Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(18)2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37762679

RESUMO

In order to supply adequate iron during pregnancy, the levels of the iron regulatory hormone hepcidin in the maternal circulation are suppressed, thereby increasing dietary iron absorption and storage iron release. Whether this decrease in maternal hepcidin is caused by changes in factors known to regulate hepcidin expression, or by other unidentified pregnancy factors, is not known. To investigate this, we examined iron parameters during pregnancy in mice. We observed that hepatic iron stores and transferrin saturation, both established regulators of hepcidin production, were decreased in mid and late pregnancy in normal and iron loaded dams, indicating an increase in iron utilization. This can be explained by a significant increase in maternal erythropoiesis, a known suppressor of hepcidin production, by mid-pregnancy, as indicated by an elevation in circulating erythropoietin and an increase in spleen size and splenic iron uptake. Iron utilization increased further in late pregnancy due to elevated fetal iron demand. By increasing maternal iron levels in late gestation, we were able to stimulate the expression of the gene encoding hepcidin, suggesting that the iron status of the mother is the predominant factor influencing hepcidin levels during pregnancy. Our data indicate that pregnancy-induced hepcidin suppression likely occurs because of reductions in maternal iron reserves due to increased iron requirements, which predominantly reflect stimulated erythropoiesis in mid-gestation and increased fetal iron requirements in late gestation, and that there is no need to invoke other factors, including novel pregnancy factor(s), to explain these changes.


Assuntos
Hepcidinas , Deficiências de Ferro , Feminino , Gravidez , Camundongos , Animais , Hepcidinas/genética , Hepcidinas/metabolismo , Ferro/metabolismo , Ferro da Dieta , Feto/metabolismo , Eritropoese
2.
Biometals ; 35(1): 27-38, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34697758

RESUMO

Iron deficiency is one of the most common nutritional deficiencies worldwide and is often treated with oral iron supplements. However, commonly used supplements, including those based on ferrous iron salts, are associated with gastrointestinal side effects and unfavorable changes in the intestinal microbiome. Sucrosomial® iron is a novel iron formulation that is effective at treating iron deficiency, and with fewer gastrointestinal side effects, yet its effect on the gut microbiome has not been examined previously. Thus, we treated mice for two weeks with diets containing either Sucrosomial® iron or ferrous sulfate as the sole iron source and examined bacterial communities in the intestine using 16S Microbial Profiling of DNA extracted from feces collected both prior to and following dietary treatment. Mice treated with Sucrosomial® iron showed an increase in Shannon diversity over the course of the study. This was associated with a decrease in the abundance of the phylum Proteobacteria, which contains many pathogenic species, and an increase in short chain fatty acid producing bacteria such as Lachnospiraceae, Oscillibacter and Faecalibaculum. None of these changes were observed in mice treated with ferrous sulfate. These results suggest that Sucrosomial® iron may have a beneficial effect on the intestinal microbiome when compared to ferrous sulfate and that this form of iron is a promising alternative to ferrous iron salts for the treatment of iron deficiency.


Assuntos
Anemia Ferropriva , Microbioma Gastrointestinal , Deficiências de Ferro , Anemia Ferropriva/tratamento farmacológico , Animais , Suplementos Nutricionais , Compostos Ferrosos/farmacologia , Ferro , Camundongos , Sais/uso terapêutico
3.
J Nutr ; 152(3): 714-722, 2022 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-34625812

RESUMO

BACKGROUND: Many women enter pregnancy with iron stores that are insufficient to maintain maternal iron balance and support fetal development and consequently, often require iron supplements. However, the side effects associated with many currently available iron supplements can limit compliance. OBJECTIVE: This study aimed to test the safety and efficacy of a novel nanoparticulate iron supplement, a dietary ferritin analog termed iron hydroxide adipate tartrate (IHAT), in pregnant mice. METHODS: Female C57BL/6 mice were maintained on either an iron-deficient or a control diet for 2 wk prior to timed mating to develop iron-deficient or iron-sufficient pregnancy models, respectively. Mice from each model were then gavaged daily with 10 mg iron/kg body weight as either IHAT or ferrous sulfate, or with water only, beginning on embryonic day (E) 4.5. Mice were killed on E18.5 and maternal iron and hematological parameters were measured. The expression of genes encoding iron transporters and oxidative stress markers in the duodenum and placenta were determined, along with hepatic expression of the gene encoding the iron regulatory hormone hepcidin and fetal iron. RESULTS: Oral IHAT and ferrous sulfate were equally effective at increasing maternal hemoglobin (20.2% and 16.9%, respectively) and hepatic iron (30.2% and 29.3%, respectively), as well as total fetal iron (99.7% and 83.8%, respectively), in iron-deficient pregnant mice compared with those gavaged with water only, with no change in oxidative stress markers seen with either treatment. However, there was a significant increase in the placental expression of the oxidative stress marker heme oxygenase 1 in iron-replete pregnant mice treated with ferrous sulfate when compared with iron-replete pregnant mice gavaged with IHAT (96.9%, P <0.05). CONCLUSIONS: IHAT has proved a safe and effective alternative to oral ferrous sulfate in mice, and it has potential for treating iron deficiency in human pregnancy.


Assuntos
Anemia Ferropriva , Deficiências de Ferro , Anemia Ferropriva/tratamento farmacológico , Animais , Feminino , Ferritinas/uso terapêutico , Compostos Ferrosos/uso terapêutico , Hemoglobinas/análise , Humanos , Ferro , Camundongos , Camundongos Endogâmicos C57BL , Placenta/química , Gravidez , Água
4.
J Nutr ; 151(9): 2541-2550, 2021 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-34114013

RESUMO

BACKGROUND: The ferroxidase zyklopen (Zp) has been implicated in the placental transfer of iron to the fetus. However, the evidence for this is largely circumstantial. OBJECTIVES: This study aimed to determine whether Zp is essential for placental iron transfer. METHODS: A model was established using 8- to 12-wk-old pregnant C57BL/6 mice on standard rodent chow in which Zp was knocked out in the fetus and fetal components of the placenta. Zp was also disrupted in the entire placenta using global Zp knockout mice. Inductively coupled plasma MS was used to measure total fetal iron, an indicator of the amount of iron transferred by the placenta to the fetus, at embryonic day 18.5 of gestation. Iron transporter expression in the placenta was measured by Western blotting, and the expression of Hamp1, the gene encoding the iron regulatory hormone hepcidin, was determined in fetal liver by real-time PCR. RESULTS: There was no change in the amount of iron transferred to the fetus when Zp was disrupted in either the fetal component of the placenta or the entire placenta. No compensatory changes in the expression of the iron transport proteins transferrin receptor 1 or ferroportin were observed, nor was there any change in fetal liver Hamp1 mRNA. Hephl1, the gene encoding Zp, was expressed mainly in the maternal decidua of the placenta and not in the nutrient-transporting syncytiotrophoblast. Disruption of Zp in the whole placenta resulted in a 26% increase in placental size (P < 0.01). CONCLUSIONS: Our data indicate that Zp is not essential for the efficient transfer of iron to the fetus in mice and is localized predominantly in the maternal decidua. The increase in placental size observed when Zp is knocked out in the entire placenta suggests that this protein may play a role in placental development.


Assuntos
Ceruloplasmina , Placenta , Animais , Ceruloplasmina/genética , Feminino , Feto/metabolismo , Ferro/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Placenta/metabolismo , Placentação , Gravidez
5.
Cell Mol Gastroenterol Hepatol ; 6(4): 405-427, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30182051

RESUMO

Background & Aims: Multicopper ferroxidases (MCFs) facilitate intestinal iron absorption and systemic iron recycling, likely by a mechanism involving the oxidization of Fe2+ from the iron exporter ferroportin 1 for delivery to the circulating Fe3+ carrier transferrin. Hephaestin (HEPH), the only MCF known to be expressed in enterocytes, aids in the basolateral transfer of dietary iron to the blood. Mice lacking HEPH in the whole body (Heph-/- ) or intestine alone (Hephint/int ) exhibit defects in dietary iron absorption but still survive and grow. Circulating ceruloplasmin (CP) is the only other known MCF likely to interact with enterocytes. Our aim was to assess the effects of combined deletion of HEPH and CP on intestinal iron absorption and homeostasis in mice. Methods: Mice lacking both HEPH and CP (Heph-/-Cp-/- ) and mice with whole-body knockout of CP and intestine-specific deletion of HEPH (Hephint/intCp-/- ) were generated and phenotyped. Results: Heph-/-Cp-/- mice were severely anemic and had low serum iron, but they exhibited marked iron loading in duodenal enterocytes, the liver, heart, pancreas, and other tissues. Hephint/intCp-/- mice were moderately anemic (similar to Cp-/- mice) but were iron loaded only in the duodenum and liver, as in Hephint/int and Cp-/- mice, respectively. Both double knockout models absorbed iron in radiolabeled intestinal iron absorption studies, but the iron was inappropriately distributed, with an abnormally high percentage retained in the liver. Conclusions: These studies indicate that HEPH and CP, and likely MCFs in general, are not essential for intestinal iron absorption but are required for proper systemic iron distribution. They also point to important extra-intestinal roles for HEPH in maintaining whole-body iron homeostasis.


Assuntos
Ceruloplasmina/deficiência , Ferro/metabolismo , Proteínas de Membrana/deficiência , Absorção Fisiológica , Anemia/patologia , Animais , Animais Lactentes , Tamanho Corporal , Peso Corporal , Proteínas de Transporte de Cátions/metabolismo , Ceruloplasmina/metabolismo , Modelos Animais de Doenças , Duodeno/metabolismo , Enterócitos/metabolismo , Feminino , Ligadura , Masculino , Proteínas de Membrana/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Especificidade de Órgãos , Fenótipo
6.
Haematologica ; 103(10): 1616-1626, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29903760

RESUMO

The stimulation of erythrocyte formation increases the demand for iron by the bone marrow and this in turn may affect the levels of circulating diferric transferrin. As this molecule influences the production of the iron regulatory hormone hepcidin, we hypothesized that erythropoiesis-driven changes in diferric transferrin levels could contribute to the decrease in hepcidin observed following the administration of erythropoietin. To examine this, we treated mice with erythropoietin and examined diferric transferrin at various time points up to 18 hours. We also investigated the effect of altering diferric transferrin levels on erythropoietin-induced inhibition of Hamp1, the gene encoding hepcidin. We detected a decrease in diferric transferrin levels 5 hours after erythropoietin injection and prior to any inhibition of the hepatic Hamp1 message. Diferric transferrin returned to control levels 12 hours after erythropoietin injection and had increased beyond control levels by 18 hours. Increasing diferric transferrin levels via intravenous iron injection prevented the inhibition of Hamp1 expression by erythropoietin without altering hepatic iron concentration or the expression of Erfe, the gene encoding erythroferrone. These results suggest that diferric transferrin likely contributes to the inhibition of hepcidin production in the period shortly after injection of erythropoietin and that, under the conditions examined, increasing diferric transferrin levels can overcome the inhibitory effect of erythroferrone on hepcidin production. They also imply that the decrease in Hamp1 expression in response to an erythropoietic stimulus is likely to be mediated by multiple signals.


Assuntos
Eritropoese/efeitos dos fármacos , Eritropoetina/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Hepcidinas/sangue , Transferrina/farmacologia , Animais , Masculino , Camundongos , Fatores de Tempo
7.
Cell Mol Gastroenterol Hepatol ; 3(3): 410-421, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28462381

RESUMO

BACKGROUND & AIMS: Previous studies have suggested that iron absorption in suckling mammals is refractory to stimuli that normally would decrease absorption in adults. To better understand the regulation of iron absorption during suckling, we have characterized the relationship between hepcidin, ferroportin, and iron absorption at this crucial stage of life. METHODS: To determine whether ferroportin is involved in iron absorption during suckling, absorption was measured in intestine-specific ferroportin knockout mice. The effect of constitutive hepcidin overexpression on intestinal iron absorption also was investigated in suckling transmembrane serine protease 6 knockout mice. Finally, suckling mice were injected with lipopolysaccharide to induce hepcidin expression. Blood was collected for serum iron analysis, and liver tissue and duodenal enterocytes were collected for gene and protein expression profiles. RESULTS: Iron absorption was very low in suckling ferroportin knockout mice, indicating that ferroportin is responsible for the majority of the iron absorbed at this time. However, increases in hepcidin during suckling, as seen in transmembrane serine protease 6 knockout mice and in mice injected with lipopolysaccharide, did not affect enterocyte ferroportin levels. Immunofluorescent localization of ferroportin showed that the protein localized to the basolateral membrane of duodenal enterocytes in both suckling and weaned mice. CONCLUSIONS: These data show that the high iron absorption occurring during suckling is mediated by ferroportin. However, enterocyte ferroportin is hyporesponsive to hepcidin at this time, despite being expressed on the basolateral membrane. Alterations to ferroportin that prevent hepcidin binding during suckling may allow iron absorption to remain high regardless of hepcidin expression levels, reducing the likelihood of iron deficiency during development.

8.
Br J Haematol ; 175(2): 308-317, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27410488

RESUMO

In conditions such as ß-thalassaemia, stimulated erythropoiesis can reduce the expression of the iron regulatory hormone hepcidin, increasing both macrophage iron release and intestinal iron absorption and leading to iron loading. However, in certain conditions, sustained elevation of erythropoiesis can occur without an increase in body iron load. To investigate this in more detail, we made use of a novel mouse strain (RBC14), which exhibits mild ß-thalassaemia intermedia with minimal iron loading. We compared iron homeostasis in RBC14 mice to that of Hbbth3/+ mice, a more severe model of ß-thalassaemia intermedia. Both mouse strains showed a decrease in plasma iron half-life, although the changes were less severe in RBC14 mice. Despite this, intestinal ferroportin and serum hepcidin levels were unaltered in RBC14 mice. In contrast, Hbbth3/+ mice exhibited reduced serum hepcidin and increased intestinal ferroportin. However, splenic ferroportin levels were increased in both mouse strains. These data suggest that in low-grade chronic haemolytic anaemia, such as that seen in RBC14 mice, the increased erythroid iron requirements can be met through enhanced macrophage iron release without the need to increase iron absorption, implying that hepcidin is not the sole regulator of macrophage iron release in vivo.


Assuntos
Hepcidinas/metabolismo , Ferro/metabolismo , Talassemia beta/metabolismo , Animais , Biomarcadores , Proteínas de Transporte de Cátions/metabolismo , Modelos Animais de Doenças , Células Precursoras Eritroides/metabolismo , Eritropoese , Feminino , Hepcidinas/sangue , Ferro/sangue , Macrófagos/metabolismo , Camundongos , Camundongos Transgênicos , alfa-Globinas/metabolismo , Talassemia beta/sangue
9.
PLoS One ; 9(6): e98792, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24896847

RESUMO

Hephaestin is a vertebrate multicopper ferroxidase important for the transfer of dietary iron from intestinal cells to the blood. Hephaestin is mutated in the sex-linked anemia mouse, resulting in iron deficiency. However, sex-linked anemia mice still retain some hephaestin ferroxidase activity. They survive, breed, and their anemia improves with age. To gain a better understanding of the role of hephaestin in iron homeostasis, we used the Cre-lox system to generate knockout mouse models with whole body or intestine-specific (Villin promoter) ablation of hephaestin. Both types of mice were viable, indicating that hephaestin is not essential and that other mechanisms, multicopper ferroxidase-dependent or not, must compensate for hephaestin deficiency. The knockout strains, however, both developed a microcytic, hypochromic anemia, suggesting severe iron deficiency and confirming that hephaestin plays an important role in body iron acquisition. Consistent with this, the knockout mice accumulated iron in duodenal enterocytes and had reduced intestinal iron absorption. In addition, the similarities of the phenotypes of the whole body and intestine-specific hephaestin knockout mice clarify the important role of hephaestin specifically in intestinal enterocytes in maintaining whole body iron homeostasis. These mouse models will serve as valuable tools to study the role of hephaestin and associated proteins in iron transport in the small intestine and other tissues.


Assuntos
Absorção Intestinal , Mucosa Intestinal/metabolismo , Ferro/metabolismo , Proteínas de Membrana/metabolismo , Animais , Peso Corporal , Feminino , Genótipo , Absorção Intestinal/genética , Deficiências de Ferro , Masculino , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Fenótipo
10.
FASEB J ; 28(8): 3671-8, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24776745

RESUMO

The ferritin core is composed of fine nanoparticulate Fe(3+) oxohydroxide, and we have developed a synthetic mimetic, nanoparticulate Fe(3+) polyoxohydroxide (nanoFe(3+)). The aim of this study was to determine how dietary iron derived in this fashion is absorbed in the duodenum. Following a 4 wk run-in on an Fe-deficient diet, mice with intestinal-specific disruption of the Fpn-1 gene (Fpn-KO), or littermate wild-type (WT) controls, were supplemented with Fe(2+) sulfate (FeSO4), nanoFe(3+), or no added Fe for a further 4 wk. A control group was Fe sufficient throughout. Direct intestinal absorption of nanoFe(3+) was investigated using isolated duodenal loops. Our data show that FeSO4 and nanoFe(3+) are equally bioavailable in WT mice, and at wk 8 the mean ± SEM hemoglobin increase was 18 ± 7 g/L in the FeSO4 group and 30 ± 5 g/L in the nanoFe(3+) group. Oral iron failed to be utilized by Fpn-KO mice and was retained in enterocytes, irrespective of the iron source. In summary, although nanoFe(3+) is taken up directly by the duodenum its homeostasis is under the normal regulatory control of dietary iron absorption, namely via ferroportin-dependent efflux from enterocytes, and thus offers potential as a novel oral iron supplement.


Assuntos
Proteínas de Transporte de Cátions/fisiologia , Duodeno/metabolismo , Enterócitos/metabolismo , Compostos Férricos/farmacocinética , Absorção Intestinal/fisiologia , Ferro da Dieta/farmacocinética , Nanopartículas , Administração Oral , Anemia Ferropriva/metabolismo , Animais , Disponibilidade Biológica , Proteínas de Transporte de Cátions/biossíntese , Proteínas de Transporte de Cátions/deficiência , Proteínas de Transporte de Cátions/genética , Compostos Ferrosos/farmacocinética , Regulação da Expressão Gênica , Hemoglobinas/análise , Hepcidinas/biossíntese , Hepcidinas/genética , Homeostase , Deficiências de Ferro , Camundongos , Camundongos Knockout , Baço/metabolismo
11.
Br J Haematol ; 157(5): 615-26, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22449175

RESUMO

The BMP/SMAD signalling pathway plays an important role in iron homeostasis, regulating hepcidin expression in response to body iron levels. However, the role of this pathway in the reduction in hepcidin associated with increased erythropoiesis (and secondary iron loading) is unclear. To investigate this, we established a mouse model of chronic stimulated erythropoiesis with secondary iron loading using the haemolytic agent phenylhydrazine. We then examined the expression of components of the BMP6/SMAD signalling pathway in these animals. We also examined this pathway in the Hbb(th3/+) mouse, a model of the iron loading anaemia ß-thalassaemia intermedia. Increasing doses of phenylhydrazine led to a progressive increase in both liver iron levels and Bmp6 mRNA expression, but, in contrast, hepatic Hamp expression declined. The increase in Bmp6 expression was not associated with a corresponding change in the phosphorylation of hepatic SMAD1/5/8, indicating that stimulated erythropoiesis decreases the ability of BMP6 to alter SMAD phosphorylation. Increased erythropoiesis also reduces the capacity of phosphorylated SMAD (pSMAD) to induce hepcidin, as Hamp levels declined despite no changes in pSMAD1/5/8. Similar results were seen in Hbb(th3/+) mice. Thus the erythroid signal probably affects some components of BMP/SMAD signalling, but also may exert some independent effects.


Assuntos
Peptídeos Catiônicos Antimicrobianos/metabolismo , Proteína Morfogenética Óssea 6/metabolismo , Eritropoese/efeitos dos fármacos , Sobrecarga de Ferro/metabolismo , Anemia Hemolítica/induzido quimicamente , Anemia Hemolítica/metabolismo , Animais , Modelos Animais de Doenças , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Feminino , Fator 15 de Diferenciação de Crescimento/metabolismo , Hemólise/efeitos dos fármacos , Hepcidinas , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fenil-Hidrazinas/efeitos adversos , Fenil-Hidrazinas/farmacologia , Fosforilação , Receptores da Transferrina/metabolismo , Transdução de Sinais , Proteínas Smad/metabolismo , Baço/metabolismo , Transferrina/metabolismo , Talassemia beta/metabolismo
12.
Gastroenterology ; 141(1): 300-9, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21570398

RESUMO

BACKGROUND & AIMS: Suckling mammals absorb high levels of iron to support their rapid growth. In adults, iron absorption is controlled by systemic signals that alter expression of the iron-regulatory hormone hepcidin. We investigated whether hepcidin and absorption respond appropriately to systemic stimuli during suckling. METHODS: In Sprague-Dawley rats, iron levels increased following administration of iron dextran, and inflammation was induced with lipopolysaccharide. Gene expression was measured by quantitative reverse-transcription polymerase chain reaction; protein levels were measured by immunoblot analyses. Iron absorption was determined based on retention of an oral dose of 59Fe. RESULTS: Iron absorption was high during suckling and reduced to adult levels upon weaning. In response to iron dextran or lipopolysaccharide, iron absorption in adults decreased substantially, but, in suckling animals, the changes were minimal. Despite this, expression of hepcidin messenger RNA was strongly induced by each agent, before and after weaning. The hyporesponsiveness of iron absorption to increased levels of hepcidin during suckling correlated with reduced or absent duodenal expression of ferroportin 1 (Fpn1), normally a hepcidin target. Fpn1 expression was robust in adults. Predominance of the Fpn1A splice variant, which is under iron-dependent translational control, accounts for the low level of Fpn1 in the iron-deficient intestine of suckling rats. CONCLUSIONS: Iron absorption during suckling is largely refractory to changes in expression of the systemic iron regulator hepcidin, and this in turn reflects limited expression of Fpn1 protein in the small intestine. Iron absorption is therefore not always controlled by hepcidin.


Assuntos
Proteínas de Transporte de Cátions/metabolismo , Duodeno/metabolismo , Absorção Intestinal , Ferro da Dieta/metabolismo , Complexo Ferro-Dextran/metabolismo , Lactação , Fatores Etários , Envelhecimento , Animais , Animais Recém-Nascidos , Animais Lactentes , Peptídeos Catiônicos Antimicrobianos/genética , Peptídeos Catiônicos Antimicrobianos/metabolismo , Transporte Biológico , Western Blotting , Proteínas de Transporte de Cátions/genética , Modelos Animais de Doenças , Regulação para Baixo , Retroalimentação Fisiológica , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Hepcidinas , Inflamação/induzido quimicamente , Inflamação/metabolismo , Lipopolissacarídeos , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Desmame
13.
Haematologica ; 95(10): 1660-7, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20511664

RESUMO

BACKGROUND: Expression of the key iron regulatory hormone hepcidin is increased by some stimuli (iron loading, inflammation) but decreased by others (increased erythropoiesis, iron deficiency). We investigated the response of hepcidin to increased erythropoiesis and iron deficiency in the presence of an acute inflammation to assess the relative strengths of these stimuli. DESIGN AND METHODS: Sprague-Dawley rats were maintained on control or iron-deficient diets and treated with lipopolysaccharide to induce inflammation or phenylhydrazine to stimulate erythropoiesis. The levels of Hamp, IL-6 and α2m mRNA were determined by qualitative real-time polymerase chain reaction and those of serum interleukin-6 and tumor necrosis factor-α were measured by enzyme-linked immunosorbent assay. Cultured RAW264.7 and HuH7 cells were used in associated studies. RESULTS: The increase in hepatic hepcidin levels induced by lipopolysaccharide was not affected by phenylhydrazine treatment but was blunted by iron deficiency. Lipopolysaccharide-treated iron-deficient animals also showed lower liver α2m mRNA and reduced serum interleukin-6 and tumor necrosis factor-α, suggesting a more generalized effect of iron deficiency. Similarly, RAW 264.7 cells treated with iron chelators and then stimulated with lipopolysaccharide showed lower IL-6 mRNA than cells treated with lipopolysaccharide alone. Huh7 cells treated with an iron chelator showed a blunted hepcidin response to interleukin-6, suggesting that the response of hepatic parenchymal cells to inflammatory cytokines may also be iron-dependent. CONCLUSIONS: In any one physiological situation, net hepcidin levels are determined by the relative strengths of competing stimuli. The ability of severe iron deficiency to blunt the response to lipopolysaccharide of both hepcidin and other markers of inflammation suggests that adequate iron levels are necessary for a full acute phase response.


Assuntos
Anemia Ferropriva/imunologia , Peptídeos Catiônicos Antimicrobianos/genética , Citocinas/genética , Lipopolissacarídeos/farmacologia , Anemia Ferropriva/genética , Animais , Peptídeos Catiônicos Antimicrobianos/fisiologia , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/imunologia , Hepcidinas , Inflamação/imunologia , Ferro/farmacologia , Ratos , Ratos Sprague-Dawley
14.
Am J Physiol Gastrointest Liver Physiol ; 293(3): G525-31, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17627967

RESUMO

Intestinal iron absorption is extremely high in neonatal mammals but falls rapidly to adult levels following weaning. The aim of this study was to investigate the molecular basis of this elevated neonatal absorption using the rat as an experimental model. RNA was extracted from various sections of the intestine of 10-, 15-, 20-, 25-, and 300-day-old rats and the expression of the genes encoding DMT1 (Slc11a2), ferroportin (Slc40a1), Cybrd1 (Cybrd1), and hephaestin (heph) determined by ribonuclease protection assay. The hepatic expression of Hamp was studied at the same ages. Iron absorption was examined by following (59)Fe uptake in both whole animals and in isolated intestinal loops. Slc11a2, Slc40a1, and Cybrd1 mRNAs were highly expressed in all regions of the small intestine and colon studied in suckling rats. However, after weaning, when iron absorption declined significantly, strong expression was retained only in the duodenum. No change in hephaestin mRNA occurred in any part of the digestive tract. In the distal small intestine and colon, Slc40a1 expression most closely followed the change in absorption that occurred after weaning. Hamp expression was low during the neonatal period and increased to adult levels following weaning. Our results suggest that the distal small intestine and colon contribute significantly to the high intestinal iron absorption seen in neonatal animals and that this reflects increased expression of the iron transporters, particularly Slc40a1.


Assuntos
Envelhecimento/metabolismo , Proteínas de Transporte/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Absorção Intestinal/genética , Mucosa Intestinal/metabolismo , Ferro/metabolismo , Envelhecimento/genética , Animais , Animais Recém-Nascidos , Peptídeos Catiônicos Antimicrobianos/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte de Cátions/metabolismo , Colo/crescimento & desenvolvimento , Colo/metabolismo , Redutases do Citocromo/metabolismo , Duodeno/crescimento & desenvolvimento , Duodeno/metabolismo , Hepcidinas , Intestinos/crescimento & desenvolvimento , Radioisótopos de Ferro , Fígado/crescimento & desenvolvimento , Fígado/metabolismo , Proteínas de Membrana/metabolismo , RNA/metabolismo , Ratos , Ratos Sprague-Dawley , Desmame
15.
Biometals ; 20(3-4): 665-74, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17273818

RESUMO

The iron that is required to meet the metabolic needs of cells and tissues is derived from the plasma. Plasma iron in turn reflects the release of iron from various body cells, principally the macrophages of the reticuloendothelial system, and the absorption of dietary iron by the proximal small intestine. This iron donation is highly regulated and the liver-derived peptide hepcidin has emerged as the key modulator of cellular iron export. Following its synthesis and secretion from the liver, circulating hepcidin reduces iron export into the plasma by binding to the iron efflux protein ferroportin1 on the surface of enterocytes, macrophages and other cell types and causing its internalization. The level of hepatic hepcidin expression is influenced by HFE, transferrin receptor 2 and hemojuvelin, and the signal transduction pathway(s) linking these proteins to hepcidin are only beginning to be revealed. Hemojuvelin has recently been shown to signal through the bone morphogenetic protein pathway, ultimately activating receptor SMAD/SMAD4 complexes to alter hepcidin transcription. Circulating differic transferrin has emerged as a possible upstream regulator of the liver-based hepcidin regulatory pathway. In addition to being regulated by body iron requirements, hepcidin expression can be modulated by pro-inflammatory cytokines such as interleukin-6. The continuing analysis of inherited disorders of iron metabolism combined with biochemical analysis of signal transduction pathways is essential to fully define this important regulatory system.


Assuntos
Homeostase , Ferro/metabolismo , Animais , Antibacterianos/metabolismo , Peptídeos Catiônicos Antimicrobianos/genética , Peptídeos Catiônicos Antimicrobianos/metabolismo , Proteínas Ligadas por GPI , Regulação da Expressão Gênica , Proteína da Hemocromatose , Hepcidinas , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Receptores da Transferrina/metabolismo
16.
Blood ; 107(4): 1659-64, 2006 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-16239432

RESUMO

The iron requirements of the erythroid compartment modulate the expression of hepcidin in the liver, which in turn alters intestinal iron absorption and iron release from the reticuloendothelial system. We have taken advantage of an inherited anemia of the mouse (hemoglobin deficit, or hbd) to gain insights into the factors regulating hepcidin expression. hbd mice showed a significant anemia but, surprisingly, their iron absorption was not increased as it was in wild-type animals made anemic to a similar degree by dietary iron depletion. In wild-type mice hepatic hepcidin levels were decreased but in hbd animals a significant and unexpected increase was observed. The level of absorption was appropriate for the expression of hepcidin in each case, but in hbd mice did not reflect the degree of anemia. However, this apparent inappropriate regulation of hepcidin correlated with increased transferrin saturation and levels of diferric transferrin in the plasma, which in turn resulted from the reduced capacity of hbd animals to effectively use transferrin-bound iron. These data strengthen the proposal that diferric transferrin is a key indicator of body iron requirements.


Assuntos
Peptídeos Catiônicos Antimicrobianos/genética , Hemoglobinopatias/patologia , Hemoglobinas/deficiência , Hemoglobinas/genética , Ferro/metabolismo , Transferrina/metabolismo , Animais , Regulação da Expressão Gênica , Hemoglobinopatias/genética , Hepcidinas , Camundongos , Camundongos Knockout
18.
Lancet ; 361(9358): 669-73, 2003 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-12606179

RESUMO

BACKGROUND: The mechanisms responsible for disturbed iron homoeostasis in hereditary haemochromatosis are poorly understood. However, results of some studies indicate a link between hepcidin, a liver-derived peptide, and intestinal iron absorption, suggesting that this molecule could play a part in hepatic iron overload. To investigate this possible association, we studied the hepatic expression of the gene for hepcidin (HAMP) and a gene important in iron transport (IREG1) in patients with haemochromatosis, in normal controls, and in Hfe-knockout mice. METHODS: We extracted total RNA from the liver tissue of 27 patients with HFE-associated haemochromatosis, seven transplant donors (controls), and Hfe-knockout mice. HAMP and IREG1 mRNA concentrations were examined by ribonuclease protection assays and expressed relative to the housekeeping gene GAPD. FINDINGS: There was a significant decrease in HAMP expression in untreated patients compared with controls (5.4-fold, 95% CI 3.3-7.5; p<0.0001) despite significantly increased iron loading. Similarly, we noted a decrease in Hamp expression in iron-loaded Hfe-knockout mice. Hepatic IREG1 expression was greatly upregulated in patients with haemochromatosis (1.8-fold, 95% CI 1.5-2.2; p=0.002). There was a significant correlation between hepatic iron concentration and expression of HAMP (r=0.59, p=0.02) and IREG1 (r=0.67, p=0.007) in untreated patients. INTERPRETATION: Lack of HAMP upregulation in HFE-associated haemochromatosis despite significant hepatic iron loading indicates that HFE plays an important part in the regulation of hepcidin expression in response to iron overload. Our results imply that the liver is important in the pathophysiology of HFE-associated haemochromatosis. Furthermore, the increase in hepatic IREG1 expression in haemochromatosis suggests that IREG1 could function to facilitate the removal of excess iron from the liver.


Assuntos
Peptídeos Catiônicos Antimicrobianos/genética , Proteínas de Transporte de Cátions/fisiologia , Hemocromatose/genética , Antígenos de Histocompatibilidade Classe I/genética , Ferro/metabolismo , Fígado/metabolismo , Proteínas de Membrana/genética , Adulto , Idoso , Animais , Peptídeos Catiônicos Antimicrobianos/metabolismo , Peptídeos Catiônicos Antimicrobianos/fisiologia , Feminino , Hemocromatose/etiologia , Hemocromatose/metabolismo , Proteína da Hemocromatose , Hepcidinas , Homeostase , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade
19.
Gastroenterology ; 123(3): 835-44, 2002 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12198710

RESUMO

BACKGROUND & AIMS: Hepcidin is an antimicrobial peptide thought to be involved in the regulation of intestinal iron absorption. To further investigate its role in this process, we examined hepatic and duodenal gene expression in rats after the switch from a control diet to an iron-deficient diet. METHODS: Adult rats on an iron-replete diet were switched to an iron-deficient diet and the expression of iron homeostasis molecules in duodenal and liver tissue was studied over 14 days. Intestinal iron absorption was determined at these same time-points by measuring the retention of an oral dose of (59)Fe. RESULTS: Iron absorption increased 2.7-fold within 6 days of switching to an iron-deficient diet and was accompanied by an increase in the duodenal expression of Dcytb, divalent metal transporter 1, and Ireg1. These changes precisely correlated with decreases in hepatic hepcidin expression and transferrin saturation. No change in iron stores or hematologic parameters was detected. CONCLUSIONS: This study showed a close relationship between the expression of hepcidin, duodenal iron transporters, and iron absorption. Both hepcidin expression and iron absorption can be regulated before iron stores and erythropoiesis are affected, and transferrin saturation may signal such changes.


Assuntos
Peptídeos Catiônicos Antimicrobianos/metabolismo , Proteínas de Transporte/metabolismo , Duodeno/metabolismo , Absorção Intestinal/fisiologia , Proteínas de Ligação ao Ferro , Ferro/farmacocinética , Animais , Proteínas de Transporte de Cátions/metabolismo , Grupo dos Citocromos b/metabolismo , Dieta , Expressão Gênica/fisiologia , Hepcidinas , Ferro/metabolismo , Deficiências de Ferro , Masculino , Oxirredutases/metabolismo , Ratos , Ratos Sprague-Dawley
20.
Cell Biochem Biophys ; 36(2-3): 137-46, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-12139399

RESUMO

The amount of iron in the body is controlled at the point of absorption in the proximal small intestine. Dietary iron enters the intestinal epithelium via the brush-border transporter DMT1 and exits through the basolateral membranes. The basolateral transfer of iron requires two components: a copper-containing iron oxidase known as hephaestin and a membrane transport protein IREG1. The amount of iron traversing the enterocytes is directly related to body iron requirements and inversely related to the iron content of the intestinal epithelium. We propose that body signals control iron absorption by first acting on crypt enterocytes to determine the expression of basolateral transport components. This, in turn, modulates the intracellular iron content of mature epithelial cells, which ultimately determines the activity of the brush-border transporter DMT1.


Assuntos
Proteínas de Transporte de Cátions/metabolismo , Proteínas de Membrana/metabolismo , Animais , Duodeno/metabolismo , Enterócitos/enzimologia , Enterócitos/metabolismo , Regulação da Expressão Gênica , Humanos , Absorção Intestinal/fisiologia , Proteínas de Ligação ao Ferro/metabolismo , Modelos Biológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA