Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Genet Med ; 23(1): 183-191, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32939031

RESUMO

PURPOSE: To determine the diagnostic yield and clinical impact of exome sequencing (ES) in patients with suspected monogenic kidney disease. METHODS: We performed clinically accredited singleton ES in a prospectively ascertained cohort of 204 patients assessed in multidisciplinary renal genetics clinics at four tertiary hospitals in Melbourne, Australia. RESULTS: ES identified a molecular diagnosis in 80 (39%) patients, encompassing 35 distinct genetic disorders. Younger age at presentation was independently associated with an ES diagnosis (p < 0.001). Of those diagnosed, 31/80 (39%) had a change in their clinical diagnosis. ES diagnosis was considered to have contributed to management in 47/80 (59%), including negating the need for diagnostic renal biopsy in 10/80 (13%), changing surveillance in 35/80 (44%), and changing the treatment plan in 16/80 (20%). In cases with no change to management in the proband, the ES result had implications for the management of family members in 26/33 (79%). Cascade testing was subsequently offered to 40/80 families (50%). CONCLUSION: In this pragmatic pediatric and adult cohort with suspected monogenic kidney disease, ES had high diagnostic and clinical utility. Our findings, including predictors of positive diagnosis, can be used to guide clinical practice and health service design.


Assuntos
Exoma , Nefropatias , Adulto , Austrália , Criança , Testes Genéticos , Humanos , Nefropatias/diagnóstico , Nefropatias/genética , Sequenciamento do Exoma
2.
Blood Adv ; 4(6): 1131-1144, 2020 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-32208489

RESUMO

First reported in 1999, germline runt-related transcription factor 1 (RUNX1) mutations are a well-established cause of familial platelet disorder with predisposition to myeloid malignancy (FPD-MM). We present the clinical phenotypes and genetic mutations detected in 10 novel RUNX1-mutated FPD-MM families. Genomic analyses on these families detected 2 partial gene deletions, 3 novel mutations, and 5 recurrent mutations as the germline RUNX1 alterations leading to FPD-MM. Combining genomic data from the families reported herein with aggregated published data sets resulted in 130 germline RUNX1 families, which allowed us to investigate whether specific germline mutation characteristics (type, location) could explain the large phenotypic heterogeneity between patients with familial platelet disorder and different HMs. Comparing the somatic mutational signatures between the available familial (n = 35) and published sporadic (n = 137) RUNX1-mutated AML patients showed enrichment for somatic mutations affecting the second RUNX1 allele and GATA2. Conversely, we observed a decreased number of somatic mutations affecting NRAS, SRSF2, and DNMT3A and the collective genes associated with CHIP and epigenetic regulation. This is the largest aggregation and analysis of germline RUNX1 mutations performed to date, providing a unique opportunity to examine the factors underlying phenotypic differences and disease progression from FPD to MM.


Assuntos
Subunidade alfa 2 de Fator de Ligação ao Core , Leucemia Mieloide Aguda , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Epigênese Genética , Células Germinativas , Humanos , Leucemia Mieloide Aguda/genética , Mutação , Linhagem , Fenótipo
3.
BMC Nephrol ; 20(1): 330, 2019 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-31438875

RESUMO

BACKGROUND: Proteinuria is a common clinical presentation, the diagnostic workup for which involves many non-invasive and invasive investigations. We report on two siblings that highlight the clinically relevant functional role of cubulin for albumin resorption in the proximal tubule and supports the use of genomic sequencing early in the diagnostic work up of patients who present with proteinuria. CASE PRESENTATION: An 8-year-old boy was referred with an incidental finding of proteinuria. All preliminary investigations were unremarkable. Further assessment revealed consanguineous family history and a brother with isolated proteinuria. Renal biopsy demonstrated normal light microscopy and global glomerular basement membrane thinning on electron microscopy. Chromosomal microarray revealed long continuous stretches of homozygosity (LCSH) representing ~ 4.5% of the genome. Shared regions of LCSH between the brothers were identified and their further research genomic analysis implicated a homozygous stop-gain variant in CUBN (10p12.31). CONCLUSIONS: CUBN mutations have been implicated as a hereditary cause of megaloblastic anaemia and variable proteinuria. This is the second reported family with isolated proteinuria due to biallelic CUBN variants in the absence of megaloblastic anaemia, demonstrating the ability of genomic testing to identify genetic causes of nephropathy within expanding associated phenotypic spectra. Genomic sequencing, undertaken earlier in the diagnostic trajectory, may reduce the need for invasive investigations and the time to definitive diagnosis for patients and families.


Assuntos
Homozigoto , Mutação/genética , Proteinúria/genética , Receptores de Superfície Celular/genética , Criança , Pré-Escolar , Consanguinidade , Membrana Basal Glomerular/ultraestrutura , Humanos , Achados Incidentais , Rim/patologia , Masculino , Microscopia Eletrônica , Irmãos , Sequenciamento do Exoma
4.
Nat Genet ; 43(10): 1012-7, 2011 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-21892162

RESUMO

We report the discovery of GATA2 as a new myelodysplastic syndrome (MDS)-acute myeloid leukemia (AML) predisposition gene. We found the same, previously unidentified heterozygous c.1061C>T (p.Thr354Met) missense mutation in the GATA2 transcription factor gene segregating with the multigenerational transmission of MDS-AML in three families and a GATA2 c.1063_1065delACA (p.Thr355del) mutation at an adjacent codon in a fourth MDS family. The resulting alterations reside within the second zinc finger of GATA2, which mediates DNA-binding and protein-protein interactions. We show differential effects of the mutations on the transactivation of target genes, cellular differentiation, apoptosis and global gene expression. Identification of such predisposing genes to familial forms of MDS and AML is critical for more effective diagnosis and prognosis, counseling, selection of related bone marrow transplant donors and development of therapies.


Assuntos
Fator de Transcrição GATA2/genética , Leucemia Mieloide Aguda/genética , Mutação , Síndromes Mielodisplásicas/genética , Característica Quantitativa Herdável , Sequência de Aminoácidos , Animais , Células COS , Diferenciação Celular , Proliferação de Células , Chlorocebus aethiops , Mapeamento Cromossômico , DNA Complementar , Feminino , Fator de Transcrição GATA2/metabolismo , Predisposição Genética para Doença , Células HEK293 , Haplótipos , Humanos , Masculino , Dados de Sequência Molecular , Linhagem , Plasmídeos , Polimorfismo de Nucleotídeo Único
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA