etiologia , Nefropatias/patologia , Masculino , Piperazinas/farmacologia , Proteínas Proto-Oncogênicas c-abl/antagonistas & inibidores , Pirimidinas/farmacologia , Ratos , Ratos Sprague-Dawley , Sirolimo/farmacologia , Proteína Smad2/metabolismo , Proteína Smad3/metabolismo , Fatores de Transcrição/antagonistas & inibidores , Obstrução Ureteral/complicações
13.
Dev Cell ; 16(3): 433-44, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19289088

RESUMO

Transforming growth factor beta (TGF-beta) family ligands are pleotropic proteins with diverse cell-type-specific effects on growth and differentiation. For example, PAK2 activation is critical for the proliferative/profibrotic action of TGF-beta on mesenchymal cells, and yet it is not responsive to TGF-beta in epithelial cells. We therefore investigated the regulatory constraints that prevent inappropriate PAK2 activation in epithelial cultures. The results show that the epithelial-enriched protein Erbin controls the function of the NF2 tumor suppressor Merlin by determining the output of Merlin's physical interactions with active PAK2. Whereas mesenchymal TGF-beta signaling induces PAK2-mediated inhibition of Merlin function in the absence of Erbin, Erbin/Merlin complexes bind and inactivate GTPase-bound PAK2 in epithelia. These results not only identify Erbin as a key determinant of epithelial resistance to TGF-beta signaling, they also show that Erbin controls Merlin tumor suppressor function by switching the functional valence of PAK2 binding.


Assuntos
Proteínas de Transporte/metabolismo , Neurofibromina 2/metabolismo , Fator de Crescimento Transformador beta/farmacologia , Quinases Ativadas por p21/metabolismo , Animais , Proteínas de Transporte/genética , Linhagem Celular , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular , Camundongos , Modelos Biológicos , Neurofibromina 2/genética , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , Ligação Proteica , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transfecção , Fator de Crescimento Transformador beta/metabolismo , Proteína cdc42 de Ligação ao GTP/genética , Proteína cdc42 de Ligação ao GTP/metabolismo , Quinases Ativadas por p21/antagonistas & inibidores , Quinases Ativadas por p21/genética , Proteínas rac de Ligação ao GTP/genética , Proteínas rac de Ligação ao GTP/metabolismo , Proteínas rac1 de Ligação ao GTP
14.
Cancer Res ; 69(1): 84-93, 2009 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-19117990

RESUMO

Transforming growth factor-beta (TGF-beta) promotes a multitude of diverse biological processes, including growth arrest of epithelial cells and proliferation of fibroblasts. Although the TGF-beta signaling pathways that promote inhibition of epithelial cell growth are well characterized, less is known about the mechanisms mediating the positive response to this growth factor. Given that TGF-beta has been shown to promote fibrotic diseases and desmoplasia, identifying the fibroblast-specific TGF-beta signaling pathways is critical. Here, we investigate the role of mammalian target of rapamycin (mTOR), a known effector of phosphatidylinositol 3-kinase (PI3K) and promoter of cell growth, in the fibroblast response to TGF-beta. We show that TGF-beta activates mTOR complex 1 (mTORC1) in fibroblasts but not epithelial cells via a PI3K-Akt-TSC2-dependent pathway. Rapamycin, the pharmacologic inhibitor of mTOR, prevents TGF-beta-mediated anchorage-independent growth without affecting TGF-beta transcriptional responses or extracellular matrix protein induction. In addition to mTORC1, we also examined the role of mTORC2 in TGF-beta action. mTORC2 promotes TGF-beta-induced morphologic transformation and is required for TGF-beta-induced Akt S473 phosphorylation but not mTORC1 activation. Interestingly, both mTOR complexes are necessary for TGF-beta-mediated growth in soft agar. These results define distinct and overlapping roles for mTORC1 and mTORC2 in the fibroblast response to TGF-beta and suggest that inhibitors of mTOR signaling may be useful in treating fibrotic processes, such as desmoplasia.


Assuntos
Proteínas de Transporte/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Transativadores/metabolismo , Fatores de Transcrição/metabolismo , Fator de Crescimento Transformador beta/farmacologia , Animais , Cães , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Células HeLa , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Complexos Multiproteicos , Proteína Oncogênica v-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Proteínas , Transdução de Sinais/efeitos dos fármacos , Sirolimo/farmacologia , Serina-Treonina Quinases TOR , Fator de Crescimento Transformador beta/antagonistas & inibidores , Proteína 2 do Complexo Esclerose Tuberosa , Proteínas Supressoras de Tumor/metabolismo
15.
Cancer Res ; 67(8): 3673-82, 2007 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-17440079

RESUMO

Transforming growth factor beta (TGF-beta) signaling via Smad proteins occurs in various cell types. However, whereas the biological response to TGF-beta can be as distinct as growth promoting (i.e., mesenchymal cells) versus growth inhibiting (i.e., epithelial cells), few discernible differences in TGF-beta signaling have been reported. In the current study, we examined the role of Ras in the proliferative response to TGF-beta and how it might interface with Smad-dependent and Smad-independent TGF-beta signaling targets. TGF-beta stimulated Ras activity in a subset of mesenchymal, but not epithelial, cultures and was required for extracellular signal-regulated kinase (ERK)-dependent transcriptional responses. Although dominant negative Ras had no effect on TGF-beta internalization or Smad-dependent signaling (i.e., phosphorylation, nuclear translocation, or SBE-luciferase activity), it did prevent the hyperphosphorylation of the Smad transcriptional corepressor TG-interacting factor (TGIF). This was not sufficient, however, to overcome the mitogenic response stimulated by TGF-beta, which was dependent on signals downstream of p21-activated kinase 2 (PAK2). Moreover, although the initial activation of Ras and PAK2 are distinctly regulated, TGF-beta-stimulated PAK2 activity is required for Ras-dependent ERK phosphorylation and Elk-1 transcription. These findings show the requirement for crosstalk between two Smad-independent pathways in regulating TGF-beta proliferation and indicate that the mechanism(s) by which TGF-beta stimulates growth is not simply the opposite of its growth inhibitory actions.


Assuntos
MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Ativação Transcricional/fisiologia , Fator de Crescimento Transformador beta/metabolismo , Proteínas ras/metabolismo , Animais , Processos de Crescimento Celular/fisiologia , Cães , Ativação Enzimática , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/enzimologia , Células Epiteliais/metabolismo , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/enzimologia , Fibroblastos/metabolismo , Células HeLa , Proteínas de Homeodomínio/antagonistas & inibidores , Proteínas de Homeodomínio/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Células NIH 3T3 , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Repressoras/antagonistas & inibidores , Proteínas Repressoras/metabolismo , Transdução de Sinais , Proteína Smad2/metabolismo , Proteína Smad3/metabolismo , Fator de Crescimento Transformador beta/antagonistas & inibidores , Fator de Crescimento Transformador beta/farmacologia , Quinases Ativadas por p21
16.
J Biol Chem ; 281(38): 27846-54, 2006 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-16867995

RESUMO

Transforming growth factor beta (TGF-beta) modulates a number of cellular phenotypes as divergent as growth stimulation and growth inhibition. Although the Smad pathway is critical for many of these responses, recent evidence indicates that Smad-independent pathways may also have a critical role. One such protein previously shown to regulate TGF-beta action independent of the Smad proteins is the c-Abl nonreceptor tyrosine kinase. In the current study we determined that TGF-beta receptor signaling activates c-Abl kinase activity in a subset of fibroblast but not epithelial cultures. This cell type-specific response occurs in a membrane-proximal locale independent of receptor internalization and upstream of dynamin action. Although c-Abl activation by TGF-beta is independent of Smad2 or Smad3, it is prevented by inhibitors of phosphatidylinositol 3-kinase or PAK2. Thus, c-Abl represents a target downstream of phosphatidylinositol 3-kinase-activated PAK2, which differentiates TGF-beta signaling in fibroblasts and epithelial cell lines and integrates serine/threonine receptor kinases with tyrosine kinase pathways.


Assuntos
Fosfatidilinositol 3-Quinases/fisiologia , Proteínas Serina-Treonina Quinases/fisiologia , Proteínas Proto-Oncogênicas c-abl/metabolismo , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Fator de Crescimento Transformador beta/farmacologia , Animais , Fibroblastos/metabolismo , Humanos , Mesoderma/metabolismo , Camundongos , Células NIH 3T3 , Fosforilação , Transdução de Sinais , Proteína Smad2/metabolismo , Proteína Smad3/metabolismo , Quinases Ativadas por p21
17.
Cancer Res ; 65(22): 10431-40, 2005 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-16288034

RESUMO

Transforming growth factor-beta (TGF-beta) stimulates cellular proliferation and transformation to a myofibroblast phenotype in vivo and in a subset of fibroblast cell lines. As the Smad pathway is activated by TGF-beta in essentially all cell types, it is unlikely to be the sole mediator of cell type-specific outcomes to TGF-beta stimulation. In the current study, we determined that TGF-beta receptor signaling activates phosphatidylinositol 3-kinase (PI3K) in several fibroblast but not epithelial cultures independently of Smad2 and Smad3. PI3K activation occurs in the presence of dominant-negative dynamin and is required for p21-activated kinase-2 kinase activity and the increased proliferation and morphologic change induced by TGF-beta in vitro.


Assuntos
Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteína Smad2/metabolismo , Proteína Smad3/metabolismo , Fator de Crescimento Transformador beta/farmacologia , Animais , Processos de Crescimento Celular/efeitos dos fármacos , Processos de Crescimento Celular/fisiologia , Ativação Enzimática/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Fibroblastos/enzimologia , Camundongos , Fosforilação , Quinases Ativadas por p21
18.
FASEB J ; 19(1): 1-11, 2005 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-15629889

RESUMO

Transforming growth factor-beta (TGF-beta) is the single most important cytokine promoting renal fibrogenesis. p21-activated kinase-2 (PAK2) and activation of abelson nonreceptor tyrosine kinase (c-abl) have been shown recently to be smad-independent, fibroblast-specific targets downstream of the activated TGF-beta receptor. In the current study we show that in cultured NRK49F-renal fibroblasts (but not in tubular or mesangial cells) TGF-beta similarly activates PAK2 as well as c-abl and induces cell proliferation. Inhibition of the c-abl kinase with imatinib mesylate prevents increased proliferation after TGF-beta addition without affecting PAK2. These in vitro findings were extended to rats with unilateral obstructive nephropathy, a disease model of TGF-beta-driven renal fibrogenesis. In obstructed kidneys, PAK2 and c-abl activity were increased but only c-abl activation was blocked by imatinib. Treatment with imatinib did not prevent renal interstitial infiltration of macrophages or phosphorylation and nuclear translocation of smad2/3 in obstructed kidneys. In contrast, imatinib substantially inhibited an increase in the number of interstitial fibroblasts and myofibroblasts and reduced the expression and interstitial accumulation of collagen type III, collagen type IV and fibronectin. These findings indicate that TGF-beta-induced activation of the nonreceptor c-abl tyrosine kinase regulates fibroblast proliferation and, by this means, is a costimulatory signal in TGF-beta-dependent renal fibrogenesis. Inhibition of c-abl activity with imatinib mesylate ameliorates experimental renal fibrosis in rats.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Fibrose/prevenção & controle , Nefropatias/prevenção & controle , Piperazinas/farmacologia , Pirimidinas/farmacologia , Transativadores/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Animais , Benzamidas , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Quimiotaxia/efeitos dos fármacos , Ativação Enzimática/fisiologia , Proteínas da Matriz Extracelular/metabolismo , Fibroblastos/química , Fibroblastos/efeitos dos fármacos , Fibroblastos/enzimologia , Fibroblastos/metabolismo , Mesilato de Imatinib , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Camundongos , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas c-abl/metabolismo , Ratos , Ratos Sprague-Dawley , Proteína Smad2 , Proteína Smad3 , Fator de Crescimento Transformador beta/fisiologia , Obstrução Ureteral/metabolismo , Obstrução Ureteral/patologia , Quinases Ativadas por p21
19.
J Clin Invest ; 114(9): 1308-16, 2004 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15520863

RESUMO

Idiopathic pulmonary fibrosis is a progressive and fatal fibrotic disease of the lungs with unclear etiology. Prior efforts to treat idiopathic pulmonary fibrosis that focused on anti-inflammatory therapy have not proven to be effective. Recent insight suggests that the pathogenesis is mediated through foci of dysregulated fibroblasts driven by profibrotic cytokine signaling. TGF-beta and PDGF are 2 of the most potent of these cytokines. In the current study, we investigated the role of TGF-beta-induced fibrosis mediated by activation of the Abelson (Abl) tyrosine kinase. Our data indicate that fibroblasts respond to TGF-beta by stimulating c-Abl kinase activity independently of Smad2/3 phosphorylation or PDGFR activation. Moreover, inhibition of c-Abl by imatinib prevented TGF-beta-induced ECM gene expression, morphologic transformation, and cell proliferation independently of any effect on Smad signaling. Further, using a mouse model of bleomycin-induced pulmonary fibrosis, we found a significant inhibition of lung fibrosis by imatinib. Thus, Abl family members represent common targets for the modulation of profibrotic cytokine signaling.


Assuntos
Antineoplásicos/farmacologia , Bleomicina/efeitos adversos , Pulmão/patologia , Piperazinas/farmacologia , Pirimidinas/farmacologia , Fator de Crescimento Transformador beta/metabolismo , Animais , Benzamidas , Bleomicina/farmacologia , Western Blotting , Proliferação de Células , Células Cultivadas , Colágeno/metabolismo , Citocinas/metabolismo , Fibroblastos/citologia , Fibroblastos/metabolismo , Fibronectinas/metabolismo , Fibrose , Mesilato de Imatinib , Imunoprecipitação , Inflamação , Luciferases/metabolismo , Pulmão/citologia , Pulmão/efeitos dos fármacos , Camundongos , Camundongos Knockout , Células NIH 3T3 , Proteínas Proto-Oncogênicas c-abl/metabolismo , Receptores do Fator de Crescimento Derivado de Plaquetas/metabolismo , Transdução de Sinais , Fatores de Tempo , Fator de Crescimento Transformador beta2 , Transgenes
20.
Mol Cell Biol ; 23(23): 8878-89, 2003 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-14612425

RESUMO

Transforming growth factor beta (TGF-beta) causes growth arrest in epithelial cells and proliferation and morphological transformation in fibroblasts. Despite the ability of TGF-beta to induce various cellular phenotypes, few discernible differences in TGF-beta signaling between cell types have been reported, with the only well-characterized pathway (the Smad cascade) seemingly under identical control. We determined that TGF-beta receptor signaling activates the STE20 homolog PAK2 in mammalian cells. PAK2 activation occurs in fibroblast but not epithelial cell cultures and is independent of Smad2 and/or Smad3. Furthermore, we show that TGF-beta-stimulated PAK2 activity is regulated by Rac1 and Cdc42 and dominant negative PAK2 or morpholino antisense oligonucleotides to PAK2 prevent the morphological alteration observed following TGF-beta addition. Thus, PAK2 represents a novel Smad-independent pathway that differentiates TGF-beta signaling in fibroblast (growth-stimulated) and epithelial cell (growth-inhibited) cultures.


Assuntos
Proteínas Serina-Treonina Quinases/metabolismo , Fator de Crescimento Transformador beta/farmacologia , Animais , Divisão Celular , Linhagem Celular , Proteínas de Ligação a DNA/metabolismo , Ativação Enzimática/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Humanos , Modelos Biológicos , Fenótipo , Fosforilação , Receptor do Fator de Crescimento Transformador beta Tipo I , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Proteínas Recombinantes/farmacologia , Transdução de Sinais , Proteína Smad2 , Proteína Smad3 , Transativadores/metabolismo , Quinases Ativadas por p21 , Proteínas rho de Ligação ao GTP/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA