Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(33): e2303155120, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37561786

RESUMO

Human cytomegalovirus (HCMV) is a major human pathogen whose life-long persistence is enabled by its remarkable capacity to systematically subvert host immune defenses. In exploring the finding that HCMV infection up-regulates tumor necrosis factor receptor 2 (TNFR2), a ligand for the pro-inflammatory antiviral cytokine TNFα, we found that the underlying mechanism was due to targeting of the protease, A Disintegrin And Metalloproteinase 17 (ADAM17). ADAM17 is the prototype 'sheddase', a family of proteases that cleaves other membrane-bound proteins to release biologically active ectodomains into the supernatant. HCMV impaired ADAM17 surface expression through the action of two virally-encoded proteins in its UL/b' region, UL148 and UL148D. Proteomic plasma membrane profiling of cells infected with an HCMV double-deletion mutant for UL148 and UL148D with restored ADAM17 expression, combined with ADAM17 functional blockade, showed that HCMV stabilized the surface expression of 114 proteins (P < 0.05) in an ADAM17-dependent fashion. These included reported substrates of ADAM17 with established immunological functions such as TNFR2 and jagged1, but also numerous unreported host and viral targets, such as nectin1, UL8, and UL144. Regulation of TNFα-induced cytokine responses and NK inhibition during HCMV infection were dependent on this impairment of ADAM17. We therefore identify a viral immunoregulatory mechanism in which targeting a single sheddase enables broad regulation of multiple critical surface receptors, revealing a paradigm for viral-encoded immunomodulation.


Assuntos
Citomegalovirus , Fator de Necrose Tumoral alfa , Humanos , Citomegalovirus/fisiologia , Fator de Necrose Tumoral alfa/metabolismo , Proteoma/metabolismo , Receptores Tipo II do Fator de Necrose Tumoral/metabolismo , Proteômica , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Citocinas/metabolismo , Membrana Celular/metabolismo , Metaloproteases/metabolismo , Proteína ADAM17/genética , Proteína ADAM17/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas Virais/metabolismo
2.
J Gen Virol ; 101(8): 863-872, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32510303

RESUMO

Molluscum contagiosum virus (MCV) is a common cause of benign skin lesions in young children and currently the only endemic human poxvirus. Following the infection of primary keratinocytes in the epidermis, MCV induces the proliferation of infected cells and this results in the production of wart-like growths. Full productive infection is observed only after the infected cells differentiate. During this prolonged replication cycle the virus must avoid elimination by the host immune system. We therefore sought to investigate the function of the two major histocompatibility complex class-I-related genes encoded by the MCV genes mc033 and mc080. Following insertion into a replication-deficient adenovirus vector, codon-optimized versions of mc033 and mc080 were expressed as endoglycosidase-sensitive glycoproteins that localized primarily in the endoplasmic reticulum. MC080, but not MC033, downregulated cell-surface expression of endogenous classical human leucocyte antigen (HLA) class I and non-classical HLA-E by a transporter associated with antigen processing (TAP)-independent mechanism. MC080 exhibited a capacity to inhibit or activate NK cells in autologous assays in a donor-specific manner. MC080 consistently inhibited antigen-specific T cells being activated by peptide-pulsed targets. We therefore propose that MC080 acts to promote evasion of HLA-I-restricted cytotoxic T cells.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Regulação para Baixo/imunologia , Antígenos de Histocompatibilidade Classe I/imunologia , Evasão da Resposta Imune/imunologia , Células Matadoras Naturais/imunologia , Vírus do Molusco Contagioso/imunologia , Apresentação de Antígeno/imunologia , Linhagem Celular , Retículo Endoplasmático/imunologia , Interações Hospedeiro-Patógeno/imunologia , Humanos , Queratinócitos/imunologia , Linfócitos T Citotóxicos/imunologia , Proteínas Virais/imunologia
3.
Proc Natl Acad Sci U S A ; 115(19): 4998-5003, 2018 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-29691324

RESUMO

CD58 is an adhesion molecule that is known to play a critical role in costimulation of effector cells and is intrinsic to immune synapse structure. Herein, we describe a virally encoded gene that inhibits CD58 surface expression. Human cytomegalovirus (HCMV) UL148 was necessary and sufficient to promote intracellular retention of CD58 during HCMV infection. Blocking studies with antagonistic anti-CD58 mAb and an HCMV UL148 deletion mutant (HCMV∆UL148) with restored CD58 expression demonstrated that the CD2/CD58 axis was essential for the recognition of HCMV-infected targets by CD8+ HCMV-specific cytotoxic T lymphocytes (CTLs). Further, challenge of peripheral blood mononuclear cells ex vivo with HCMV∆UL148 increased both CTL and natural killer (NK) cell degranulation against HCMV-infected cells, including NK-driven antibody-dependent cellular cytotoxicity, showing that UL148 is a modulator of the function of multiple effector cell subsets. Our data stress the effect of HCMV immune evasion functions on shaping the immune response, highlighting the capacity for their potential use in modulating immunity during the development of anti-HCMV vaccines and HCMV-based vaccine vectors.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Infecções por Citomegalovirus/imunologia , Citomegalovirus/imunologia , Evasão da Resposta Imune , Imunidade Celular , Células Matadoras Naturais/imunologia , Proteínas Virais de Fusão/imunologia , Linfócitos T CD8-Positivos/patologia , Linhagem Celular Transformada , Citomegalovirus/genética , Infecções por Citomegalovirus/genética , Infecções por Citomegalovirus/patologia , Humanos , Células Matadoras Naturais/patologia , Proteínas Virais de Fusão/genética
4.
Proc Natl Acad Sci U S A ; 114(23): 6104-6109, 2017 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-28533400

RESUMO

Human cytomegalovirus (HCMV) strains that have been passaged in vitro rapidly acquire mutations that impact viral growth. These laboratory-adapted strains of HCMV generally exhibit restricted tropism, produce high levels of cell-free virus, and develop susceptibility to natural killer cells. To permit experimentation with a virus that retained a clinically relevant phenotype, we reconstructed a wild-type (WT) HCMV genome using bacterial artificial chromosome technology. Like clinical virus, this genome proved to be unstable in cell culture; however, propagation of intact virus was achieved by placing the RL13 and UL128 genes under conditional expression. In this study, we show that WT-HCMV produces extremely low titers of cell-free virus but can efficiently infect fibroblasts, epithelial, monocyte-derived dendritic, and Langerhans cells via direct cell-cell transmission. This process of cell-cell transfer required the UL128 locus, but not the RL13 gene, and was significantly less vulnerable to the disruptive effects of IFN, cellular restriction factors, and neutralizing antibodies compared with cell-free entry. Resistance to neutralizing antibodies was dependent on high-level expression of the pentameric gH/gL/gpUL128-131A complex, a feature of WT but not passaged strains of HCMV.


Assuntos
Técnicas de Cultura de Células/métodos , Citomegalovirus/genética , Citomegalovirus/metabolismo , Anticorpos Neutralizantes , Linhagem Celular , Células Cultivadas , Cromossomos Artificiais Bacterianos/metabolismo , Citomegalovirus/patogenicidade , Infecções por Citomegalovirus/imunologia , Infecções por Citomegalovirus/metabolismo , Fibroblastos/metabolismo , Humanos , Glicoproteínas de Membrana/metabolismo , Mutação , Fenótipo , Tropismo/imunologia , Proteínas do Envelope Viral/metabolismo , Internalização do Vírus , Replicação Viral/imunologia
5.
J Virol ; 90(8): 3929-43, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26842472

RESUMO

UNLABELLED: Clinical human cytomegalovirus (HCMV) strains invariably mutate when propagatedin vitro Mutations in gene RL13 are selected in all cell types, whereas in fibroblasts mutants in the UL128 locus (UL128L; genes UL128, UL130, and UL131A) are also selected. In addition, sporadic mutations are selected elsewhere in the genome in all cell types. We sought to investigate conditions under which HCMV can be propagated without incurring genetic defects. Bacterial artificial chromosomes (BACs) provide a stable, genetically defined source of viral genome. Viruses were generated from BACs containing the genomes of strains TR, TB40, FIX, and Merlin, as well as from Merlin-BAC recombinants containing variant nucleotides in UL128L from TB40-BAC4 or FIX-BAC. Propagation of viruses derived from TR-BAC, TB40-BAC4, and FIX-BAC in either fibroblast or epithelial cells was associated with the generation of defects around the prokaryotic vector, which is retained in the unique short (US) region of viruses. This was not observed for Merlin-BAC, from which the vector is excised in derived viruses; however, propagation in epithelial cells was consistently associated with mutations in the unique longb' (UL/b') region, all impacting on gene UL141. Viruses derived from Merlin-BAC in fibroblasts had mutations in UL128L, but mutations occurred less frequently with recombinants containing UL128L nucleotides from TB40-BAC4 or FIX-BAC. Viruses derived from a Merlin-BAC derivative in which RL13 and UL128L were either mutated or repressed were remarkably stable in fibroblasts. Thus, HCMV containing a wild-type gene complement can be generatedin vitroby deriving virus from a self-excising BAC in fibroblasts and repressing RL13 and UL128L. IMPORTANCE: Researchers should aim to study viruses that accurately represent the causative agents of disease. This is problematic for HCMV because clinical strains mutate rapidly when propagatedin vitro, becoming less cell associated, altered in tropism, more susceptible to natural killer cells, and less pathogenic. Following isolation from clinical material, HCMV genomes can be stabilized by cloning into bacterial artificial chromosomes (BACs), and then virus is regenerated by DNA transfection. However, mutations can occur not only during isolation prior to BAC cloning but also when virus is regenerated. We have identified conditions under which BAC-derived viruses containing an intact, wild-type genome can be propagatedin vitrowith minimal risk of mutants being selected, enabling studies of viruses expressing the gene complement of a clinical strain. However, even under these optimized conditions, sporadic mutations can occur, highlighting the advisability of sequencing the HCMV stocks used in experiments.


Assuntos
Cromossomos Artificiais Bacterianos , Citomegalovirus/crescimento & desenvolvimento , Cultura de Vírus/métodos , Linhagem Celular , Citomegalovirus/genética , Células Epiteliais , Fibroblastos , Genes Virais , Genoma Viral , Instabilidade Genômica , Humanos , Técnicas In Vitro , Glicoproteínas de Membrana/genética , Proteínas do Envelope Viral/genética
6.
PLoS Pathog ; 11(4): e1004811, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25875600

RESUMO

Human cytomegalovirus (HCMV) US2, US3, US6 and US11 act in concert to prevent immune recognition of virally infected cells by CD8+ T-lymphocytes through downregulation of MHC class I molecules (MHC-I). Here we show that US2 function goes far beyond MHC-I degradation. A systematic proteomic study using Plasma Membrane Profiling revealed US2 was unique in downregulating additional cellular targets, including: five distinct integrin α-chains, CD112, the interleukin-12 receptor, PTPRJ and thrombomodulin. US2 recruited the cellular E3 ligase TRC8 to direct the proteasomal degradation of all its targets, reminiscent of its degradation of MHC-I. Whereas integrin α-chains were selectively degraded, their integrin ß1 binding partner accumulated in the ER. Consequently integrin signaling, cell adhesion and migration were strongly suppressed. US2 was necessary and sufficient for degradation of the majority of its substrates, but remarkably, the HCMV NK cell evasion function UL141 requisitioned US2 to enhance downregulation of the NK cell ligand CD112. UL141 retained CD112 in the ER from where US2 promoted its TRC8-dependent retrotranslocation and degradation. These findings redefine US2 as a multifunctional degradation hub which, through recruitment of the cellular E3 ligase TRC8, modulates diverse immune pathways involved in antigen presentation, NK cell activation, migration and coagulation; and highlight US2's impact on HCMV pathogenesis.


Assuntos
Evasão da Resposta Imune/imunologia , Glicoproteínas de Membrana/metabolismo , Proteínas do Envelope Viral/metabolismo , Proteínas Virais/metabolismo , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Cromatografia Líquida de Alta Pressão , Citomegalovirus/imunologia , Citometria de Fluxo , Humanos , Immunoblotting , Imunoprecipitação , Células Matadoras Naturais/imunologia , Ativação Linfocitária/imunologia , Espectrometria de Massas , Proteínas de Membrana/metabolismo , Proteômica/métodos , RNA Interferente Pequeno , Transdução Genética
7.
PLoS Pathog ; 11(2): e1004641, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25654642

RESUMO

CD200 receptor (CD200R) negatively regulates peripheral and mucosal innate immune responses. Viruses, including herpesviruses, have acquired functional CD200 orthologs, implying that viral exploitation of this pathway is evolutionary advantageous. However, the role that CD200R signaling plays during herpesvirus infection in vivo requires clarification. Utilizing the murine cytomegalovirus (MCMV) model, we demonstrate that CD200R facilitates virus persistence within mucosal tissue. Specifically, MCMV infection of CD200R-deficient mice (CD200R(-/-)) elicited heightened mucosal virus-specific CD4 T cell responses that restricted virus persistence in the salivary glands. CD200R did not directly inhibit lymphocyte effector function. Instead, CD200R(-/-) mice exhibited enhanced APC accumulation that in the mucosa was a consequence of elevated cellular proliferation. Although MCMV does not encode an obvious CD200 homolog, productive replication in macrophages induced expression of cellular CD200. CD200 from hematopoietic and non-hematopoietic cells contributed independently to suppression of antiviral control in vivo. These results highlight the CD200-CD200R pathway as an important regulator of antiviral immunity during cytomegalovirus infection that is exploited by MCMV to establish chronicity within mucosal tissue.


Assuntos
Antígenos CD/imunologia , Infecções por Citomegalovirus/imunologia , Macrófagos/imunologia , Mucosa/imunologia , Mucosa/virologia , Animais , Citomegalovirus/imunologia , Infecções por Citomegalovirus/metabolismo , Modelos Animais de Doenças , Citometria de Fluxo , Imunofluorescência , Macrófagos/metabolismo , Macrófagos/virologia , Glicoproteínas de Membrana/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Análise de Sequência com Séries de Oligonucleotídeos
8.
J Virol Methods ; 206: 51-4, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24880069

RESUMO

Human Papillomavirus (HPV) infection is the primary cause of cervical neoplasia. HPV DNA is integrated into the human genome in the majority of cervical cancers. The nature of integration may differ with integration incorporating a single copy of HPV or occurring in concatenated form. Our understanding of HPV tumorigenesis is largely based on studies using characterised cell lines with defined integration sites; these cell lines provide an invaluable standard for validation of diagnostic assays. Cell lines also further understanding of integration mechanisms in clinical samples. The objective of this study was to explore integration assays and to investigate integration events in cell lines where HPV is integrated in concatenated form. Restriction site PCR and detection of integrated papillomavirus sequences were performed on DNA from SiHa and CaSki. A novel integration site on Xq27.3 and HPV genome rearrangements were detected in CaSki DNA. However, where integration was previously detected by FISH in CaSki, and reported to be integrated in concatenated form, integration was not detected by DIPS or RS-PCR. The data presented illustrate that HPV copy number can hinder integration detection; this needs consideration when interpreting results from tests applied to clinical samples.


Assuntos
Papillomaviridae/fisiologia , Reação em Cadeia da Polimerase , Análise de Sequência de DNA , Integração Viral , Linhagem Celular Tumoral , Humanos , Papillomaviridae/genética
9.
PLoS Pathog ; 10(5): e1004058, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24787765

RESUMO

NKG2D plays a major role in controlling immune responses through the regulation of natural killer (NK) cells, αß and γδ T-cell function. This activating receptor recognizes eight distinct ligands (the MHC Class I polypeptide-related sequences (MIC) A andB, and UL16-binding proteins (ULBP)1-6) induced by cellular stress to promote recognition cells perturbed by malignant transformation or microbial infection. Studies into human cytomegalovirus (HCMV) have aided both the identification and characterization of NKG2D ligands (NKG2DLs). HCMV immediate early (IE) gene up regulates NKGDLs, and we now describe the differential activation of ULBP2 and MICA/B by IE1 and IE2 respectively. Despite activation by IE functions, HCMV effectively suppressed cell surface expression of NKGDLs through both the early and late phases of infection. The immune evasion functions UL16, UL142, and microRNA(miR)-UL112 are known to target NKG2DLs. While infection with a UL16 deletion mutant caused the expected increase in MICB and ULBP2 cell surface expression, deletion of UL142 did not have a similar impact on its target, MICA. We therefore performed a systematic screen of the viral genome to search of addition functions that targeted MICA. US18 and US20 were identified as novel NK cell evasion functions capable of acting independently to promote MICA degradation by lysosomal degradation. The most dramatic effect on MICA expression was achieved when US18 and US20 acted in concert. US18 and US20 are the first members of the US12 gene family to have been assigned a function. The US12 family has 10 members encoded sequentially through US12-US21; a genetic arrangement, which is suggestive of an 'accordion' expansion of an ancestral gene in response to a selective pressure. This expansion must have be an ancient event as the whole family is conserved across simian cytomegaloviruses from old world monkeys. The evolutionary benefit bestowed by the combinatorial effect of US18 and US20 on MICA may have contributed to sustaining the US12 gene family.


Assuntos
Citomegalovirus , Antígenos de Histocompatibilidade Classe I/metabolismo , Evasão da Resposta Imune , Células Matadoras Naturais/imunologia , Lisossomos/metabolismo , Proteólise , Proteínas Virais/fisiologia , Adulto , Proteínas de Bactérias/metabolismo , Células Cultivadas , Citomegalovirus/imunologia , Citomegalovirus/patogenicidade , Inibidores Enzimáticos/farmacologia , Humanos , Evasão da Resposta Imune/efeitos dos fármacos , Células Matadoras Naturais/efeitos dos fármacos , Leupeptinas/farmacologia , Proteínas Luminescentes/metabolismo , Lisossomos/efeitos dos fármacos , Macrolídeos/farmacologia , Subfamília K de Receptores Semelhantes a Lectina de Células NK/fisiologia , Proteólise/efeitos dos fármacos , Proteínas Recombinantes/metabolismo
10.
Cell Host Microbe ; 15(4): 471-83, 2014 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-24721575

RESUMO

During primary infection, murine cytomegalovirus (MCMV) spreads systemically, resulting in virus replication and pathology in multiple organs. This disseminated infection is ultimately controlled, but the underlying immune defense mechanisms are unclear. Investigating the role of the cytokine IL-22 in MCMV infection, we discovered an unanticipated function for neutrophils as potent antiviral effector cells that restrict viral replication and associated pathogenesis in peripheral organs. NK-, NKT-, and T cell-secreted IL-22 orchestrated antiviral neutrophil-mediated responses via induction in stromal nonhematopoietic tissue of the neutrophil-recruiting chemokine CXCL1. The antiviral effector properties of infiltrating neutrophils were directly linked to the expression of TNF-related apoptosis-inducing ligand (TRAIL). Our data identify a role for neutrophils in antiviral defense, and establish a functional link between IL-22 and the control of antiviral neutrophil responses that prevents pathogenic herpesvirus infection in peripheral organs.


Assuntos
Infecções por Herpesviridae/imunologia , Interleucinas/imunologia , Muromegalovirus/imunologia , Neutrófilos/imunologia , Ligante Indutor de Apoptose Relacionado a TNF/biossíntese , Animais , Antivirais , Quimiocina CXCL1/imunologia , Infecções por Herpesviridae/patologia , Células Matadoras Naturais/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Muromegalovirus/patogenicidade , Células T Matadoras Naturais/imunologia , Replicação Viral/imunologia , Interleucina 22
11.
PLoS One ; 9(2): e89228, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24586613

RESUMO

Cyclin-dependent kinases (CDKs) are key regulators of the cell cycle and RNA polymerase II mediated transcription. Several pharmacological CDK inhibitors are currently in clinical trials as potential cancer therapeutics and some of them also exhibit antiviral effects. Olomoucine II and roscovitine, purine-based inhibitors of CDKs, were described as effective antiviral agents that inhibit replication of a broad range of wild type human viruses. Olomoucine II and roscovitine show high selectivity for CDK7 and CDK9, with important functions in the regulation of RNA polymerase II transcription. RNA polymerase II is necessary for viral transcription and following replication in cells. We analyzed the effect of inhibition of CDKs by olomoucine II on gene expression from viral promoters and compared its effect to widely-used roscovitine. We found that both roscovitine and olomoucine II blocked the phosphorylation of RNA polymerase II C-terminal domain. However the repression of genes regulated by viral promoters was strongly dependent on gene localization. Both roscovitine and olomoucine II inhibited expression only when the viral promoter was not integrated into chromosomal DNA. In contrast, treatment of cells with genome-integrated viral promoters increased their expression even though there was decreased phosphorylation of the C-terminal domain of RNA polymerase II. To define the mechanism responsible for decreased gene expression after pharmacological CDK inhibitor treatment, the level of mRNA transcription from extrachromosomal DNA was determined. Interestingly, our results showed that inhibition of RNA polymerase II C-terminal domain phosphorylation increased the number of transcribed mRNAs. However, some of these mRNAs were truncated and lacked polyadenylation, which resulted in decreased translation. These results suggest that phosphorylation of RNA polymerase II C-terminal domain is critical for linking transcription and posttrancriptional processing of mRNA expressed from extrachromosomal DNA.


Assuntos
Ciclo Celular/efeitos dos fármacos , Quinases Ciclina-Dependentes/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , RNA Polimerase II/metabolismo , Processamento Pós-Transcricional do RNA/efeitos dos fármacos , Animais , Linhagem Celular , Chlorocebus aethiops , DNA Viral , Humanos , Rim/efeitos dos fármacos , Rim/metabolismo , Fosforilação/efeitos dos fármacos , Regiões Promotoras Genéticas/efeitos dos fármacos , Purinas/farmacologia , RNA Polimerase II/genética , Roscovitina
12.
J Gen Virol ; 95(Pt 4): 933-939, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24394698

RESUMO

Human cytomegalovirus (HCMV) is known to evade extrinsic pro-apoptotic pathways not only by downregulating cell surface expression of the death receptors TNFR1, TRAIL receptor 1 (TNFRSF10A) and TRAIL receptor 2 (TNFRSF10B), but also by impeding downstream signalling events. Fas (CD95/APO-1/TNFRSF6) also plays a prominent role in apoptotic clearance of virus-infected cells, so its fate in HCMV-infected cells needs to be addressed. Here, we show that cell surface expression of Fas was suppressed in HCMV-infected fibroblasts from 24 h onwards through the late phase of productive infection, and was dependent on de novo virus-encoded gene expression but not virus DNA replication. Significant levels of the fully glycosylated (endoglycosidase-H-resistant) Fas were retained within HCMV-infected cells throughout the infection within intracellular membranous structures. HCMV infection provided cells with a high level of protection against Fas-mediated apoptosis. Downregulation of Fas was observed with HCMV strains AD169, FIX, Merlin and TB40.


Assuntos
Citomegalovirus/fisiologia , Interações Hospedeiro-Patógeno , Evasão da Resposta Imune , Receptor fas/antagonistas & inibidores , Receptor fas/imunologia , Células Cultivadas , Fibroblastos/virologia , Humanos
13.
Cell Host Microbe ; 13(3): 324-35, 2013 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-23498957

RESUMO

Death receptors (DRs) of the TNFR superfamily contribute to antiviral immunity by promoting apoptosis and regulating immune homeostasis during infection, and viral inhibition of DR signaling can alter immune defenses. Here we identify the human cytomegalovirus (HCMV) UL141 glycoprotein as necessary and sufficient to restrict TRAIL DR function. Despite showing no primary sequence homology to TNF family cytokines, UL141 binds the ectodomains of both human TRAIL DRs with affinities comparable to the natural ligand TRAIL. UL141 binding promotes intracellular retention of the DRs, thus protecting virus infected cells from TRAIL and TRAIL-dependent NK cell-mediated killing. The identification of UL141 as a herpesvirus modulator of the TRAIL DRs strongly implicates this pathway as a regulator of host defense to HCMV and highlights UL141 as a pleiotropic inhibitor of NK cell effector function.


Assuntos
Infecções por Citomegalovirus/imunologia , Citomegalovirus/imunologia , Imunidade Inata , Glicoproteínas de Membrana/imunologia , Glicoproteínas de Membrana/metabolismo , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/imunologia , Proteínas Virais/imunologia , Proteínas Virais/metabolismo , Citomegalovirus/genética , Citomegalovirus/metabolismo , Infecções por Citomegalovirus/genética , Infecções por Citomegalovirus/metabolismo , Infecções por Citomegalovirus/virologia , Interações Hospedeiro-Patógeno , Humanos , Células Matadoras Naturais/imunologia , Glicoproteínas de Membrana/genética , Ligação Proteica , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/genética , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Proteínas Virais/genética
14.
Eur J Cell Biol ; 89(10): 757-68, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20599291

RESUMO

In controlling the switch from latency to lytic infection, the immediate early (IE) genes lie at the core of herpesvirus pathogenesis. To image the 72kDa human cytomegalovirus (HCMV) major IE protein (IE1-72K), a recombinant virus encoding IE1 fused with EGFP was constructed. Using this construct, the IE1-EGFP fusion was detected at ND10 (PML-bodies) within 2h post infection (p.i.) and the complete disruption of ND10 imaged through to 6h p.i. HCMV genomes and IE2-86K protein could be detected adjacent to the slowly degrading IE1-72K/ND10 foci. IE1-72K associates with metaphase chromatin, recruiting both PML and STAT2. hDaxx, STAT1 and IE2-86K did not re-locate to metaphase chromatin; the fate of hDaxx is particularly important as this protein contributes to an intrinsic barrier to HCMV infection. While IE1-72K participates in a complex with chromatin, PML, STAT2 and Sp100, IE1-72K releases hDaxx from ND10 yet does not appear to remain associated with it.


Assuntos
Citomegalovirus/metabolismo , Proteínas Imediatamente Precoces/metabolismo , Proteínas Nucleares/metabolismo , Transativadores/metabolismo , Fatores de Transcrição/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Antígenos Nucleares/genética , Antígenos Nucleares/metabolismo , Autoantígenos/genética , Autoantígenos/metabolismo , Cromatina/química , Cromatina/genética , Cromatina/metabolismo , Citomegalovirus/genética , Infecções por Citomegalovirus/genética , Infecções por Citomegalovirus/metabolismo , Células HeLa , Humanos , Processamento de Imagem Assistida por Computador , Proteínas Imediatamente Precoces/química , Proteínas Imediatamente Precoces/genética , Metáfase/genética , Microscopia de Fluorescência , Microscopia de Vídeo , Proteínas Nucleares/química , Proteínas Nucleares/genética , Proteína da Leucemia Promielocítica , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Fator de Transcrição STAT2/genética , Fator de Transcrição STAT2/metabolismo , Transativadores/genética , Fatores de Transcrição/química , Fatores de Transcrição/genética , Proteínas Supressoras de Tumor/química , Proteínas Supressoras de Tumor/genética
15.
J Gen Virol ; 91(Pt 6): 1535-46, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20479471

RESUMO

Mutations that occurred during adaptation of human cytomegalovirus to cell culture were monitored by isolating four strains from clinical samples, passaging them in various cell types and sequencing ten complete virus genomes from the final passages. Mutational dynamics were assessed by targeted sequencing of intermediate passages and the original clinical samples. Gene RL13 and the UL128 locus (UL128L, consisting of genes UL128, UL130 and UL131A) mutated in all strains. Mutations in RL13 occurred in fibroblast, epithelial and endothelial cells, whereas those in UL128L were limited to fibroblasts and detected later than those in RL13. In addition, a region containing genes UL145, UL144, UL142, UL141 and UL140 mutated in three strains. All strains exhibited numerous mutations in other regions of the genome, with a preponderance in parts of the inverted repeats. An investigation was carried out on the kinetic growth yields of viruses derived from selected passages that were predominantly non-mutated in RL13 and UL128L (RL13+UL128L+), or that were largely mutated in RL13 (RL13-UL128L+) or both RL13 and UL128L (RL13-UL128L-). RL13-UL128L- viruses produced greater yields of infectious progeny than RL13-UL128L+ viruses, and RL13-UL128L+ viruses produced greater yields than RL13+UL128L+ viruses. These results suggest strongly that RL13 and UL128L exert at least partially independent suppressive effects on growth in fibroblasts. As all isolates proved genetically unstable in all cell types tested, caution is advised in choosing and monitoring strains for experimental studies of vulnerable functions, particularly those involved in cell tropism, immune evasion or growth temperance.


Assuntos
Adaptação Biológica , Citomegalovirus/crescimento & desenvolvimento , Citomegalovirus/genética , Mutação , Linhagem Celular , Citomegalovirus/isolamento & purificação , Infecções por Citomegalovirus/virologia , Análise Mutacional de DNA , DNA Viral/química , DNA Viral/genética , Células Endoteliais/virologia , Células Epiteliais/virologia , Fibroblastos/virologia , Humanos , Dados de Sequência Molecular , Análise de Sequência de DNA , Inoculações Seriadas , Proteínas Virais/genética
16.
J Immunol ; 184(10): 5827-34, 2010 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-20410491

RESUMO

TNF-like protein 1A (TL1A), a TNF superfamily cytokine that binds to death receptor 3 (DR3), is highly expressed in macrophage foam cell-rich regions of atherosclerotic plaques, although its role in foam cell formation has yet to be elucidated. We investigated whether TL1A can directly stimulate macrophage foam cell formation in both THP-1 and primary human monocyte-derived macrophages with the underlying mechanisms involved. We demonstrated that TL1A promotes foam cell formation in human macrophages in vitro by increasing both acetylated and oxidized low-density lipoprotein uptake, by enhancing intracellular total and esterified cholesterol levels and reducing cholesterol efflux. This imbalance in cholesterol homeostasis is orchestrated by TL1A-mediated changes in the mRNA and protein expression of several genes implicated in the uptake and efflux of cholesterol, such as scavenger receptor A and ATP-binding cassette transporter A1. Furthermore, through the use of virally delivered DR3 short-hairpin RNA and bone marrow-derived macrophages from DR3 knockout mice, we demonstrate that DR3 can regulate foam cell formation and contributes significantly to the action of TL1A in this process in vitro. We show, for the first time, a novel proatherogenic role for both TL1A and DR3 that implicates this pathway as a target for the therapeutic intervention of atherosclerosis.


Assuntos
Diferenciação Celular/imunologia , Células Espumosas/citologia , Células Espumosas/imunologia , Membro 25 de Receptores de Fatores de Necrose Tumoral/fisiologia , Transdução de Sinais/imunologia , Membro 15 da Superfamília de Ligantes de Fatores de Necrose Tumoral/fisiologia , Animais , Aterosclerose/imunologia , Aterosclerose/patologia , Transporte Biológico/imunologia , Linhagem Celular Tumoral , Células Cultivadas , Proteínas de Transferência de Ésteres de Colesterol/antagonistas & inibidores , Proteínas de Transferência de Ésteres de Colesterol/metabolismo , Feminino , Células Espumosas/patologia , Humanos , Líquido Intracelular/imunologia , Líquido Intracelular/metabolismo , Lipoproteínas LDL/metabolismo , Camundongos , Camundongos Knockout , Membro 25 de Receptores de Fatores de Necrose Tumoral/deficiência , Regulação para Cima/imunologia
17.
J Virol ; 82(9): 4585-94, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18287244

RESUMO

The adenovirus (Ad) early transcription unit 3 (E3) encodes multiple immunosubversive functions that are presumed to facilitate the establishment and persistence of infection. Indeed, the capacity of E3/19K to inhibit transport of HLA class I (HLA-I) to the cell surface, thereby preventing peptide presentation to CD8(+) T cells, has long been recognized as a paradigm for viral immune evasion. However, HLA-I downregulation has the potential to render Ad-infected cells vulnerable to natural killer (NK) cell recognition. Furthermore, expression of the immediate-early Ad gene E1A is associated with efficient induction of ligands for the key NK cell-activating receptor NKG2D. Here we show that while infection with wild-type Ad enhances synthesis of the NKG2D ligands, major histocompatibility complex class I chain-related proteins A and B (MICA and MICB), their expression on the cell surface is actively suppressed. Both MICA and MICB are retained within the endoplasmic reticulum as immature endoglycosidase H-sensitive forms. By analyzing a range of cell lines and viruses carrying mutated versions of the E3 gene region, E3/19K was identified as the gene responsible for this activity. The structural requirements within E3/19K necessary to sequester MICA/B and HLA-I are similar. In functional assays, deletion of E3/19K rendered Ad-infected cells more sensitive to NK cell recognition. We report the first NK evasion function in the Adenoviridae and describe a novel function for E3/19K. Thus, E3/19K has a dual function: inhibition of T-cell recognition and NK cell activation.


Assuntos
Proteínas E3 de Adenovirus/imunologia , Adenovírus Humanos/imunologia , Compartimento Celular , Antígenos de Histocompatibilidade Classe I/imunologia , Células Matadoras Naturais/imunologia , Receptores Imunológicos/imunologia , Adenovírus Humanos/química , Expressão Gênica , Imunidade , Células Matadoras Naturais/virologia , Ligantes , Receptores de Células Matadoras Naturais , Linfócitos T/imunologia
18.
Biotechniques ; 45(6): 659-62, 664-8, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19238796

RESUMO

With the enhanced capacity of bioinformatics to interrogate extensive banks of sequence data, more efficient technologies are needed to test gene function predictions. Replication-deficient recombinant adenovirus (Ad) vectors are widely used in expression analysis since they provide for extremely efficient expression of transgenes in a wide range of cell types. To facilitate rapid, high-throughput generation of recombinant viruses, we have re-engineered an adenovirus vector (designated AdZ) to allow single-step, directional gene insertion using recombineering technology. Recombineering allows for direct insertion into the Ad vector of PCR products, synthesized sequences, or oligonucleotides encoding shRNAs without requirement for a transfer vector Vectors were optimized for high-throughput applications by making them "self-excising" through incorporating the I-SceI homing endonuclease into the vector removing the need to linearize vectors prior to transfection into packaging cells. AdZ vectors allow genes to be expressed in their native form or with strep, V5, or GFP tags. Insertion of tetracycline operators downstream of the human cytomegalovirus major immediate early (HCMV MIE) promoter permits silencing of transgenes in helper cells expressing the tet repressor thus making the vector compatible with the cloning of toxic gene products. The AdZ vector system is robust, straightforward, and suited to both sporadic and high-throughput applications.


Assuntos
Adenoviridae/genética , Genes/fisiologia , Engenharia Genética/métodos , Vetores Genéticos , Adenoviridae/metabolismo , Bacteriófago lambda/genética , Bacteriófago lambda/metabolismo , Linhagem Celular , Cromossomos Artificiais Bacterianos/genética , Cromossomos Artificiais Bacterianos/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Genes Sintéticos , Vetores Genéticos/metabolismo , Humanos , Proteínas Imediatamente Precoces/genética , Mutagênese Insercional , Análise de Sequência de DNA , Transativadores/genética
19.
J Gen Virol ; 88(Pt 4): 1103-1108, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17374753

RESUMO

We report that delivery of first-generation replication-deficient adenovirus (RDAd) vectors into primary human fibroblasts is associated with the induction of natural killer (NK) cell-mediated cytolysis in vitro. RDAd vector delivery induced cytolysis by a range of NK cell populations including the NK cell clone NKL, primary polyclonal NK lines and a proportion of NK clones (36 %) in autologous HLA-matched assays. Adenovirus-induced cytolysis was inhibited by antibody blocking of the NK-activating receptor NKG2D, implicating this receptor in this function. NKG2D is ubiquitously expressed on NK cells and CD8(+) T cells. Significantly, gamma-irradiation of the vector eliminated the effect, suggesting that breakthrough expression from the vector induces at least some of the pro-inflammatory responses of unknown aetiology following the application of RDAd vectors during in vivo gene delivery.


Assuntos
Adenoviridae/imunologia , Vetores Genéticos/imunologia , Células Matadoras Naturais/imunologia , Células Cultivadas , Citotoxicidade Imunológica , Fibroblastos/virologia , Humanos , Subfamília K de Receptores Semelhantes a Lectina de Células NK , Receptores Imunológicos/antagonistas & inibidores , Receptores de Células Matadoras Naturais
20.
J Immunol ; 178(7): 4473-81, 2007 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-17372005

RESUMO

The inhibitory leukocyte Ig-like receptor 1 (LIR-1, also known as ILT2, CD85j, or LILRB1) was identified by its high affinity for the human CMV (HCMV) MHC class I homolog gpUL18. The role of this LIR-1-gpUL18 interaction in modulating NK recognition during HCMV infection has previously not been clearly defined. In this study, LIR-1(+) NKL cell-mediated cytotoxicity was shown to be inhibited by transduction of targets with a replication-deficient adenovirus vector encoding UL18 (RAd-UL18). Fibroblasts infected with an HCMV UL18 mutant (DeltaUL18) also exhibited enhanced susceptibility to NKL killing relative to cells infected with the parental virus. In additional cytolysis assays, UL18-mediated protection was also evident in the context of adenovirus vector transduction and HCMV infection of autologous fibroblast targets using IFN-alpha-activated NK bulk cultures derived from a donor with a high frequency of LIR-1(+) NK cells. A single LIR-1(high) NK clone derived from this donor was inhibited by UL18, while 3 of 24 clones were activated. CD107 mobilization assays revealed that LIR-1(+) NK cells were consistently inhibited by UL18 in all tested donors, but this effect was often masked in the global response by UL18-mediated activation of a subset of LIR-1(-) NK cells. Although Ab-blocking experiments support UL18 inhibition being induced by a direct interaction with LIR-1, the UL18-mediated activation is LIR-1 independent.


Assuntos
Proteínas do Capsídeo/imunologia , Antígenos de Histocompatibilidade Classe I/imunologia , Células Matadoras Naturais/imunologia , Receptores Imunológicos/antagonistas & inibidores , Adenoviridae/genética , Antígenos CD/análise , Antígenos CD/imunologia , Proteínas do Capsídeo/genética , Células Cultivadas , Citotoxicidade Imunológica , Vetores Genéticos/genética , Antígenos de Histocompatibilidade Classe I/genética , Humanos , Células Matadoras Naturais/química , Receptor B1 de Leucócitos Semelhante a Imunoglobulina , Ativação Linfocitária , Receptores Imunológicos/análise , Receptores Imunológicos/imunologia , Deleção de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA